
Abstract: This paper evaluates the economic benefits of high-speed rail 
(HSR) in China, with a focus on the connectivity change resulting from 
HSR development. The effect of HSR, measured in degree centrality, 
is assessed using a spatial econometric modeling technique based on a 
panel dataset that covers 268 Chinese cities from 2008-2015. To provide 
a robust assessment, statistical issues including heterogeneous effects, 
endogeneity, and spatial dependence are addressed simultaneously in 
the spatial panel modeling process. Our empirical results confirm that 
connectivity improvement brought by HSR plays a vital role in facilitat-
ing economic growth. Specifically, the contribution of HSR to urban 
economic growth is found to be 0.11, most of which comes from a local 
effect rather than a spillover effect. Overall, the research findings suggest 
that urban economic growth can benefit from the development of HSR. 
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1	 Introduction

Despite plethora of studies has examined the benefits of transportation infrastructure using various 
methods, such as cost-benefit analysis (Elhorst & Oosterhaven, 2008; Ansar, Flyvbjerg, Budzier, & 
Lunn, 2016) and econometric analysis (Chen & Haynes, 2015; Qin, 2017; Lin, 2017), the research 
findings are inconsistent. For instance, some studies indicate that transportation infrastructure plays 
significant roles, such as changing travel behaviors and facilitating interregional trade flows (Handy, 
Cao, & Mokhtarian, 2005; Zhang, Hong, Nasri, & Shen, 2012; Chatman, 2014), whereas other 
studies suggest that the economic benefit of transportation infrastructure may not always be significant 
(Baum-Snow, 2013). 

Some studies, such as Morten and Oliveira (2016), indicate that the upgrade of transportation 
infrastructure may not only eliminate obstacles to migration, but may also improve intercity connec-
tivity, thus facilitating knowledge spillovers through an improved passenger mobility. To measure the 
benefit of transportation system expansion or infrastructure improvement to local economic growth, 
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connectivity is often considered an important indicator (Alstadt, Weisbrod, & Cutler, 2012). Although 
the economic benefits of transportation infrastructure have been justified by the new economic geog-
raphy theory, the empirical assessment of the effects is still challenging due to the endogeneity issue 
and spillover effect that is potentially involved (Graham & Dender, 2011). This paper fills this gap by 
providing new evidence to help to answer the following three questions: How significant is the benefit 
of HSR on urban economic growth in China? Does the heterogenous influence exist for cities with dif-
ferent economic conditions? And to what extent does the magnitude of impact vary between direct and 
indirect (spillover) effects?

The HSR network has experienced unprecedented development over the past decade in China, 
which provides a good case for studying its impact on urban economic activities. As shown in Figure 
1, the so-called “Four Vertical and Four Horizontal” HSR network, which consists of four north-south 
bound and four east-west bound HSR trunk lines of over 23,000 km, had almost been completed by 
the end of 2017. To date, the interconnected HSR network serves most major Chinese cities and the 
intercity travel time has been substantially reduced. Although the total track length of HSR only ac-
counts for one fifth of the total rail networks in China, more than 60% of the rail passenger demand is 
transported by HSR. In addition, China’s HSR network is still under expansion. According to the 13th 
Five-Year Plan (2016-2020), the total track length of HSR is expected to reach 30,000 km by 2020, 
with an objective to serve more than 80% of the cities in China.

Figure 1. China’s “four vertical and four horizontal” HSR networks 
Source: the authors.
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This paper has the following research highlights compared with previous studies. First, we focus on 
evaluating the economic benefits of the HSR network from the perspective of connectivity improve-
ment. The connectivity indicator captures the temporal and spatial evolution of China’s HSR network 
expansions. Second, the heterogenous effects of cities with different economic conditions are measured 
using interaction item model and spillover effects, which are controlled in a spatial panel modeling 
procedure. Hence, the assessment is able to provide a comprehensive examination of heterogenous and 
spatial effects of the HSR network on regional economic performance. Lastly, the endogeneity issue is 
also examined using the dynamic panel (IV-GMM) regression method. Such a modeling procedure is 
important as it improves the robustness of the results and also enables us to examine the causal effect 
between HSR development and urban economic growth.

The rest of the paper is organized as follows: Section 2 reviews the relevant literature, which will 
help to understand the linkages among the HSR network, connectivity improvement, and urban eco-
nomic growth. Section 3 introduces the data characteristics and methodology, Section 4 discusses the 
empirical results, and Section 5 summarizes and concludes.

2	 Literature review

Following the pioneering work done by Aschauer (1989), who highlighted the importance of public 
capital (highways, airports, utilities, mass transit, water and sewer systems) on the US economy, quite a 
few scholars (Holtz-Eakin & Schwartz, 1995; Baltagi & Pinnoi, 1995; Bom & Ligthart, 2014; Calde-
rón, Moral-Benito, & Servén, 2015; Jia, Zhou, & Qin, 2017) attempted to further evaluate the eco-
nomic impact of transportation infrastructure empirically using econometric analysis. Meanwhile, the 
theoretical framework for transportation infrastructure assessment has expanded as well. For instance, 
several milestone works, such as Krugman (1991), Ottaviano and Thisse (2002), and Fujita and Thisse 
(2003) emphasized that transportation cost plays a key role in affecting regional economic activities, 
such as determining firm location, factor mobility, and the size of market area in the context of an im-
perfect competition market. Duranton and Turner (2012) considered transportation infrastructure as a 
factor determining regional labor mobility in their theoretical model, in which they found supportive 
evidence from the effects of interstate highways on regional employment in the US. Blumenberg and 
Pierce (2014) found that the improvement of access to public transit would improve labor’s mobility 
and provide multiple benefits, such as job searching and securing existing jobs. These benefits in turn, 
are considered to have further impacts on society, such as improving the welfare of low-income families.
Although some studies highlight the importance of the connectivity improvement brought by newly 
added transportation infrastructure (Patuelli, Reggiani, Nijkamp, & Bade, 2010; Parthasarathi, 2014), 
few studies have actually measured the economic benefits of HSR with a focus on the connectivity 
improvement. Some studies have attempted to measure the economic impact of HSR with a focus on 
regional economic growth (Chen, Xue, Rose, & Haynes, 2016), regional economic disparity (Chen & 
Haynes, 2017) integration (Roland-Holst, 2009; Zheng & Kahn, 2013), skill premia in local labor mar-
kets (Michaels, Rauch, & Redding, 2012), and spatial matching in labor markets (Tikoudis, Sundberg, 
& Karlström, 2012). Their conclusions generally show that HSR infrastructure can have a significant 
impact on regional economic performance.

Despite these early studies providing some evidence to elucidate the economic benefits of the HSR 
system, one should note that the results from the empirical studies using econometric methods could be 
questionable given that these studies may suffer from a few statistical issues. For instance, although quite 
a few studies have attempted to examine the impact of HSR using indicators such as the monetary value 
of HSR investments and the length of HSR lines, the network characteristics of HSR system improve-
ments, which reflect the quality of the infrastructure network, are often ignored. 
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In addition, the heterogeneous effect of transportation infrastructure on regional economic growth 
is also a concern. As Donaldson and Hornbeck (2016) revealed, the effect of transportation infrastruc-
ture on regional economic growth can vary greatly due to different regional characteristics and condi-
tions. Therefore, the quality of transportation needs to be measured carefully in order to reflect the het-
erogeneous effect of infrastructure systems (Elhorst & Oosterhaven, 2008). This is true considering that 
the benefits of transportation networks can sometimes be quite unclear, due to the fact that improved 
connectivity may reshape the spatial distribution of economic activity and thus widen the gap between 
core regions and periphery regions (Faber, 2014). Although it is generally expected that all connected 
regions will receive the benefits of the developed transportation network, it is also likely that some cities 
may not benefit from the transportation network improvement due to a lack of sufficient conditions 
(e.g., labor and capital) for economic growth.

Thirdly, the lack of consideration for endogeneity and spatial dependence may also lead to a prob-
lematic outcome of the assessment. Specifically, the failure to address the endogeneity issue between 
transportation infrastructure and economic growth may lead to an inefficient estimation, whereas ignor-
ing spatial dependence may cause a biased estimate since the spatial spillover effects of the transportation 
network are not captured. Instrumental variable (IV) techniques were generally adopted to solve the 
endogeneity issue. For instance, various instruments such as spatial distribution of major military troop 
deployments (Zheng & Kahn, 2013), the least cost path spanning tree networks (Faber, 2014), straight-
line instruments (Ghani, Goswami & Kerr, 2016), and historical railroads network (Zheng & Kahn, 
2013; Baum-Snow, Brandt, Henderson, Turner, & Zhang, 2014) were adopted in previous empirical 
work. In terms of spatial dependence, the general approach is to adopt a spatial econometric modeling 
technique in which the spatial effects of transportation infrastructure and economic performance are 
captured through spatial weight matrices (Giacinto, Micucci, & Montanaro, 2010; Tong, Yu, Cho, 
Jensen, & Ugarte, 2013). To our limited knowledge, few studies consider these two problems simulta-
neously. To fill this research gap, we address these two issues using a combination of IV methods and 
spatial econometric specification (spatial Durbin model). We believe that such an integrated modeling 
framework provides new insights on clarifying the economic benefits of the HSR network in China. 

3	 Data and methodology

3.1	 Data

In order to assess the improvement of intercity connectivity brought by HSR in China, a degree central-
ity measure is adopted by following DeLaurentis, Han, and Kotegawa, (2008), Mishra, Welch, and Jha 
(2012) and Wang, Song, and Wen (2018). The frequency between nodes are considered the connecting 
power and the HSR network is considered a weighted network. Hence, the connectivity of city in the 
HSR network can be defined as follows:

										          (1)

where measures the connectivityi,t of city i, frequencyij,t denotes the number of the daily direct HSR 
services between city i and city j, and represents the total number of cities.1 Therefore, equation (1) could 
also be considered a normalized degree centrality based on total number of direct connections to other 
cities in the network. The larger the value of connectivityi,t, the more connections city i has in the HSR 
network. If city i has not been connected within the HSR network, connectivityi,t will be 0.

1 Considering the data availability, no transfer data is included.
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Our investigation covers 268 cities over the period of 2008-2015, which reflects major evolutions 
in China’s HSR network. To provide a comprehensive assessment of the HSR network in China, all the 
HSR trains (type G, D and C) are considered in the analysis. The descriptive statistics of all the variables 
are summarized in Table 1. Specifically, the data of HSR service and frequency were obtained from the 
National Railway Train Schedule, published by the China Railway Press. Other data was obtained from 
the China City Statistical Yearbooks, 2009-2016. The control variables were selected following the ex-
ample of Banister and Berechman (2001) and Faber (2014). 

Table 1. Descriptive statistics of all the variables

Note: To ensure the accuracy of the data, the impact of price factor has been removed from the above variables if needed.

3.2	 Specification of the base model

The base model adopts a reduced form analysis to estimate coefficients that reveal the relationships be-
tween connectivity improvement and economic output. The model can be specified as:

	 1n (GDPPCit) = α0 + α1connectivityi,t + α21n(zit) + εi + σt + ξit			   (2)

where i and t denote city and time period, respectively. 1n (GDPPCit) represents regional economic 
performance, which is measured by GDP per capita. connectivityi,t denotes the level of connectivity 
brought by the operations of HSR services. 1n(zit) represents the control variables, which include capital 
stock 1n (capitalit), FDI 1n (FDIit), human capital 1n (humanit), industrial structure 1n (indstructureit) 
and the level of urbanization 1n (urbanit). εi ,σt and ξitrepresent the individual fixed effect, the time fixed 
effect, and the error term, respectively.

Different interaction terms are also introduced to test whether or not the significance of these 
variables may enhance the positive effects associated with connectivity improvement. To avoid mul-
ticollinearity and provide a robustness check of the various control variables, the interaction items are 
introduced separately. Thus, the modeling structure could be further expanded as follows:

										          (3)

where 1n(zit) represents the control variables. connectivityi,t × 1n(zit) represents the interaction item. 
If the interaction term is significant, the estimated coefficient of connectivityi,t would then be equal to 
α1+ α21n(zit). Hence, the heterogeneous effect of different economic variables on the level of connectiv-
ity improvement can be adequately captured.

1n (GDPPCit) = α0 + α1connectivityi,t + α21n(zit) + α3connectivityi,t 
× 1n(zit) + εi + σt + ξit

Variables Definition Num. Mean Max. Min. Std.Dev.

ln GDPPC Gross domestic product (GDP) per capita 2144 10.318 8.189 12.035 0.698

connectivity City’s connectivity in HSR network 2144 2.228 9.065 0.000 0.630

ln capital Capital stock per capita 2144 6.476 12.096 2.157 0.704

ln FDI Foreign Direct Investment (FDI) per capita 2144 3.070 7.575 0.786 0.736

ln human The average years of schooling 2144 2.364 2.908 2.013 0.127

ln indstructure The ratio of the secondary industry on GDP 2144 3.635 4.374 2.007 0.385

ln urban The ratio of urban population in total population 2144 3.016 4.512 2.026 0.534
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3.3	 Specification of the spatial econometric model

To achieve an accurate assessment of transportation infrastructure’s impact on economic growth, one 
needs to capture both the direct effects (specific identifiable influence of local connectivity improve-
ment) and indirect (spillover) effects simultaneously. The former refers to the influence that is driven by 
connectivity improvement locally, whereas the latter refers to statistical associations between neighbors’ 
connectivity improvement. Following Tobler’s first law of geography: “Everything is related to every-
thing else, but near things are more related than distant things” (Tobler, 1970), we assume that the 
interaction between a geographic unit and its neighboring units tends be stronger than others. Hence, 
a binary contiguity matrix is adopted to reflect such a spatial relationship. Specifically, if region i and 
region j share a common boundary, the corresponding element in the weight matrix is specified as 1, 
otherwise 0. 

Different types of spatial interactions are considered in our spatial econometric modeling proce-
dure. These interactions include the effects of endogenous spatial interactions among the dependent 
variable 1n (GDPPCit), the effects of exogenous spatial interactions among independent variables, and 
the effects of spatial interactions among the error term ξit. Three different forms of spatial econometric 
models are adopted to examine the corresponding spatial autocorrelation so as to provide guidance for 
selecting the appropriate modeling specification.

The effects of endogenous spatial interaction are examined using the spatial autoregressive 
(SAR) model, in which W1n(GDPPC) is introduced to test whether or not the dependent variable 
1n(GDPPCit) is statistically significantly influenced by its spatial lag term; in other words, the effect from 
its neighboring cities. The specification of SAR can be expressed as follows:

										          (4)

where W is the spatial weight matrix, which is based on the first order rook adjacency relationship 
as stated above. W1n(GDPPC) represents endogenous spatial interaction effects. ρ denotes the coef-
ficients of the spatial lags to be estimated. 

Similiarly, the spatial error model (SEM) is adopted to capture the spatial interaction effects among 
the error term ξit, which is specified as wξ. The SEM model can be written as:

	 1n (GDPPCit) = α0 + α1connectivityi,t + α21n(zit) + λwξ + εi + σt + ξit		  (5)

In addition, the spatial Durbin model (SDM), which integrates both the spatial lags of dependent 
variables and independent variables are also adopted. SDM is considered an unrestricted global model, 
which is capable of providing a comprehensive assessment of various spatial effects (LeSage & Pace, 
2009). The specification is expressed in equation (6).

										          (6)

1n (GDPPCit) = α0 + ρW1n(GDPPC) + α1connectivityi,t 
+ α21n(zit) + εi + σt + ξit

1n (GDPPCit) = α0 + δW1n(GDPPC) α1connectivityi,t + α21n(zit) 
+ θ1Wconnectivity+ θ2W1n(z) + εi + σt + ξit
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4	 Empirical results

4.1	 Base model results

The regression results of the base model are summarized in Table 2. The models were estimated based on 
an OLS method with individual-fixed effect and time-fixed effect. Specifically, column (1) shows that 
the coefficient of connectivity is 0.016 and is statistically significant, which confirms that connectivity 
improvement is positively associated with the change of GDP per capita at the city level. This result sug-
gests that the development of HSR does have a positive effect on promoting urban economic growth 
due to the improvement of intercity connectivity. 

Columns (2) – (6) summarize the results estimated based on equation (3) with different interac-
tion terms. As shown in Table 2, the interaction terms are found to have different effects. For instance, 
the interaction terms with capital stock, human capital and urbanization are found to be positive and 
statistically significant, suggesting that the effect of connectivity improvement on GDP per capita is also 
likely to be influenced by these three variables, interactively. This is understandable as cities with afflu-
ent endowments, such as capital and human resources, tend to receive more benefits from connectivity 
improvement due to the operation of HSR. 

Conversely, the estimates of the connectivity variable in columns (2) and (4) are significantly nega-
tive. Considering that the corresponding interaction terms are significantly positive, this can be in-
terpreted as only those cities with capital and human resources higher than the threshold values will 
benefit from the developed HSR network. Considering the fact that the connection to the HSR net-
work makes labor and other economic factors flow to big cities more easily, a subset of small cities with 
limited capital and human resources may suffer from negative economic growth due to the competitive 
nature of regional economic activities. Overall, the results provide empirical evidence that the effects of 
connectivity improvement due to HSR development on urban economic growth does indeed tend to 
be heterogeneous for small cities and regional hub cities. Thus, from the perspective of heterogeneity, 
not all cities connected to the HSR network can benefit from it. Compared with non-connected cities, 
some connected cities with poor economic conditions may endure a negative impact on their economic 
performance due to the so-called “siphon effect.”
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Table 2. Regression results of the base model

Notes: All regressions have a constant term and include both time fixed effects and individual fixed effects. Heteroscedastic 
consistent t-statistics are reported in parentheses. *** p<0.01. ** p<0.05. * p<0.1.

4.2	 Addressing the endogeneity

Ignorance of the endogeneity issue between economic growth and transportation infrastructure may 
lead to a serious estimation error (Beyzatlar, Karacal, & Yetkiner, 2014). To guarantee the validity of 
the econometric analysis, an instrumental variable regression analysis was adopted to address the en-
dogeneity issue. Specifically, two instrumental variables were selected. The first one is the lagged terms 
of the endogenous variables in the model. According to Bottasso, Conti, Ferrari, and Tei (2014) and 
Rodríguez-Pose and Peralta (2015), using the lagged endogenous variables as instrumental variables is 
appropriate because they are less likely to be influenced by the dependent variable; hence, suggesting 
that there is no correlation between the lagged terms and the error term. The second approach is to use 
the historical transportation network as an instrumental variable, similar to Zheng and Kahn (2013) 
and Baum-Snow et al. (2014). Specifically, the length of highways from 1962 to 1985 was adopted as a 
time-varying instrumental variable for the analysis.

Table 3 summarizes the results of the first stage regression. Both instrumental variables are found 
to be statistically significant. The coefficients are 0.872 and 0.504, which confirms that the selected 
instrumental variables are not weak instruments. Table 3 also summarizes the test results for both en-
dogeneity and validity of the instrumental variables. Specifically, the Durbin-Wu-Hansen (DWH) test 

(1) (2) (3) (4) (5) (6)

connectivity 0.016*** -0.021*** 0.029 -0.009** 0.030 0.033*

(3.39) (-3.28) (0.89) (-1.94) (0.75) (1.82)

In capital 0.252*** 0.023*** 0.252*** 0.254*** 0.252*** 0.252***

(6.83) (6.52) (6.83) (7.35) (6.81) (6.74)

In FDI 0.015 0.015 0.006 0.016 0.015 0.015

(0.65) (0.66) (0.41) (0.67) (0.65) (0.65)

In human 0.007 0.007 0.007 0.001 0.007 0.007

(0.56) (0.57) (0.57) (0.40) (0.57) (0.57)

In indstructure 0.234*** 0.234*** 0.233*** 0.234*** 0.127*** 0.233***

(4.16) (4.15) (4.12) (4.20) (4.14) (4.11)

In urban 0.194** 0.187* 0.190** 0.201*** 0.195** 0.050*

(2.03) (1.91) (2.00) (2.19) (2.03) (1.86)

connectivity × 1n Capital 0.031**

(2.00)

connectivity × 1n FDI 0.001

(0.27)

connectivity × 1n human 0.080***

(5.37)

connectivity × 1n indstructure 0.007

(1.16)

connectivity × 1n urban 0.013**

(2.58)

R2 0.932 0.935 0.940 0.937 0.933 0.943
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is introduced to test whether or not the endogeneity issue exists in our analysis. The result shows the 
null hypothesis that the explanatory variables are exogenous is rejected, which suggests that an instru-
mental variable estimation is needed to address the endogeneity issue. The second test is the first-stage 
F-statistics, which examines the relevance of the instrumental variables being selected. The value of 
F-statistic is 384.725, suggesting that the null hypothesis of weak instruments is rejected. In addition, 
the Hansen test and the Sargen test are used to examine the exogeneity of the instrumental variables by 
testing whether or not the instrumental variables are uncorrelated with the error term. The p-values of 
both tests are larger than 0.05, which suggests that null hypothesis that the instrumental variables satisfy 
the exogeneity condition cannot be rejected. Overall, the results indicate that the instrumental variables 
being selected are valid to address the endogeneity issue appropriately in the empirical analysis.

Table 3. Tests for endogeneity and validity of instrumental variables

Table 4 presents the regression results using the instrumental variable estimation method. In gen-
eral, the results after addressing the endogeneity issue are consistent with the estimates in the base model. 
The estimated coefficient of the connectivity index in model 7 remains statistically significant and posi-
tive, with a value of 0.017. The interaction terms with capital stock, human capital, and urbanization are 
also significantly positive, which further confirms that these factors do have an influence on the estimate 
of connectivity index. Overall, the results suggest that the connectivity improvement brought by HSR 
does have a significant impact on urban economic performance.

Variable and Test Type Coefficient or Test value P value

The lagged term of connectivity 0.872 0.000

Historical transportation network 0.504 0.021

Endogeneity DWH test 17.025 0.000

Weak-identification F-statistic 384.725

Hansen test 0.752 0.436

Sargan test 0.663 0.491
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Table 4. Results of the instrumental variables estimation

Notes: All regressions have a constant term and include both time fixed effects and individual fixed effects. Heteroscedastic 
consistent t-statistics are reported in parentheses. *** p<0.01. ** p<0.05. * p<0.1.

4.3	 Results of spatial econometric model

Spatial econometric methods are adopted to reveal direct and indirect economic effects of the HSR 
network. Considering that some critics of spatial econometrics point out that a lot of research apply-
ing spatial econometrics is “pointless” due to identification problems (Gibbons & Overman, 2012), 
a feasible method is applying experimentalist approaches to spatial econometrics using instrumental 
variable regression analysis. Table 5 presents the results of different spatial econometric models with and 
without instrumental variables. The analysis was conducted using instrumental variables – the general-
ized method of moments (IV-GMM) and the maximum likelihood estimation (MLE), respectively. 
Although LeSage and Pace (2009) recommended the spatial Durbin model (SDM), the Wald and 
Likelihood Ratio (LR) tests were applied to identify which spatial model is more appropriate. Both the 
Wald test and the LR test show that the null hypothesis should be rejected. In other words, the spatial 
Durbin model cannot be simplified to either a spatial lag model (SAR) or a spatial error model (SEM).

(7) (8) (9) (10) (5) (6)

connectivity 0.017*** -0.018*** 0.024 -0.013** 0.026 0.030*

3.87 (-2.80) (0.80) (-1.95) (0.71) (1.81)

1n capital 0.266*** 0.020*** 0.261*** 0.263*** 0.258*** 0.251***

(6.02) (6.41) (5.67) (6.06) (5.73) (5.63)

1n FDI 0.008 0.009 0.005 0.008 0.013 0.011

(0.41) (0.43) (0.37) (0.40) (0.69) (0.65)

1n human 0.006 0.007 0.007 0.001 0.007 0.007

(0.53) (0.52) (0.54) (0.06) (0.58) (0.58)

1n indstructure 0.217*** 0.216*** 0.210*** 0.210*** 0.123*** 0.217***

(4.38) (4.06) (3.77) (3.75) (2.52) (4.36)

1n urban 0.190** 0.188* 0.190** 0.200*** 0.196** 0.049*

(2.00) (1.93) (2.00) (2.17) (2.04) (1.85)

connectivity × 1n Capital 0.026*

(1.83)

connectivity × 1n FDI 0.001

(0.16)

connectivity × 1n human 0.083***

(6.01)

connectivity × 1n indstructure 0.006

(1.07)

connectivity × 1n urban 0.019**

(2.38)

R2 0.920 0.935 0.940 0.937 0.933 0.943
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Table 5. Results of different spatial econometric models with spatial fixed effects

Notes: All regressions have a constant term and include both time fixed effects and individual fixed effects. Heteroscedastic 
consistent t-statistics are reported in parentheses. *** p<0.01. ** p<0.05. * p<0.1.

MLE IV-GMM

SAR SEM SDM SAR SEM SDM

connectivity 0.160* 0.153*** 0.101* 0.158* 0.152*** 0.093*

(1.94) (6.05) (1.92) (1.89) (5.99) (1.90)

In capital 0.285*** 0.266*** 0.196*** 0.286*** 0.267*** 0.195***

(12.33) (10.79) (8.30) (12.41) (10.80) (8.26)

In FDI 0.017 0.018* 0.024** 0.017 0.019** 0.027**

(1.03) (1.89) (2.02) (1.05) (2.00) (2.13)

In human 0.109 0.112 0.087 0.210 0.111 0.109

(1.30) (1.51) (0.65) (1.32) (1.50) (0.71)

In indstructure 0.087* 0.090** 0.063 0.083* 0.091** 0.060

(1.86) (2.01) (1.66) (1.85) (2.02) (1.57)

In urban 0.039** 0.031*** 0.023* 0.037* 0.030*** 0.025*

(2.12) (3.03) (1.90) (1.92) (3.01) (1.93)

W * connectivity 0.005* 0.004*

(1.89) (1.86)

W * 1n capital 0.017 0.012

(0.21) (0.18)

W * 1n FDI -0.012*** -0.010***

(-3.32) (-3.17)

W * 1n human -0.053 -0.048

(-0.27) (-0.16)

W * 1n indstructure 0.004 0.004

(1.30) (1.31)

W * 1n urban 0.127 0.121

(1.57) (1.50)

W * GDPPC 0.020***
(4.07)

0.013***
(4.65)

0.021***
(4.03)

0.014***
(4.70)

R2 0.954 0.963 0.985 0.954 0.962 0.987

Wald test 
(spatial lag)

46.59 47.34

(P=0.00) (P=0.00)

LR 
(spatial lag)

49.67 50.03

(P=0.00) (P=0.00)

Wald test 
(spatial error)

77.60 76.51

(P=0.00) (P=0.00)

LR 
(spatial error)

82.04 83.17

(P=0.00) (P=0.00)
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One should note that estimates from spatial econometric models cannot be interpreted in the 
same way as non-spatial regression models. This is because spatial modeling specifications requires us 
to decompose the coefficients into direct and indirect effects, which can be recognized as local versus 
spillover effects. Following LeSage and Pace (2009), the decomposed spatial effects of the SDM model 
are summarized in Table 6.

The results based on both the MLE and IV-GMM methods demonstrate similar outcomes, which 
re-confirms the robustness of our empirical analysis. The direct effects of the connectivity variable are 
statistically significant and positive, suggesting that connectivity improvement due to the operation of 
HSR has a positive effect on promoting urban economic growth locally. It should be noted that the 
direct effect estimates of the connectivity variable from the spatial econometric models are relatively 
larger than those from the non-spatial regression model. Such a difference could be due to the positive 
feedback effect captured in the spatial modeling framework. Hence, without considering the feedback 
effect, the effect of HSR would be underestimated. 

The indirect effects of the connectivity variable are found to be 0.007 (in MLE) and 0.005 (in IV-
GMM), respectively, accounting for only approximately 5.8% of the direct effects. The findings suggest 
that the improvement of intercity connectivity brought by HSR can yield a mild positive spillover effect 
on neighboring cities. The research finding is consistent with our intuition, as an improvement of HSR 
connectivity with nearby cities is likely to improve local transportation conditions, which in turn tends 
to generate a positive impact on local economic growth.

Overall, the total effects of the connectivity variable are found to be positive and significant, which 
again confirms an overall positive effect of HSR development on urban economic growth. 

Table 6. Decomposed spatial effects based on the spatial Durbin model

Notes: *** p<0.01. ** p<0.05. * p<0.1.

Model MLE IV-GMM

Direct Effects Coef. t-stat Coef. t-stat

connectivity 0.103** 2.01 0.104* 1.92

1n capital 0.203*** 10.04 0.196*** 8.17

1n FDI 0.026* 1.84 0.029* 1.90

1n human 0.131 0.25 0.139 0.28

1n indstructure 0.091** 1.99 0.084* 1.86

1n urban 0.039*** 3.55 0.046*** 4.08

Indirect Effects

connectivity 0.007** 2.07 0.005* 1.89

1n capital 0.016 0.82 0.013 0.61

1n FDI -0.010* -1.93 -0.009* -1.82

1n human -0.051 -0.36 -0.045 -0.27

1n indstructure 0.008** 2.00 0.006* 1.92

1n urban 0.112 1.03 0.110 0.94

Total Effects

connectivity 0.110*** 3.52 0.109*** 3.26

1n capital 0.219*** 7.05 0.209*** 6.83

1n FDI 0.016 1.13 0.020 1.22

1n human 0.080 0.96 0.94 1.34

1n indstructure 0.099** 2.10 0.090** 1.97

1n urban 0.151*** 3.63 0.156*** 3.90
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5	 Conclusion

Despite the fact that interest in understanding the economic benefits of the HSR network is on the 
rise, little empirical work has been done with a focus on examining the impact of HSR as a result of the 
change in intercity connectivity. This is partially due to the complicated nature of statistical analysis in 
this case, given the presence of issues such as heterogeneous effects, endogeneity, and spatial dependence. 
Our study aims to fill this gap by providing some new evidence, with a focus on examining the impact 
of HSR on urban economic growth using the change of intercity connectivity as an indicator. Based on 
panel data that covers 268 Chinese cities from 2008-2015, our study shows that the improvement of 
intercity connectivity brought by HSR has a significant and positive effect on urban economic growth. 
In addition, our analysis also reveals that the heterogeneous effects manifested by various regional eco-
nomic characteristics, such as capital stock, human capital, and urbanization, do have a strong influence 
on the empirical analysis. Without considering these effects, the results could be spurious. 

In addition, this study also confirms that endogeneity and spatial dependence do exist in our case. 
Using the IV-GMM method and spatial econometric regression analysis, our study reveals the detailed 
regional effect of HSR, measured in terms of the direct effect, indirect (spillover) effect, and total effect. 
In general, the result shows that most contributions from HSR to urban economic growth are gener-
ated from a direct (local) effect rather than a spillover effect. Such a finding is different from earlier work 
that examined the impact of HSR on a provincial level, such as Chen and Haynes (2017), which could 
be due to the fact that a relatively smaller geographic scale was adopted in our case. Hence, our results 
reflect a dominant local effect, whereas the spillover effect of HSR on urban economic growth can be 
limited at city-level analysis. Another reason for such a strong local effect but a mild spillover effect could 
be due to the fact that the time frame of our study is relatively short; not many HSR lines were in opera-
tion until after 2015. Hence, our analysis may only reflect the influence of connectivity improvement 
on urban economic growth at an early stage of HSR deployment. It would be interesting to revisit this 
issue after the system is in operation for a longer period of time. In particular, it would be valuable to 
examine whether or not the spillover effects will play a more significant role as more people begin to ride 
HSR. Furthermore, the spillover effects under other channels can be examined using different matrices 
in spatial econometric models, which is also the direction and focus of our future research.
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