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1 Introduction

Accessibility is becoming a popular metric in public transport planning exercises (e.g., Palmateer,
Owen, & Levinson, 2016; APPM Management Consultants & Goudappel Coffeng, 2016). One of
the challenges with using accessibility in public transport sketch planning is variation and uncertainty.
Transit travel times can vary significantly depending on the exact departure time (due to waiting for
transit vehicles at the first stop or at transfers). e literature on “reliable” travel time and accessibil-
ity metrics is relatively well developed, but there is little research extending this concept to the public
transport context, which is surprising given the magnitude and regularity of variation in transit travel
time.

In addition, rapid-turnaround sketch planning and geodesign activities are becoming prevalent
in planning (e.g., Walker, 2010; Stewart & Zegras, 2016). ese types of exercises present a number
of challenges for the use of accessibility. In sketch planning, scenarios are oen underspecified, with
quick, rough plans rather than detailed descriptions. Furthermore, sketch planning requires compu-
tations to be performed very rapidly, with results needed in seconds or (at worst) minutes, limiting
the complexity of the algorithms used. is paper presents a technique to address both the need for
“reliable” metrics which account for variation, and a statistical approach to ensure that these results
are not simply due to random error. ese techniques are used in Conveyal’s sketch planning system
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to provide near-real-time feedback on transport network changes. A case study of an expansion of
the SingaporeMass Rapid Transit (MRT) system is presented in the penultimate section of this paper.

2 Literature Review

Including variation and uncertainty in the definition of accessibility is not a new phenomenon. Hall
(1983) theorized that modes with less certain travel times cause their users to allow a “safety margin”
on top of the expectation of travel time, which increases the effective travel time. Owen and Levinson
(2014) and Farber and Fu (2017) have taken the variation in public transit travel times into account
by computing the average number of opportunities reachable given random departure during a time
window (for instance, the morning peak commute). Farber, Morang andWidener (2014) use the per-
cent of the day that supermarkets are accessible within a given travel time as their metric, thus creating
a measure not of travel time but of variation.

Chen et al. (2013, 2017) develop reliable metrics for automobile travel time and accessibility
given traffic variation, estimating the accessibility given a desired probability of on-time arrival. For
example, one might want to ensure that they arrive on time 90 percent of the time, given stochastic
variations in travel time. In sketch planning, we frequently do not know the exact schedule of new or
modified lines, but only their frequencies, making it difficult to quantify waiting time at the start of
the trip and at transfers. A common approach to dealing with this, which can be termed half-headway,
involves assuming that thewaiting time for any boarding, either at the start of the trip or aer a transfer,
involves waiting for half of the headway of the vehicle (e.g., Farber & Grandez, 2017).

However, the half-headway method cannot handle the case of multiple competing routes. ere
maybemultiple routes running along the same street (or even alongparallel streets), and a clever system
user will not wait an average of half the headway of any individual route, but will instead take the first
vehicle that arrives on any route. Additionally, the travel times reported to each location are likely
not all possible simultaneously; most likely it is not possible to schedule the network such that every
transfer wait is exactly half of the headway of a line. Instead, we adopt the method of calculating
accessibility metrics given sketch plans of public transport systems described inConway, Byrd and van
der Linden (2017). is method uses the full timetables of the existing transit system, and thus has
information about the transfer performance and existence of competing lines. When there are lines
that do not have timetables present in the scenario, aMonte Carlo approach is taken, generatingmany
possible timetables from the set of all timetables that could exist given the description of the network.
us, the full distribution of travel times is explored, including the effects of competing lines.

Owen and Levinson (2014) and Farber and Fu (2017) include travel time variation over a possible
departure time window in their accessibility results by computing the travel time given departure at
eachminute during the time window. e same approach is used inConway, Byrd and van der Linden
(2017), so therefore the output of our algorithm is travel times given departure at each minute during
the time window.

Given travel times, or in our case a list of travel times, from each origin to each destination, wemust
create a single accessibility number for each origin. ere are numerousways to summarize travel times
into a single accessibility metric (for a summary, see Geurs & van Wee, 2004/2006 and El-Geneidy &
Levinson, 2006). Perhaps the simplest is the cumulative accessibility metric, which simply counts the
number of opportunities within a particular travel time cutoff. More complex formulations are also
possible, givingmore distant opportunities a lower but non-zeroweight in themetric relative to nearby
opportunities.

When computing accessibility measures for public transport systems, we are faced with the prob-
lem of not having a single travel time for each O-D pair, but rather having many possible travel times
depending on exactly when you depart. Owen and Levinson (2014) address this by computing a cu-
mulative accessibility metric at each possible minute of departure, and taking the arithmetic mean of
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those values. We term this metric average instantaneous accessibility: instantaneous because the acces-
sibility is calculated independently at each instant, and average because those values are averaged.

3 Computing Accessibility

Our method consists of several steps. We first compute travel times to all destinations, accounting
for the uncertainty in proposed transit lines that have not yet received schedules. We then choose
a travel time cutoff and a desired level of reliability for the accessibility metric. Finally, we evaluate
uncertainty in our estimates using a bootstrapping process. is process is depicted visually in Figure
1, and is described in the following sections.
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Figure 1: Process diagram of our accessibility computation framework

For ease of interpretation, we have chosen to use a cumulative accessibility metric; it is far easier
to grasp the idea of n opportunities being within a certain travel time, rather than a weighted average
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metric of many opportunities which do not count equally. is is a particular advantage in the sketch
planning context, where the results likely need to be communicated to non-experts. e methods for
quantifying reliability and uncertainty described in this paper, however, depend only on travel time
and can be applied to any accessibility metric that takes as input an O-D matrix of travel times.

In order to compute a cumulative accessibilitymetric, we need to summarize our list of travel times
for all departure times and a random sample of possible timetables to a single travel time for eachO-D
pair. Using the aforementioned average instantaneous accessibility is attractive for anumber of reasons.
As the mean of many instantaneous accessibility values, there are no issues with undefined or infinite
data; accessibility values are defined and finite at every location and every departure time (although
they may be zero). Other metrics that instead take the mean of travel time (for instance, that used in
the case study section of Conway, Byrd, & van der Linden, 2017) have issues with locations that are
reachable for part of the timewindow (i.e., have defined travel time) and later becomeunreachable (i.e.,
have undefined travel time) given constraints such as maximum walk distance and maximum overall
trip duration. Such problems could occur, for example, at a location that is served by an express bus
that runs once, but which is no longer accessible by transit aer that bus has stopped running for the
day, producing undefined or effectively infinite travel times over part of the departure time window.
ere is no straightforward way to deal with undefined values in the context of a mean.

However, average instantaneous accessibility presents a concern regarding the fungibility of op-
portunities (Conway, Byrd, & van der Linden, 2017). e average accessibility metric considers the
number of opportunities accessible at each minute, but does not differentiate between opportunities
accessible at different minutes. For instance, if 200,000 jobs in one city are accessible within 60 min-
utes one-quarter of the time, and 100,000 different jobs in another city are accessible within 60 min-
utes another quarter of the time (for instance, due to infrequent commuter rail service), the average in-
stantaneous accessibilitymetricwould show that 75,000 jobs are accessiblewithin 60minutes, when in
actuality no single job is accessible within 60minutes at a majority of possible departure/arrival times.
Given this fungibility concern, we wish instead to calculate the average travel time to each destination,
and include only destinations that have an average travel time of less than our cutoff in the accessi-
bility figure. With opportunities that are not perfect substitutes, this makes sense: we are looking at
opportunities which independently have an average travel time less than the cutoff. is is an opinion-
atedmetric; infrequent transit which requires users to build their lives around the transit schedule will
not perform well given the assumptions of this metric. Frequent transit systems which allow relatively
stable travel times at all potential departure times will fare much better under this metric.

We use the median travel time, rather than the arithmetic mean travel time, because it does not
exhibit the aforementioned problems with destinations that are unreachable for part of the time win-
dow. A departure time or timetable for which a destination is not reachable at all will have the same
effect on the indicator value as a departure time or timetable for which that destination is reachable,
but the travel time exceeds the travel time budget. is is because the median is affected only by the
relative positions of travel times above and below the cutoff, not their values (Conway, Byrd, & van der
Linden, 2017, 46). We term this approach accessibility given median travel time. is is represented by
the “compute percentiles” step in Figure 1; it is followed by a geographic overlay step which sums all
of the opportunities with median travel times less than the cutoff.

4 Accounting for Travel Time Variation Using Reliable Accessibility Metrics

e direct interpretation of this metric (accessibility given median travel time) is that a user of the
transit system will be able to reach a certain set of opportunities within the travel time budget at least
half of the timeduring the timewindow (usingmany randomtimetableswhen there are headway-based
lines). While this may be appropriate for certain types of activities, such as arriving at a coffee shop (or
even arriving at work, if an employee has a flexible work schedule), it is woefully inadequate for other
types of trips, for example a job interview, a trip to the airport, or even a daily trip to the workplace for
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many employees (Chen et al., 2013, 1506). Chen et al. (2017) create a “reliable” accessibility metric,
counting only the opportunities reachable with a certain probability given variation in travel time.
Reliable metrics are useful even when system users make the same trip every day on a deterministic,
scheduled network, because the system provides access to many opportunities which start at times
uncorrelatedwith the transit network, and therefore some travelers effectively wait at their destination
for their activity to start, even if they le their origin at a time that allowed them to catch a transit
vehicle with minimal waiting.

It is straightforward to generalize our accessibility given median travel time metric to be a simi-
lar “reliable” accessibility metric by replacing the median travel time with another percentile of travel
time, for instance the 75th or the 90th. We term this metric accessibility given x percentile travel time.
e interpretation of this metric is straightforward: the accessibility given 75th percentile travel time
indicates that at least 75 percent of the time a user will arrive at their chosen destination within the
travel time budget, giving us a reliable accessibilitymetric. ismetric retains the property of correctly
handling travel times that are undefined or infinite when certain destinations are unreachable for part
of the time window since, like the median, percentiles are based only on positional information.

5 Evaluating Uncertainty Due to Schedule Randomization

For lines described with headways rather than complete timetables, we use a Monte Carlo technique
to generate a sample of timetables (Conway, Byrd, & van der Linden, 2017), because exhaustively cal-
culating the impact of all possible timetables is intractable. One concern with using a random sample
of possible timetables is that each run of the model will yield different results, and we must properly
choose the sample size to keep this instability within acceptable tolerances. When lines are specified
with headways rather than full timetables, we cannot produce an exact travel time as we do not know
how long the user will have to wait to board the vehicle or at transfers. In theory it would be possible
to provide a stable result by computing the travel time using every possible timetable at every possible
minute of departure, but this is computationally infeasible. eMonte Carlo approach we use instead
yields a random sample from these travel times. In order to avoid concluding that a particular change to
the transit system has a positive or negative effect on accessibility when in fact the change in indicator
values is due only to timetable sampling error, we would like to create confidence intervals on the ac-
cessibility givenmedian (or other percentile) travel time. Additionally, we wish to perform hypothesis
tests to ensure that differences observed between transit network scenarios are in fact due to changes
in the transit network, rather than due to random variation in the results. In order to compute these
confidence intervals and perform hypothesis tests, we would like to know the sampling distribution of
the accessibility given median or a reliable percentile of travel time, i.e., the distribution of the results
of repeatedly performing the accessibility calculation described previously.

e sampling distribution described in this section quantifies the uncertainty present in the ac-
cessibility given median (or percentile) travel time and random schedules. If we run the analysis again
with the same inputs, we would expect the results to follow this distribution. us, we can use this
sampling distribution to evaluate the level of uncertainty in the results due to the method we are us-
ing, and to test whether results from twodifferent networks differ due to a systematic effect as opposed
to random chance. is sampling distribution does not encompass the distribution of outcomes that
might be seen once a particular change to the transport network is implemented and given a specific
timetable. For computational reasons, our method for evaluating travel time given random timetables
mixes many possible timetables together to produce a single median travel time value. However, most
agencies in the developed world use timetables, even if the schedule is presented to the public as fre-
quencies. Once the changes to the transport network are implemented, there will thus generally only
be a single timetable, which may have much better or much worse than median performance from a
given location, depending on transfer timing. Some possible techniques to address this inconsistency
are explored in the “Further Research” section below.
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Computing the sampling distribution of the accessibility given median (or percentile) travel time
can be accomplished with the bootstrap (Efron, 1979), a general method for empirically approximat-
ing the sampling distribution of a statistic of interest. It works by sampling with replacement (i.e.,
permitting the same observation to sampled more than once) from a set of observations to create a
series of additional datasets of the same size (termed bootstrap samples) that resemble datasets drawn
from the complete population (in our case, the population of all possible schedules fitting scenario
constraints). e statistic of interest is then computed for each of these bootstrap samples, and these
additional values of the statistic (termed bootstrap replications) can then be used to estimate a sampling
distribution. is sampling distribution can then be used to perform hypothesis tests and estimate
confidence intervals (Efron & Tibshirani, 1993). is is the “bootstrapping algorithm” step in Figure
1.

In order to compute a sampling distribution of accessibility given median travel time, we take
many bootstrap samples from the original Monte Carlo timetable draws, and compute a bootstrap
replication of accessibility given median travel time for each of those bootstrap samples. Since the
uncertainty is in the travel times (rather than in the accessibility value directly), each bootstrap sample
consists ofmany travel times to each destination, sampled randomly fromall of the travel timeswe have
found for that destination using different randomized timetables and departure times. at random
sample is then used to compute an accessibility given median or percentile travel time value.

emain challenge with applying the bootstrap in this context is that the naïve bootstrap requires
independent data (Lahiri, 2003, ch. 2), which our samples are not; they are a time series with repeating
elements due to the headways of the lines in the network, and the travel times to destinations served
by the same transit line are correlated. Since the introduction of the bootstrap, many researchers have
devised methods to bootstrap dependent data (many are described in Lahiri, 2003). Many of these
methods use an understanding of the data’s dependence structure to create samples which internally
have the same dependence structure as the data, but are independent of each other. While none of
the methods defined in the literature appear to be directly applicable to our use case, we can use our
understanding of our data’s dependence structure to devise a sampling technique that constructs inde-
pendent bootstrap samples.

ere are two main sources of dependence in our accessibility calculations. e first is that the
travel times from a particular combination of departure time and randomly selected timetable will
have correlated effects on many destinations (for example, if those destinations are all served by the
same transit line, and that line requires a long wait at that particular combination of departure time
and timetable). In the most extreme case, a long wait may be encountered at the origin, moving the
entire network further away in time. When we calculate the point estimate of accessibility given me-
dian travel time, each random timetable is used to compute the travel time to all destinations from
the origin point of interest; new random timetables are not generated for each destination. In order
to reproduce this dependence, we use travel times from the same randomly sampled set of random
timetables and departure times for the nth bootstrap sample at every destination. If we were instead
to sample randomly from the travel times to each destination independently, we would understate the
variation in the results because more timetables would be included in each sample and therefore we
would tend to have fewer bootstrap samples where many of the chosen timetables happen to provide
exceptionally good or exceptionally poor travel times.

e second source of dependence is the fact that we associate each random timetable with one
specific departure time. In order to make the algorithm computationally tractable, we distribute the
number of requested random timetables over the individual minutes of the departure time window.
For example, if 1000 random timetables are requested for an analysis of the morning peak, 7:00 AM
to 9:00 AM, we will perform 9 searches at each minute of departure within that window, each using
a different randomized timetable. us, 1080 random timetables are evenly distributed among all
the minutes in the departure time window (we round up to ensure that the same integer number of
timetables are generated for each departure time).
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Random timetables that share the same departure time will have travel times (and therefore ac-
cessibility values) that are more correlated with each other than with those for different departure
minutes (due to the fixed, timetabled component of the network). In addition, there is correlation be-
tween adjacent departure minutes; the travel time to a particular destination given departure at 9:14
AM can be no more than one minute longer than the travel time given departure at 9:15 AM; waiting
one more minute at the origin is always an option. is effect applies at both the origin and transfer
points. ere are also periodic components due to the headways of the transit lines. Other researches
have used Fourier transforms to determine these periodic dependence components, albeit for a single
O-D pair (Farber & Fu, 2017).

ese issues can be addressed using bootstrap techniques designed for hierarchical data. Rather
than treating the travel times from all departure minute/random timetable combinations as if they
were independent, we instead sample from the travel times given a random timetable at each departure
minute individually, yielding a sample where all departure times are equally represented, meaning any
dependence structure between departure times is preserved. is is similar to the technique described
by Davison and Hinkley (1997, 100f ), for balanced hierarchical data. However, rather than perform-
ing a two-stage sampling process (sampling first from departure times, then from travel times given
each departure time and a random timetable), we use all the departure times in each bootstrap sample,
and then randomly sample from the travel times computed for each of those departure times, yielding
a sample with equal representation of all possible departure times. Our approach better reflects the
process of generating the point estimate of accessibility, which also uses all possible departure times.

In this way, all systematic variation due to the portion of the network with known timetables is
encapsulated within the individual bootstrap samples, and the sampling distributions represent only
the error caused by the random selection of timetables for lines specified with headways. We can then
compute a confidence interval using this distribution, for example by using the percentile method
(Efron & Tibshirani, 1993, ch. 13).
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Figure 2: Contrasting bootstrapped sampling distributions for accessibility at origin points with dif-
ferent characteristics.

ebootstrapped samplingdistributions of accessibility givenmedian travel time for two locations
in Singapore are shown in Figure 2. e first is a location near the central business district (CBD) and
served by a proposed frequent rapid transit line. It has a very narrow sampling distribution; there is
minimal variation in travel times due to the sampling process. When vehicles run this frequently, all
random schedule draws are relatively similar, and the value of the indicator is well defined. Contrast
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this to the less central location on the right of Figure 2, served by less frequent buses, where there is
much more uncertainty in the results. e vertical lines in both plots represent the accessibility values
that were calculated from the original (non-bootstrapped) set of travel times. As expected, they fall in
the dense parts of the sampling distributions.

In order to produce defensible sampling distributions, it is important that enough random timeta-
bles are used to generate the input to the bootstrapping method, and that enough bootstrap iterations
are used to give stable results. Further research is needed to determine these values for different types
of transit systems.

6 Comparing Scenarios Probabilistically

6.1 Confidence Intervals on Change in Accessibility Due to a Scenario

Accessibility numbers are minimally useful in and of themselves; they are more useful as relative val-
ues (for comparing scenarios) rather than absolute numbers (Geurs & van Wee, 2004/2006). Since
our accessibility calculations contain uncertainty, we wish to use the sampling distributions we have
computed to compare results from two different transport scenarios (one of which may be the exist-
ing transit service) and determine whether a given change is statistically significant, or consistent with
random chance.

We first perform the analysis as described above for each scenario, choosing an appropriate per-
centile of travel time to ensure destinations are reliably reachable. en at each origin point of interest,
we subtract the accessibility sampling distribution for one scenario from that for the other scenario,
yielding a distribution of the accessibility differences we might encounter if the analysis were re-run
and the comparison repeated many times. e difference of two random variables is a convolution,
which can be computed empirically: since subtraction is fast on modern computer hardware, we can
exhaustively subtract every bootstrap replication of accessibility for the second scenario from each
bootstrap replication of accessibility for the first scenario without resampling. e bootstrap replica-
tions from the two scenarios are independent, so no special sampling techniques are needed to ensure
that the sampling distribution of the difference is correct.

235000 245000 255000 265000

Near CBD and rail

Difference in accessibility

60000 80000 100000 120000

Further from CBD and rail

Difference in accessibility

Figure 3: Contrasting bootstrapped sampling distributions for differences in accessibility at origin
points with different characteristics.

From this distribution of accessibility differences, we can compute a bootstrap confidence interval
on the difference between the two scenarios at each separate origin point using the percentile method
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described in Efron and Tibshirani (1993, ch. 13). In this method, we find two specific percentiles of
the sampling distribution of differences, giving us the endpoints of the confidence interval. For in-
stance, to compute the 95 percent confidence interval, we would take the 2.5th and 97.5th percentiles
of the sampling distribution of the differences in accessibility. e confidence interval then allows us
to state the sign and approximatemagnitude of change in accessibility givenmedian or percentile travel
time due to transit network changes described in the scenario. Figure 3 shows the sampling distribu-
tion of accessibility differences due to the changes in the transport network described in the case study
section, at the two origin points described in the previous section. e dark vertical lines represent the
differences in the point estimate of accessibility, and 95 percent confidence intervals are indicated by
the dashed lines. As described above, this confidence interval only characterizes the change in accessi-
bility given median travel time with random departure time and timetables; it does not represent the
full range of possible rider experiences given a single timetable.

6.2 Hypothesis Tests on Change in Accessibility Due to a Scenario

It is also possible to perform a hypothesis test to evaluate whether reported changes in accessibility
are due to changes in the transport network described in a scenario, or simply due to sampling error
in the randomized timetables. We do this by computing a p-value that the sampling distributions
of accessibility at a particular origin point from the two scenarios differ. Our analysis soware uses
this method to display scenario comparison results on a map: the difference in the point estimate
of accessibility is displayed at each origin point, but locations with a p-value greater than a chosen
cutoff are hidden to mask random noise, highlighting changes that are very likely to be the result of
the scenario itself.

We can use the percentile method to produce this p-value from the sampling distribution of dif-
ferences described above. We construct a confidence interval in which one end of the interval falls
exactly at 0, exclusive (Efron & Tibshirani, 1993, 214ff ). We determine whether the low or high end
of the confidence interval should be placed at zero based on the sign of the (non-bootstrapped) esti-
mate of accessibility. If the estimated value is positive, the low end of the confidence interval will be
placed at zero; if it is negative the high end will be placed at zero. e confidence level of this confi-
dence interval is the complement of the p-value of the (two-tailed) hypothesis test. For example, if
this happens to be an 85 percent confidence interval, the p-value is 0.15. We prefer two-tailed tests
as they make no assumptions about the direction of change (if a proposed transit improvement had a
statistically significant negative impact, we’d certainly want to know about it!).

Statistical significance testing effectively masksmuch of the noise in the results, but does not com-
pletely eliminate it. When using a 95 percent confidence level, for example, 5 percent of the time
we can expect to get a statistically significant result when in the change was not due to the scenario.
is problem is exacerbated when many p-values are computed as a part of an analysis (Wasserstein
& Lazar, 2016). If we compute the change in accessibility and an associated p-value for thousands of
locations within a region, it is almost inevitable that a few changes will appear significant even in areas
where change is due to noise rather than the scenario. We suggest using high thresholds for statisti-
cal significance in order to minimize the number of locations that appear significant when there is in
fact no change. Even with high thresholds for statistical significance, when an analysis contains (say)
100,000 departure points, it is highly likely that some will show a statistically significant effect when
there is in fact no change.

ere is a simple visual check which can help to determine whether a particular observed change
is due to the scenario, or simply due to random variation. Accessibility metrics are spatially autocor-
related, and generally vary smoothly across space (the opportunities that are reachable from one cell
are, for the most part, the same as the opportunities that are reachable from the adjacent cell). us,
when there are a number of statistically significant cells clustered together, they are likely to represent
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a change due to the scenario; isolated statistically-significant cells are more likely to be due to random
variation.

Formal methods do exist for controlling error in the presence of multiple testing. e best known
multiple testing corrections are the Bonferroni and Šidák tests, which consist of reducing the critical
value at which you consider a particular change statistically significant in order to control the proba-
bility of any cell being falsely deemed significant (Abdi, 2007). e Bonferroni test works by dividing
the desired p-value of any error existing in the study area by the number of tests performed (the Šidák
test is similar but slightly more mathematically complex). us, if one wants to limit the probability
of any false positives to, say, 0.05, when testing accessibility in 100 cells, one would consider a cell
statistically significant if it had a p-value of 0.05/100= 0.0005 or less.

Clearly, given the large number of cells in a typical accessibility analysis (this analysis contained
over 6000 cells, and covers a relatively small area), the critical values will be so low that there will be
few if any statistically significant cells. e p-values that are deemed significant will also be based on
the extreme tails of the distribution of differences, and thus the cells considered significant are likely
to vary a large amount from one run to the next.

Part of the problem is that when there is dependence between tests, the Šidák and Bonferroni ap-
proximations provide a lower bound on the appropriate critical value to control the probability that
there are any falsely-significant cells (Abdi, 2007). Clearly, our tests are highly dependent, since ac-
cessibility varies geographically. Anselin (1995, 96) finds a similar problem with using the Bonferroni
correction with a spatially autocorrelated statistic, and notes that it is not clear how to best perform
multiple testing correction in such a situation. da Silva and Fotheringham (2015) developed amethod
to estimate the appropriate correction factor for Geographically Weighted Regression, which also has
many spatially correlated tests; future research could use similar techniques to correct our results.
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Figure 4: Cumulative distribution of p-values when comparing two analyses of the same transport net-
work (solid line) and a transit expansion to the existing transit network (dashed line).
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In an empirical analysis, ourmethod findsmore cells than expectedwith no statistically significant
change. e solid line in Figure 4 shows the cumulative distribution of p-values for all origins when
evaluating the difference between two analyses of access to jobs using the same transport network and
land use data. In this case, we would expect to find that 5 percent of the cells have a p-value less than
0.05, but we see that the number is smaller than that. is is due to a large number of cells with a
p-value of 1. ere are two ways these can occur. e simplest is that there is no variation between
the two runs of the algorithm, so the difference is exactly 0, with no variation, which happens in areas
where there is no transit. Figure 4 excludes lakes, the sea, and other areas with an accessibility value of
0, but there may be locations where some jobs are accessible on foot (or via timetabled transit with no
travel time variation between analysis runs, although this type of transit does not exist in this particular
network). emore likelyway is that the point estimate of accessibility lies on the opposite side of zero
as the majority of the density (not unlikely when the expectation of the distribution of accessibility
differences is zero). In this case, the percentile interval is undefined. Suppose the point estimate is
larger than zero, while the majority of the density lies below zero. e percentile method calls then
for constructing a confidence interval with its le end at zero; no such confidence interval exists, as
a majority of the density of the distribution lies below zero. Our soware thus assumes no change
and returns a p-value of 1. e dotted line, representing the cumulative distribution of p-values from
comparing a transit expansion to the baseline, shows a smaller number of cells with a p-value of 1, as
expected because this expansion has a positive impact on accessibility and thus fewer locations have a
difference in accessibility of 0, therefore the point estimate and the majority of the density will more
oen lie on the same side of 0.

ere is also a very slight sigmoid shape to the distribution of p-values; the magnitude and direc-
tion of this sigmoid shape appears to depend on the ratio of number of random schedules used to the
length of the time window. In this example and the case study given below, this ratio is very large. is
network has no scheduled component, so we treated the time window as having a length of 1 minute,
and all 1000 random schedules used were treated as coming from that minute. With smaller numbers
of random draws relative to time window length, the sigmoid shape can be in the opposite direction,
and larger, resulting in more statistically significant changes than expected. It may be possible to re-
duce this effect by usingmore advanced techniques than the percentile method, such as bias-corrected
confidence intervals. ese techniques are discussed in the “Further Research” section below.

7 Case Study: Singapore MRT Expansion

Weapplied thismethod to a case study in Singapore, where several newMRT (grade-separatedmetro)
lines will be built in the coming years. A scenario describing this network expansion has characteris-
tics that we know a priori: the changes can only improve accessibility figures, and should do so in areas
near new stations. e results of our method include random error from the Monte Carlo process in
addition to any true change in accessibility. Since under this scenario we already know that all change
not due to random variation is positive, it allows us to test our method for filtering out statistically in-
significant changes in accessibility. Results judged to be significant should be overwhelmingly positive,
while negative results should be filtered out as insignificant.

7.1 Input Data

Given the lack of publicly available data sources describing the public transport supply and work loca-
tions in Singapore, we opted to use processed data from a MATSim implementation that is based on
public transport smart card data (Fourie et al., 2016). MATSim is an open source agent-based trans-
port demand model and has been implemented for cities and regions worldwide (e.g., Horni et al.,
2016).
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In this MATSim implementation, a full day of public transport smart card transactions recorded
in Singapore was transformed into both transport supply and demand. A regression model of bus
speed between stops that is dependent both on the level of demand and network topology was imple-
mented, and a model of bus dwell time at stops that is dependent on the ridership of the bus and its
configuration was used. MATSim utilizes an evolutionary algorithm to reach a steady state. e same
day is simulated many times, with a fraction of the agents modifying their plans aer each iteration.
e output of MATSim is stored in an events file, that contains events such as “bus enters stop” and
“bus leaves stop.” e events from a simulation that reached steady state were exported to the more
commonly used General Transit Feed Specification (GTFS) format that can be read by our analysis
soware.

While MATSim output is a series of events at exact times, the Singapore transit network (both
bus and rail) is experienced by its users as a pure headway-based network, with vehicles arriving at
a set headway but not at the same time from one day to the next. erefore, when converting the
MATSim output to the GTFS format that is read by our analysis soware, we used stop-to-stop travel
times produced by the MATSim model accounting for traffic congestion, but replaced the exact times
of arrival and departure with nominal headways from the initial MATSim network description. Our
analysis method then calculated accessibility using many randomly selected timetables meeting these
headway and travel time constraints, as described above.

e MATSim network is a snapshot of the Singapore network at the time the smart card data was
collected. Using Conveyal’s map-based scenario editor, several rail lines were added or extended to
reflect the expected state of the system in the mid-2020s.

Reflecting the Tuas West Extension that is planned to open in 2017, the East-West MRT line was
extended four stations past its current western terminus at Joo Koon into the Tuas industrial area.
e planned omson–East Coast Line (expected to open in five stages from 2019 through 2024) is
entirely absent fromtheMATSimmodel, as is theDowntown line (aroundhalf ofwhich is inoperation
as of this writing). e full length of both these lines was added to our scenario using station location
maps available from the government’s one-stop data portal (data.gov.sg).

is particular MATSim model contains only stages 1–3 of the Circle Line; while there are other
implementations of the MATSim model, this is the only one that was available for this project. In
our scenario, the line was extended up to and beyond its current terminus at HarbourFront to form a
complete loop, which is planned for around2023. Finally, theNorth-South linewas extendedone stop
to its current terminus at Marina South Pier. An average speed of 40 km/h was applied to all new rail
lines and segments, based on observed travel times over the whole length of existing lines. Headways
on new lines were set to fourminutes to reflect peak service; while some lines runmore oen than this
at peak, this was seen as a reasonable estimate.

e bus network is also likely to change in the coming years, especially with so many changes to
the rail network. ese changes are not anticipated by our scenario. While their absence does have
an impact on the quality of the results, our intent here is to demonstrate our probabilistic scenario
comparison methodology rather than focus on the Singapore results themselves.

In order to compute accessibility, we also need data on opportunity locations. Workplaces in Sin-
gapore were derived from public transport smart card data processed inMATSim (Chakirov & Erath,
2012). Subsequently, work-related trips were distributed to individual buildings by means of iterative
proportional fitting and inflated by mode share per TAZ as observed in the Singapore Household In-
terview Travel Survey (Ordóñez Medina & Erath, 2013). We binned these data into a regular grid.
e center points of these grid cells also served as the origin points for our accessibility analysis.

7.2 Results

e raw output from our Monte Carlo accessibility calculations is not filtered to exclude statistically
insignificant changes. Figure 5 shows such output for the change in number of jobs accessible in a me-

data.gov.sg
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dian travel timeunder 45minutes, holding employmentdata at present levels. is analysis used transit
headways and travel times for the morning peak (at 8 AM) and randomly generated 1000 timetables
meeting these constraints. In these raw resultswe see a large amount of accessibility increases near tran-
sit. is is the expected effect of MRT expansion, the significant “signal” we want to present in our
final visualization. Negative changes are also found at a large number of locations around the fringes
of the city. ese must be artifacts of the Monte Carlo approach: our scenario only adds lines or ex-
tends them inways that do not affect travel or wait times on the existing segments. We deduce that the
scenario cannot cause any travel times to increase, and therefore cannot cause accessibility to decrease.

Figure 5: Raw output from employment accessibility calculations, including undesirable noise causing
spurious negative values.

We can avoid misinterpreting this noise in the results by applying the probabilistic scenario com-
parison methods described above, isolating only the statistically significant changes in accessibility.
Figure 6 shows the change in job access due to the expansion of the MRT for only locations with a
change that is statistically significant at the p < 0.02 level.

is visualization of our final filtered results is coherent with the expected impact of our scenario.
ere are significant gains in accessibility throughout Singapore, with the largest increases in access
occurring along the new or extended MRT lines (shown as darker, heavier blue lines, with the lighter
lines representing the existing MRT lines). New lines provide a large increase in access to those living
nearby, and network effects yield smaller benefits at locations throughout the city fromwhich the new
lines can be reached via transfers.

All reported decreases in the raw data are known to be random noise rather than a systematic
effect of transit expansion, and all but a few of these have been effectively masked. e few scattered
decreases that remain are a result of our chosen confidence level: masking using p-values does not
entirely eliminate error, but it hides a large proportion of locations where noise dominates reliable
information about changes in accessibility. Some areas of increase have also disappeared, indicating
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Figure 6: Change in job accessibility due to planned MRT expansion, statistically significant (p <
0.02) changes only.

that those particular increases are also likely attributable to timetable sampling, rather than systematic
effects of the scenario.

Of course, we can also perform the analysis using a different percentile of travel time, in order
to achieve more reliable results, as they are called in the literature. Figure 7 shows how accessibility
indicator values change when 85th percentile travel time is used instead of median travel time (with
the MRT expansion described above present in both calculations). As expected, accessibility values
change less in the center of the network, where travel times are more reliable and commute times to
major job centers are shorter. In the periphery, variability is higher, with the reduction in job access
due to increased reliability demands exceeding 30 percent in some areas away from theMRT.is is as
expected; peripheral locations have longer commutes to job centers (closer to our 45minute cutoff ) as
well as less reliable travel times due to longer headways and additional transfers. is shows the value
of using reliable metrics; if travelers need to arrive at a specific time, the use of an accessibility metric
using average travel time may significantly overstate access.

8 Further Research

ere are several avenues for further refinement of this methodology. Its main shortcoming is that it
understates the uncertainty in accessibility estimates when headway-based lines in a scenario are even-
tually operated with a single fixed timetable. is is because our accessibility metric is based on me-
dian travel times over many departure times (which is not problematic) but simultaneously over many
timetables, and thus does not capture extreme travel times that occur only when a single timetable
with particularly well or poorly timed transfers is combinedwith a particular range of departure times.
Travel time variation due to different departure times is not properly isolated from travel time variation
due to different timetables. e apparent solution to this problem is to compute the accessibility distri-
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Figure 7: Change in reliably accessible jobs when using 85th percentile rather than median travel time.

butions by combining each randomly selected timetablewith all departure times in thewindow (rather
than one particular departure time, as described above). is should yield wider distributions includ-
ing more extreme accessibility values that occur only under unusual timetables. However, achieving
this additional degree of accuracy requires far more computation, which is likely incompatible with
the speed requirements of interactive sketch planning.

It should be possible tomore quickly approximate the results of this optimal technique by combin-
ing each timetable with a random sample of departure times within the time window, i.e., extend the
Monte Carlo method to both variables instead of just one (see also Owen & Jiang, 2015). Additional
sampling error would be introduced by using only a subset of the departure times, but that uncertainty
could be addressed with carefully chosen sample sizes and the bootstrap techniques described above.

A second shortcoming of our method is that it does not take into account any uncertainty in the
input data. Zhao and Kockelman (2002) observe that travel demand models frequently propagate
only point estimates forward from one stage to the next, without variance information, which leads to
unknown levels of uncertainty in results. Much of our input data contains uncertainty. Our land use
inputs frequently come from the US Census Bureau’s LEHD LODES, which is a simulated popula-
tion (Spear, 2011), or from regional land use model outputs. In addition, the scenario inputs may be
misspecified (travel times on new routes, for example, are oen estimates, and may not be reflective
of the final travel times). Finally, our method takes the timetables of the network as truth, but in re-
ality there is deviation from these timetables that causes day-to-day variation in accessibility (Stewart,
2017, ch. 8). Our bootstrap method is extensible to account for these types of exogenous variation,
by sampling from the distributions of input variables as well when computing results. However, this
might require a yet-more-complex sampling strategy for deriving independent bootstrap samples.

Another avenue of further research is to evaluate the uncertainty in our estimates of uncertainty.
For example, when we compute the p-value of the change at a particular location, that value is based
on several randomprocesses (the random selection of timetables for the two transit scenarios involved,
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and the randomization in the bootstrap itself ). us, that p-value has a sampling distribution of its
own, and areas that show amarginally significant change in one run of the analysismight bemarginally
insignificant in the next. is second-level result would not be presented to the users of a sketch plan-
ning system, but rather used to calibrate that system, ensuring that a sufficient number of bootstrap
iterations and random schedules are being used. us far, the values for these parameters have mostly
been based on general practices and rules of thumb. Techniques to quantify uncertainty in bootstrap
estimates exist (e.g., the jackknife-aer-bootstrap, Efron & Tibshirani, 1993), but may require archi-
tectural changes to our processing pipeline to retain the relevant data until it is needed.

We could also improve our method for calculating confidence intervals from bootstrapped sam-
pling distributions. While the percentile method is attractive due to its ease of computation, it has
limitations. Notably, it cannot handle situations where no monotonic transformation exists from the
empirical sampling distribution to the normal distribution (Efron&Tibshirani, 1993, 176). e bias-
corrected and accelerated confidence interval (BCa) represents an improvement (ch. 14). However,
its computation requires the original bootstrap samples, rather than simply the bootstrap replications
of the differences; since our samples are produced by a complex process of generating travel time distri-
butions and hierarchical sampling, the work needed to adapt these more accurate confidence intervals
to our technique is significant, and is thus le as further research.

9 Conclusion

is article has detailed the construction of a reliable transit accessibility metric using particular per-
centiles of travel time to guarantee a desired probability of on-time arrival. Because a Monte Carlo
technique is used to evaluate the effects of transit lines which do not have explicit timetables, there is
random error in the results, which we quantify using a bootstrap method to estimate a confidence in-
terval on the result. is technique allows us to performprobabilistic comparisons, evaluatingwhether
an observed change in accessibility is due to a change in the transit network, or simply due to random
error. We applied this technique to a scenario with predictable characteristics describing rapid transit
expansion in Singapore, and found that it significantly masks random noise in the results.

is technique presents a number of avenues for further research. e most notable is improving
our calculation of uncertainty to account for the fact that, once implemented, the public transport
network will likely use a single timetable, rather than a different timetable each day. In addition, given
the focus on uncertainty, it would be useful to include uncertainty from other sources (e.g., land use
models used as input data) in our outputs.
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