
Abstract: The travel impedance skim matrix is one of the most essential 
intermediate products within transportation forecasting models and is a 
fundamental input for activity-based transportation forecasting models. 
It reflects interzonal travel time, travel time reliability, travel costs, etc. 
by time of day. The traditional method to obtain skim matrices is to 
execute multiple times of time-dependent, shortest-path calculations. 
However, the computational and memory use burden can easily 
increase to an intractable level when dealing with mega-scale networks, 
such as those with thousands of traffic-analysis zones. This research 
proposes two new approaches to extract the interzonal travel impedance 
information from the already existing vehicle trajectory data. Vehicle 
trajectories store travel impedance information in a more compact 
format when compared to time-dependent link performance profiles. 
The numerical experiments highlight huge potential advantages of the 
proposed approaches in terms of saving both memory and CPU time.

1 Introduction

The travel impedance or travel cost skim matrix is one of the most 
essential intermediate products within transportation forecasting 
models and is usually prepared after the route assignment is com-
plete. It reflects the interzonal travel costs by time of day and is 
explicitly adopted by regional planning agents in trip distribution 
and mode choice steps within four-step forecasting models. The 
impedance is the summation of various terms such as travel time, 
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toll, travel time reliability, safety, etc. In trip distribution model, the amount of trips for each origin-des-
tination-departure time slot (o-d-t) combination will be determined based on the corresponding travel 
impedance. Meanwhile, mode choice will be determined based on the travel impedances of different 
transportation modes. In gravity model (Isard, 1956; Levinson & Kumar, 1994), a widely known trip 
distribution model, the number of trips has a general proportional relationship with the reciprocal of 
the travel impedance of the corresponding o-d-t. The iterative four-step procedure aims to achieve con-
sistency between the skim matrices generated at sequential iterations (Boyce, O'Neill, & Scherr, 2008). 
Such feedback mechanism found in four-step models is explicitly discussed in (Boyce, Zhang, & Lupa, 
1994; Loudon, Parameswaran, & Gardner, 1997; Meyer, 2009).

Interzonal travel impedance data is also the fundamental input for another active stream of trans-
portation planning models, Activity-Based transportation forecasting Models (ABM) (Mitchell & Rap-
kin, 1954). This is where travel behavior is better understood and represented, and where individual 
responses to the changes in travel environment and how the responses are temporally correlated is ex-
plored (Lam & Yin, 2001). Widely used ABMs include DaySim (Reinhart, 2006), SACSIM (Bradley, 
Bowman, & Griesenbeck, 2007) and CT-RAMP (Davidson, Vovsha, Freedman, & Donnelly, 2010). 
Throughout ABMs, network skim matrices are repeatedly called for interzonal travel impedance queries 
in order for ABMs to execute destination choice, departure time choice, etc. 

The interzonal travel impedance data in skim matrix is conventionally captured by multiple calls of 
shortest-path algorithm, which is costly in both computational time and memory usage. In this paper, 
we aim to develop cost-effective approaches to obtain interzonal travel impendence so as to address 
computational and memory usage burden.

1.1 The usage of skim matrix

As a major category of route assignment models, Simulation-based Dynamic Traffic Assignment (SBD-
TA) models have drawn considerable attention and research efforts from the research community in the 
last three decades (Peeta & Ziliaskopoulos, 2001; Tian, Chiu, & Sun, 2019). With growing maturity 
in computational efficiency and solution quality, SBDTA is now considered as a promising approach to 
support various long- and short-term operational planning needs, such as pricing, provision of traffic in-
formation, integrated corridor management, evacuation, etc. SBDTA packages include DYNASMART 
(Mahmassani, 2000), DynaMIT (Ben-Akiva, Bierlaire, Koutsopoulos, & Mishalani, 1998), DynusT 
(Chiu, Nava, Zheng, & Bustillos, 2011; Li, Zhu, Sun, & Tian, 2019; Tian & Chiu, 2014), Dynameq 
(Florian, Mahut, & Tremblay, 2006), DTALite (Zhou, Taylor, & Pratico, 2014), and TransModeler 
(Caliper, 2011), to name a few. 

Due to this potential, researchers have begun seeking out ways to connect ABM and SBDTA 
models. The integration models between SBDTA and ABMs have been explored by various researchers 
(Davidson et al., 2007; Hao, Hatzopoulou, & Miller, 2010; Lam & Yin, 2001; Lin, Eluru, Waller, & 
Bhat, 2008). As shown in Figure 1, ABM and SBDTA can be integrated in an iterative manner. From 
a four-step model perspective, ABM fully covers the roles of trip generation, trip distribution, and 
mode choice models. Travel demand is then produced and is fed into SBDTA in format of trip and 
tour roster. SBDTA then executes traffic assignment, simulates traffic dynamics, and produces network 
performance indices including the travel impedance skims. The network-wide Level-of-Service (LOS) 
measures and skims that result from SBDTA become inputs to ABM. SBDTA and ABM interplay in 
an iterative process until convergence is reached. As stated in Castiglione, Bradley, and Gliebe (2015), 
network skims are endogenous to the overall ABM system because they are produced by the network as-
signment model component that is linked to the ABM component. As such, the network skims should 
be carefully constructed to provide unbiased information required by ABM component.
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Figure 1. The illustrative cooperation between SBDTA and ABM. SBDTA and ABM could be integrated in an iterative 
manner to perform traffic forecasting. Skim is one of the main outputs of SBDTA that would be feedback to ABM for trip 
generations.

1.2 The size of skim matrix

In SBDTA packages, the traditional way to obtain a travel impedance skim matrix is to execute multiple 
instances of Time-Dependent Shortest-Path (TDSP) (Tian & Chiu, 2014) calculations based on time-
dependent link travel time data, if only travel time is considered as a component within travel imped-
ance. However, the computational and memory usage burden can easily increase to an intractable level 
when dealing with mega-scale networks with thousands of Traffic-Analysis Zones (TAZs). As stated in a 
FHWA report (Castiglione et al., 2015):

This network information is typically generated at more spatially aggregate levels such as TAZs, even in 
activity-based models where finer spatial resolutions, such as microzones, are used for other model inputs, in 
order to avoid having to produce and store very, very large skim matrices.

In that regard, practitioners attempted to aggregate network dynamic information from either the 
spatial dimension or the temporal dimension in order to reduce the size of skim matrices. However, 
populating and storing skims is still very difficult for modeling agents with limited computing resources, 
even in cases where spatial network information has already been highly aggregated into the TAZ level. 
Conventionally, a three-dimensional matrix is constructed and utilized as the container of travel im-
pedance skims as shown in Figure 2. The three dimensions are the origin TAZ, destination TAZ and 
departure time. Departure time is usually discretized into uniformly divided time slots. Therefore, the 
memory usage for storing time-varying skim matrix is of memory size |O|*|D|*|T|, where O is the set of 
original TAZs, D is the set of destination TAZs and T is the set of departure time intervals. 

The earliest ABM only used 4 or 5 time intervals across a 24 hour period, while nowadays most 
new ABM systems use time intervals as small as 15, 30, or 60 minutes (Castiglione et al., 2015). Now, 
considering a network with m=2,500 TAZs and a one day planning horizon, the total amount of enti-
ties within the skim matrix will be 2,500*2,500* 1,440__

15  =600 million if the interval is set at 15 minutes 
(|T|=1,440⁄15=96, which denotes the amount of departure time intervals). If travel time is stored as 
a float, the three-dimensional matrix alone would occupy around 2.34 GB of memory. Meanwhile, 
TDSP needs to be called for 600 million times if it is a one-to-one version (or 240 thousand times for 
all-to-one TDSP). It takes roughly 2 hours to generate a travel impedance skim matrix for the Sacra-
mento, CA metropolitan network (1,532 zones, 2 hour skim time interval length, one-to-one TDSP) 
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on a 48-core 1.90 GHz server. Therefore, innovative approaches to obtain travel impedance that save 
both memory and CPU time, rather than just aggregating network dynamic information from either 
the spatial dimension (i.e., to aggregate to larger TAZs) or the temporal dimension (i.e., to aggregate it 
into longer departure time intervals), are in urgent need.

 

Figure 2. Structure of skim matrix. The matrix is of memory size |O|*|D|*|T|.

1.3 Research objectives

To make the best use of existing data generated by SBDTA tools and come out with new approaches 
to derive interzonal travel impedance, one may find vehicle trajectory data of great value. Vehicle tra-
jectories are usually produced by SBDTA packages for animation and analysis purposes. It records the 
nodes along each trajectory in a sequence and the arrival time of each node as well. The interzonal travel 
time is actually buried in the massive amount of data in the form of trajectory segments. In an ideal 
user equilibrium state, each vehicle follows its corresponding shortest path to destination. In the final 
solution of SBDTA, the actual experienced travel time and the shortest-path travel time of vehicles are 
so close with each other (Chiu, Bottom, et al., 2011) that we could make the assumption that each ve-
hicle does traverse on its corresponding shortest path. For vehicle i, suppose that nⁱ different zones have 
been traversed along its trajectory, totaling ( ⁿ2i ) pairs of interzonal travel time data points that could 
be extracted from this certain trajectory, and each of them is the shortest-path travel time between the 
corresponding zone pair.

Therefore, this paper presents two new ideas of mining the interzonal travel impedance informa-
tion from the already existing vehicle trajectories produced by SBDTA tools. The travel time skim 
matrix is maintained in memory in a much compact format to be queried by ABM. The approaches are 
designed such that ABM and SBDTA can communicate with each other in a more unimpeded way. It 
is not guaranteed that the interzonal travel time of every o-d-t combination can be obtained by scanning 
through multiple trajectories, but it is certain that a large portion of the skim matrix can be computed by 
doing so. Another noteworthy point is that in ABM models, it is of higher possibility to evaluate again 
an o-d-t that have been recorded in trajectories in previous iterations (mainly the o-d-t with popular 
origin/destination and time of day with higher travel demand) in current iterations. Meanwhile it is of 
lower possibility to query an o-d-t not covered by existing trajectories. In that regard, trajectory mining 
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approaches have the potential to capture most of the o-d-t that will be queried in ABM even though it 
is not necessary to capture 100% of all possible o-d-t combinations.

 

2 Methodology

Vehicle trajectory profiles contain a vast amount of information, but the portions that will be utilized in 
this research are: 1) Node sequence along the trajectory, and 2) Arrival time of each node.

Note that if only the arrival time of each node is recorded, it can only represent the travel time 
information rather than the travel impedance or interzonal accessibility information. However, other 
parameters, such as toll, travel time reliability, etc. are also pulled out from SBDTA tools, making it pos-
sible to acquire general interzonal impedance data. At the same time, trip trajectories for other modes 
such as transit can also be generated. For the sake of simplicity, the travel time of auto trips will be used 
to represent travel impedance/accessibility throughout the rest of the paper.

In ABMs, the network skim matrix is usually called based on a query manner. For each individual 
traveler, the travel impedances pertaining to his/her possible o-d-t options will be queried to assess the 
utility of each option. Therefore, a query-based model to address discrete o-d-t combination queries and 
to output corresponding interzonal travel times is better suited to ABMs for the skim generation process. 
Otherwise computational time would be wasted to generate the travel impendences of o-d-t that would 
never been queried by ABM. The following proposed approaches will be performed in this query-mode.

Two new approaches are proposed and they are: 1) single-trajectory mining approach (single TM), 
and 2) correlated-trajectory mining approach (correlated TM). The former one would only extract travel 
time information from single trajectory, whereas the latter one also considers o-d-t that could only be 
captured by combining multiple trajectory segments together. 

2.1 Single-trajectory mining approach (with no correlation)

This approach does not consider the correlation between different trajectories and thus is termed as 
single-trajectory approach. This approach is executed as follows. All trajectories are first scanned in 
pre-process to extract o-d-t travel time information, which is then stored in a compact two-dimensional 
matrix. Once queried by ABM, the matrix is examined for corresponding o-d-t.  

[Pre-process] Examine all the intermediate nodes within each vehicle trajectory. Each vehicle tra-
jectory yields (ⁿ2i ) travel time data points, where nⁱ denotes the number of zones vehicle i visits. Since 
only a portion of o-d-t combinations are captured, a compact data structure, rather than a traditional 
three-dimensional skim matrix, is maintained in memory. While processing vehicle trajectories, the 
travel time data is placed into a two-dimensional matrix with only the travel time of those captured o-
d-t combinations maintained. The two dimensions are the origin zone and the departure time interval. 
Each entity in the matrix contains the destination and travel time.

Take the trajectory of vehicle 1 shown in Figure 3 as an example. This vehicle visits zone A, B, 
C, and E along its trip in a sequence. The arrival times of those zones are timestamps 1, 2, 3, and 4, 
respectively. When single TM approach is applied, all the intermediate nodes along the trajectory will 
be examined, which means that the arrival times of each zone along its trip is collected. The interzonal 
travel time of o-d-t combinations A-B-1, A-C-1, A-E-1, B-C-2, B-E-2 and C-E-3 could be obtained as 
a result (assuming departure time interval equals 1). There are 6 data points in total, which is in agree-
ment with ( 42 ).
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Figure 3. Illustration of vehicle trajectories. There are two vehicles in network. Vehicle 1 traverses from zone A to B, C, E, 
whereas vehicle 2 traverses from zone D to B, C.

Note that this approach doesn’t consider correlation between trajectories. Therefore, the shortest 
paths that could only be constructed by trajectory segments from two or more trajectories cannot be 
captured.

[Query] When a query from ABM comes in, we first search the two dimensional matrix to see 
whether this specific o-d-t combination has already been captured after pre-processing. If so, the corre-
sponding value in the matrix can be extracted for use directly. If not, a generation link within the origin 
zone is randomly selected as the origin. The beginning of the time interval is defined as the departure 
time. A one-to-one TDSP calculation is called, and the resulting travel time can be used to represent 
the time for that o-d-t combination. The resulting travel time from the TDSP calculation for this for-
mer uncaptured o-d-t combination is then inserted into the two-dimensional matrix for the use of later 
duplicate o-d-t queries.

2.2 Correlated-trajectory mining approach (with correlation)

This approach considers the correlation between multiple trajectories and thus is termed as correlated-
trajectory mining approach. This approach is executed as follows.

[Pre-process] Note that there are tons of trajectories that simultaneously exist in the network and 
there must exist some o-d-t combinations whose corresponding shortest paths are composed of multiple 
trajectory segments from multiple vehicle trajectories. By building such a time-space diagram as shown 
in Figure 4, the correlation between different trajectories can be captured. The horizontal axis stands for 
aggregation intervals (interval length μ might be 1 min, 0.5 min, etc.), and the vertical axis stands for 
TAZs. Each solid arrow in the diagram represents a connection between the two connected zones at a 
certain time interval.
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Figure 4. Compact time-space diagram for correlated TM. Solid arrows represent interzonal connections revealed in vehicle 
trajectories. Dashed arrows represent default intrazonal connections.

Suppose there are two vehicles in the network (shown in Figure 3), besides vehicle 1, which is al-
ready descripted above. Vehicle 2 visits zone D, B, and C in a sequence. The arrival times of those zones 
are timestamp 1, 2, and 3, respectively. The trajectories of vehicles 1 and 2 are decomposed and recorded 
in the time-space diagram in the form of the solid arrows. Let (z,t) denote zone z and time interval t 
(i.e., the unit at the zth row, tth column in Figure 4), and suppose the aggregation interval length μ is 1 
min. The trajectory of vehicle 1 is represented in the form of (A,1)->(B,2)->(C,3)->(E,4). Meanwhile, 
the trajectory of vehicle 2 is represented as (D,1)->(B,2)->(C,3). It is assumed that only the nodes within 
the neighboring columns can be connected. Note that the dashed arrows always exist as they represent 
the intrazonal connections. 

By performing pre-process, the time-space diagram is maintained in memory in a much compact 
format and the correlation between trajectories is maintained in this unweighted diagram. The diagram 
is of dimension |N|*|T' |, where |N| is the number of zones and |T' | denotes the number of aggregation 
intervals.

Note that μ should be wisely chosen, as a short μ would lead to larger |T' | with a given planning 
time horizon, and further lead to exceeded computational complexity of searching and memory storage 
as they are both highly dependent on |T' |. Besides, if μ is too short, it’s likely that vehicles would stay in 
one single zone for multiple aggregation intervals, which brings in induced estimation error. Whereas a 
long μ, for instance, 5 min or 10 min, would scarify travel impedance accuracy to some extent. In situ-
ation where μ=5 min, the resulting travel time has to be multiples of 5 min. Besides, if μ is too long, it’s 
likely that vehicles would traverse multiple zones within one single aggregation interval, which makes 
the information of all those intermediate visited zones deadweight losses.

At the same time, a two dimensional matrix, which is the same with the one described in the single-
trajectory mining approach, is initialized after the pre-process and before querying. This matrix is used 
to store the travel times of those o-d-t combinations that are not captured by trajectory mining but later 
captured by the TDSP calculation. 

[Query] When a query comes in, a Breath-First Search (BFS) (Park, Lee, & Yoon, 2013) is first 
performed in the time-space diagram to see if there are any connections between o and d, departing at t. 
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Note that during the BFS, an eligible criterion should be checked every time a zone is to be put into the 
scan eligible set. Let z be this zone, if  disz__

t' - t  <vmiⁿ , where dis stands for the distance between origin and 
zone z, t' stands for the current time, and vmiⁿ  is the pre-defined minimal speed threshold, then zone z is 
not an eligible zone, since the found path is not likely to be a shortest path between the origin and zone 
z. This non-optimal situation is brought in due to the fact that the correlation between trajectories is 
taken into consideration. For instance, there is a path in Figure 4 such that (D,1)→(B,2)→(C,3)→(E,4), 
that is generated by combining the sub-segments of trajectories of both vehicle 1 and vehicle 2. Howev-
er, it doesn’t appear to be a shortest path according to the network topology as has been shown in Figure 
3. One may need to exclude such a path by adopting the eligible criterion mentioned above. Generally 
speaking, the higher vmiⁿ  is, the less connections will be found in the time-space diagram shown in Fig-
ure 4 and thus less o-d-t combinations will be captured. The BFS terminates whenever the destination 
is reached, since the path obtained by BFS is guaranteed to be the shortest one among all those paths 
that can be found in the time-space diagram. By adopting unweighted static BFS, the worst-case time 
complexity to find the shortest path is now O(|N|+|T' |). 

If an eligible path for the queried o-d-t is found, the travel time can be directly detected by subtract-
ing the departure time from the arrival time. If not, we look into the two dimensional matrix to see if 
the travel time of that o-d-t has been calculated by previous TDSP calculations. If this o-d-t has never 
been handled before, then a generation link within the origin zone is randomly selected as the origin, 
the beginning of the time interval is defined as the departure time, and a one-to-one TDSP is called. 
The resulting travel time is used as the representing time for this certain o-d-t combination. The result is 
then placed into the two dimensional matrix for future use.

The following Figure 5 presents the general workflow of both proposed trajectory mining ap-
proaches. 

 

Figure 5. The flowcharts of single TM and correlated TM
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2.3 TDSP approach

The TDSP approach, which is one of the traditional methods to generate skim matrices in SBDTA 
tools, is also listed here for comparison.

[Pre-process] For every o-d-t combination, call one-to-one TDSP and use the resulting travel time 
as the representing time for that o-d-t combination. A randomly selected generation link within the ori-
gin zone is regarded as the origin for TDSP, a randomly selected destination node within the destination 
zone is regarded as the destination, and the beginning of the departure time interval is regarded as the 
departure time. The skims are maintained in memory as a three-dimensional matrix as discussed above.

[Query] Directly extract the corresponding travel time from the three-dimensional matrix based 
on the queried o-d-t.

3 Numerical test

3.1 Experiment configuration

The aforementioned three approaches were examined on two networks. The first one is the Shanghai 
Expressway network, which consists of 226 zones, 2,610 nodes and 3,158 links. A total of 240,000 
vehicles were loaded for a 1-hour simulation. The skimming interval is 15 minutes. The Shanghai Ex-
pressway SBDTA model was newly built to facilitate the promotion of SBDTA in China. The second 
network is the Sacramento, CA (SACOG) network, which consists of 1,532 zones, 9,956 nodes and 
21,698 links. A total of roughly 475,000 single-occupant vehicles were loaded for a 2-hour simulation. 
The skimming interval for SACOG is 2 hours. Figure 6 presents the snapshots of both networks, along 
with the TAZ configuration for SACOG network. The SBDTA package DynusT was used to generate 
the vehicle trajectory files. DynusT is based on a mesoscopic simulation engine, therefore, it is capable 
of recording trajectory data and printing it out to files for animation, visualization, and analysis pur-
poses. The trajectory data (i.e., the node sequence data) is maintained along with the arrival time of each 
node and the distance of the corresponding link. A threshold n_min for the length of trajectory was 
also introduced. The trajectories containing less than nmiⁿ nodes are not considered as valid samples for 
both trajectory mining approaches. A stand-along program of DynusT was written in C++ to perform 
the trajectory mining approaches. Certain amount of random o-d-t combinations was generated and 
regarded as the queries from ABM. The skim table (in various format in three approaches) is queried for 
the travel times of those o-d-t combinations.

    

                                  (a)                                                           (b)
Figure 6. Shanghai Expressway and SACOG network snapshots: (a) Shanghai Expressway network, (b) SACOG network 
along with TAZ configuration. SACOG network is relatively larger than Shanghai Expressway network in terms of number of 
nodes/links/zones and number of vehicles.
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3.2 Memory usage savings

Table 1 and Table 2 record the major Measures of Effectiveness (MOE) (i.e., memory usage, CPU time 
and result accuracy) of the three approaches for both network tests. It can be obviously observed that the 
correlated TM approach is visibly superior to the other two methods in Shanghai Expressway network 
test, saving almost 90% of memory usage compared to TDSP approach. As for Sacramento network 
tests, correlated TM also saves almost 90% memory compared to the TDSP approach before querying 
and more than 60% after 10 million queries from DaySim due to its compact and elegant data structure 
for the o-d-t combinations where travel time information is buried within the scanned trajectories. 

Table 1. Performance of the three approaches for Shanghai Expressway test (nmiⁿ =10)

Single TM
Correlated TM 

(μ=1 min, vmin = 
32.2 km/h)

TDSP approach

Scanned trajectories 156,401 156,401 N/A

Memory usage after pre-process (MB) 105 12.14 115

Captured rate after pre-process 72.6% 92.9% 100%

Memory usage after 10 million queries (MB) (travel 
time of uncaptured o-d-t is maintained in memory)

132 18.32 115

Deviation compared to single TM approach (for all 
o-d-t  combination) (min)

N/A 2.05 1.69

CPU time for pre-process (sec) 22.3 11.4 423

CPU time for 100,000 queries (sec) 39.1 3.1 0.007

CPU time for 1,000,000 queries (sec) 68.9 27.0 0.023

CPU time for 10,000,000 queries (sec) 105.2 255.5 0.265

Table 2. Performance of the three approaches for SACOG test (nmiⁿ =10)

Single TM
Correlated TM 

(μ=1 min, vmin = 
32.2 km/h)

TDSP approach

Examined trajectories 393,249 393,249 N/A

Memory usage after pre-process (MB) 130 20.8 166

Captured rate after pre-process 56.4% 79.9% 100%

Memory usage after 10 million queries (MB) (travel 
time of uncaptured o-d-t is maintained in memory)

226.5 63.9 166

Deviation compared to single TM approach (for all 
o-d-t  combination) (min)

N/A 3.56 1.42

CPU time for pre-process (sec) 47 32.6 ~7200

CPU time for 100,000 queries (sec) 130.6 97.0 0.007

CPU time for 1,000,000 queries (sec) 1201.6 860.5 0.026

CPU time for 10,000,000 queries (sec) 3648.0 5110.9 0.273

CPU time for 50,000,000 queries (sec) 4883.2 5963.1 1.37
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The index “capture rate” in Table 1 and Table 2 represents the amount of the total o-d-t combina-
tions where travel times are extracted from trajectories after pre-processing. The TDSP approach applies 
TDSP for all o-d-t combinations. Therefore, the capture rate is always 100%. It is not guaranteed that 
all o-d-t combinations can be captured by the two proposed approaches, since there might be some rural 
TAZs that have never been traversed by any vehicle trajectories, or there might be some o-d-t combina-
tions with corresponding shortest paths that cannot be composed of the existing trajectory segments. 
Therefore, generally speaking, the capture rate of the proposed trajectory mining approaches cannot 
reach 100%. However, since the network topology of Shanghai Expressway network is relatively simpler 
with no rural area. The travel time of almost all (92.9%) o-d-t combinations could be computed by 
considering correlated multiple trajectories together.

With the memory saving results in mind, one can tell that for the SACOG network after pre-pro-
cessing, single TM approach used 78% of the memory used by the TDSP approach and captures travel 
times of 56% of all possible o-d-t combinations, while correlated TM approach used only 12.5% of the 
memory used by TDSP and captures travel times of almost 80% of all possible o-d-t combinations. One 
thing to note is that due to the fact that correlated TM approach takes the correlation between different 
trajectories into consideration, the capture rate is always higher than single TM approach.

3.3 Travel time accuracy

In terms of the travel time accuracy, the result generated by single TM approach is regarded as the 
benchmark. The deviation to the result by single TM is calculated as:

 
 (1)

 
 (2)

where d2 denotes the deviation between the results of the two mining approaches, and d3 denotes 
the deviation between the results of TDSP approach and single TM  approach. n is the total amount 
of o-d-t combinations, and ttk,j

 is the corresponding travel time of the jth o-d-t generated by the kth 
approach.

The travel time calculation procedures vary for each of the three approaches and they are definitely 
related to the intrinsic mechanisms of each approach. Relatively speaking, the results generated by single 
TM approach are more representative than the other two methods. It is because the single TM approach 
considers the average of all trajectory segments representing the same o-d-t. Whereas in the TDSP ap-
proach, a randomly selected generation link within the origin zone and the beginning of the skim ag-
gregation interval are utilized as the o and t of the TDSP. This o and t are just one sample within the 
aggregated space and time. Such a strategy may not be as representative as necessary in order to represent 
the average travel time for the entire zone, especially when zones are relatively large. As for correlated 
TM approach, deviation from the single TM approach is mainly brought in from the aggregated time 
perspective. This approach aggregates a range of time (i.e., the whole time period within one aggregation 
interval) into one point in the compact time-space diagram shown in Figure 4, and this aggregate time 
interval length is different from the skim generation interval length. This fact undoubtedly introduces 
deviation when compared with the single TM approach. Besides, to consider combined shortest path in 
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correlated TM may also introduce additional deviation compared to single TM. From Table 1 and Table 
2 one can tell that the deviation between the results of the correlated TM approach and that of the single 
TM approach is higher than the deviation between the TDSP approach and the single TM approach. 

Note that the term “deviation” is used here rather than “error,” because it is difficult to tell which 
result is the ground-true interzonal travel time.

3.4 CPU time performance

Next, CPU time performance is recorded. The CPU time is mainly composed of CPU times for pre-
processing and querying. The pre-processing times of both trajectory mining approaches claim com-
manding leads over the TDSP approach. The trajectory mining approaches won’t involve TDSP during 
the pre-process, resulting in less CPU time. However, the CPU time of trajectory mining approaches is 
higher than TDSP approaches in the query procedure since not 100% of the travel times of o-d-t com-
binations are stored in memory when utilizing mining approaches. For those missing o-d-t combina-
tions, TDSP will be called during querying, and a great portion of CPU time is actually spent on those 
TDSP calls. For the correlated TM approach specifically, the BFS conducted in the compact time-space 
diagram also takes extra CPU time, although the time complexity for worst-case unweighted BFS is 
much lower than TDSP.

After a certain large amount of queries, eventually the travel times of all o-d-t combinations will be 
stored in either the time-space diagram or the two-dimensional matrix. Results for later o-d-t queries can 
be extracted directly from either of those two storages. Therefore, the total CPU time for both trajectory 
mining approaches is not proportional to the amount of queries but more like a concave curve, as one 
can tell from Figure 7.

 

Figure 7. Total CPU time vs. amount of queries in SACOG test. Both trajectory mining approaches spend less CPU time 
compared to TDSP even in extreme cases where amount of queries is extremely high (the normal amount of queries for this 
SACOG model is 2.5~7.5 million)

One noteworthy note is that in a typical ABM-SBDTA integration, it is less likely that o-d-t com-
binations associated with rural TAZs or off-peak times that have never been covered by any trajectory 
segments will be queried. Essentially, the o-d-t queries are somehow non-uniformly distributed rather 
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than in a uniformly distributed manner used in this numerical test. The possibility that the queried o-d-t 
is already captured by trajectory mining approach will be higher in real integration practices, and this 
fact further benefits both proposed trajectory mining approaches. Meanwhile, for a normal ABM model 
(e.g., DaySim, CT-RAMP, etc.) with a similar size to SACOG, roughly 5~15 destinations are sampled 
depending on the activity types for destination choice models, and a 5~30 min departure time window 
is usually considered for the departure time choice model. Therefore, for the tested SACOG network, 
there are roughly 2.5~7.5 million times that the skim is queried within each iteration in practice and it’s 
very unlikely that the skim will be queried for as much as 50 million times. As a result, one can conclude 
that both trajectory mining approaches tend to save CPU time in practice, especially in larger networks 
(SACOG network) with smaller amounts of queries.

3.5 Impact of vmin and  μ on travel time accuracy of correlated TM

As concluded in previous subsections, correlated TM approach greatly outperforms single TM and 
TDSP approach in terms of both CPU time and memory usage, at the price of travel time accuracy. The 
deviation of travel time compared to single TM is due to two reasons: 1) the combination of multiple 
trajectory segments may not be the true shortest path from the origin zone to the destination zone, 
and 2) the introduction of aggregation interval in order to construct the compact time-space diagram. 
Therefore, a sensitivity analysis is conducted herein to evaluate the impact of vmiⁿ and μ on the travel 
time accuracy performance of correlated TM.

Figure 8 presents the impact of vmiⁿ and  μ on performance of Correlated TM in SACOG network. 
One can tell that as vmiⁿ goes up, the capture rate drops, as the scan eligible set of BFS would shrink. 
Furthermore, the deviation of the resulting interzonal travel times to single TM drops. It is because the 
leftover o-d-t that are still captured by correlated TM are now of high accuracy, which is ensured by the 
high vmiⁿ. The capture rate would further impact the CPU time as the more o-d-t combinations cap-
tured during pre-processing, the less TDSP would be run for missing o-d-t combinations. 

On the other hand, a higher μ would lead to higher deviation to single TM and lower CPU time, 
which is understandable as a higher μ means less number of columns in the compact time-space diagram 
in correlated TM. It means less depth the BFS would go over to find the destination, whereas the ac-
curacy would be off. 

As a conclusion, both vmiⁿ and μ should be chosen wisely at the discretion of modelers considering 
the trade-off between efficiency and accuracy.

   
  

                                            (a)                                                                                                (b)

Figure 8. Impact of vmiⁿ and μ on performance of Correlated TM in SACOG network. (a) Capture rate and Deviation to 
Single TM VS. vmiⁿ. Both MOEs are negative correlated to v_min. (b) CPU Time and deviation to Single TM VS. μ. CPU 
time is negative correlated to μ whereas deviation is positive correlated to μ.
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4 Conclusions

The paper proposed an innovative approach to acquire interzonal travel impedance skim values. Tradi-
tional skim generation methods call for multiple TDSPs, resulting in intolerable computational times 
and memory usage. The major contributions of this paper are the innovative data mining approaches 
used to extract travel impedance skims from the existing massive vehicle trajectories produced by SB-
DTA tools. 

In the first proposed method, data is pulled out from vehicle trajectories and stored in a two di-
mensional matrix. Pre-processing CPU time is saved, as well as total CPU time. The second proposed 
strategy nicely builds a compact time-space diagram based on the trajectory data, and the travel time 
is obtained by performing an unweighted breadth-first-search upon the compact time-space diagram. 

Numerical tests are conducted on a newly-built Shanghai expressway network and a U.S. metro-
politan network. The correlated-trajectory mining approach shows attractive properties of saving almost 
90% of the memory after the pre-process and more than 60% of the memory after relatively large 
amounts of queries when compared to the TDSP approach in large real-life network tests, mainly due 
to the elegant and compact data storage format. At the same time, a large portion of CPU time is saved 
using both trajectory mining approaches when compared to the TDSP approach, especially when the 
amount of queries is low. The numerical experiments highlight huge potential advantages of the pro-
posed approach in terms of memory usage and CPU time. The two proposed methods are simple in 
their methodology yet outstanding in performance.
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