
Abstract: This paper proposes a path-based algorithm for solving the 
well-known logit-based stochastic user equilibrium (SUE) problem 
in transportation planning and management. Based on the gradient 
projection (GP) method, the new algorithm incorporates a novel 
multiple-path gradient approach to generate the descent direction in 
consideration of many paths existing in every single origin-destination 
(O-D) pair. To apply the path-based algorithm, the SUE problem is 
reformulated as a variational inequality (VI), and a working path set 
is predetermined. The numerical experiments are conducted on the 
Winnipeg network where a large number of paths are provided. The 
results show the multiple-path gradient projection algorithm outperforms 
the original GP method. Three different step size strategies, including 
the fixed step size, self-regulated averaging and self-adaptive Armijo’s 
strategies, are involved to draw a more general conclusion. Also, the 
effects of the path number on computational performance are analyzed. 
The multiple-path gradient projection (MGP) method converges much 
faster than the GP method when the path set size gets large.

1	 Introduction

Traffic assignment is a key step of the travel demand forecasting 
or project evaluation. The results will be treated as an important 
basis of the decision making in urban transportation planning 
and management. To obtain high-quality forecast results, traf-
fic assignment is a crucial need for transportation engineers and 
administrators. The stochastic user equilibrium (SUE) model is 
one of well-known traffic assignment models in the literature. As-
suming a probabilistic route choice model, the SUE model is to 
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find the link (and path) flow pattern on a traffic network given the travel demand between origins and 
destinations and the corresponding path choice sets (either explicit or implicit). Daganzo and Sheffi 
(1977) defined SUE as a state in which no driver can reduce his/her perceived travel time by unilaterally 
changing routes. 

The difference between the SUE problem and deterministic user equilibrium (DUE) problem is 
that the SUE relaxes the perfect information assumption by incorporating a random error term in the 
route cost function to simulate travelers’ imperfect perceptions of travel time. The imperfect perceptions 
are caused by a lack of information among the travelers about which routes are the shortest, travelers’ 
different perceptions on path cost or different preferences (Sheffi, 1985).

The random error terms are usually assumed to follow the Gumbel distribution (Dial, 1971) or 
the Normal distribution (Daganzo & Sheffi, 1977), corresponding to the multinomial logit (MNL) 
and multinomial probit (MNP) discrete choice models, respectively. Compared with the MNP model, 
the MNL model is unable to account for overlapping and perception variance with respect to different 
path lengths (Sheffi, 1985; Chen, Pravinvongvuth, Xu, Ryu, & Chootinan, 2012; Chen, Ryu, Xu, & 
Choi, 2014). The inferiors result from assuming that the random error terms are independently and 
identically distributed (IID). The MNP model does not have these inferiors because it considers the 
covariance between the random error terms. However, the MNP model does not have a closed-form 
probability expression and it is computationally burdensome (Xu, Chen, Zhou, & Bekhor, 2012; Chen 
et al., 2014). Therefore, the MNL model is more suitable in practice. 

To overcome the inabilities of the MNL SUE model, researchers have greatly extended the logit 
model. These extensions include the path-size logit (Ben-Akiva & Bierlaire, 2003), cross-nested logit 
paired (Prashker & Bekhor, 1998), combinatorial logit (Prashker & Bekhor, 1998), C-logit (Zhou, 
Chen, & Bekhor, 2012), etc. These extensions allow more realistic descriptions of travelers’ path choice 
behaviors. For a more comprehensive review of these extended models, readers can refer to the excellent 
discussions provided by Prashker and Bekhor (1998), Chen, Pravinvongvuth, Xu, Ryu, and Chootinan 
(2012), and Kitthamkesorn and Chen (2013).  

It is well known that the SUE problem can be formulated and solved either in the space of link 
flow or in the space of path flow (Fisk, 1980; Chen, & Alfa, 1991; Damberg, Lundgren, & Patriksson, 
1995; Bekhor & Toledo, 2005; Bekhor, Toledo, & Reznikova, 2009; Xu & Chen, 2013; Chen, et al., 
2014). In the early period, the link-based formulation was used widely. An important advantage of the 
link-based formulation is that they do not require explicit enumeration of the path choice set, so it can 
be applied to large-scale networks when the storage memory is limited. Recently, the path-based formu-
lation is adopted more widely, because it allows a more flexible definition of the choice set (Damberg et 
al., 1995; Bekhor & Toledo, 2005; Xu et al., 2012). Besides, storage memory is also no longer a serious 
bottleneck to employ path-based algorithms for solving traffic assignment problems (Jayachrishnan, 
Tsai, & Prashker, 1994).

The Gradient projection (GP) method, a type of path-based algorithm, shows successful perfor-
mance to solve various network equilibrium problems, e.g., the DUE problem (Jayachrishnan, Tsai, 
& Prashker, 1994; Chen, Lee, & Jayakrishnan, 2002), the non-additive traffic equilibrium problem 
(Chen, Zhou, & Xu, 2012), the elastic-demand traffic equilibrium problem (EDTEP) (Ryu, Chen, 
& Choi, 2014), the combined modal split and traffic assignment problem (CMSTA) (Ryu, Chen, & 
Choi, 2017), etc. However, the GP algorithm shifting flow to the current shortest path from all the 
other paths may be not very suitable to solve the SUE problem since there are usually plenty of paths in 
the given path set within each O-D pair. 
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The focus of this study is on developing an efficient path-based algorithm to solve the logit-based 
SUE problem. The new method shifts flow among all paths rather than to the current shortest path 
from all other paths. Some computational experiments are conducted in the test network. The numeri-
cal results show the new method has better performance to solve the SUE problem than the GP method. 
Also, the outperformance of the new proposed algorithm is analyzed under the situation in which dif-
ferent amounts of paths are involved within each O-D pair.

2	 Formulation of the logit-based sue assignment problem

This section briefly reviews the formulation of the logit-based SUE problem in terms of path flow. Also, 
the mathematical program is reformulated into a variational inequality.

The transportation network can usually be abstracted into a directed graph in which the nodes 
represent the origins, destinations and intersections, and the links (or arcs) represent the streets and 
highways. In this paper, a link, connecting two nodes, is denoted by a. A and N denote the sets of 
links and nodes, respectively. Let R ⊂ N  be the origin set, and S ⊂ N  be the destination set. A path (or 
route), a sequence of directed links leading from one node to another, is denoted by k. The flow of link 
a, denoted by xa , refers to the number of the travelers using link a (link flow). Similarly, the path flow 
represents the number of travelers using path k (path flow), which is denoted by fk. Let ta  be the cost of 
link a, which represents the cost that a traveler takes to traverse link a (link cost). In traffic assignment, 
the link cost is a monotonically increasing function with respect to the link flow. The cost on path k is 
defined as the sum of the costs of all links comprising path k, and is denoted by ck (path cost). Let qrs 
denote the travel demand (number of total trips) from origin r to destination s. Let Krs be the set of 
active paths (paths that are used) between r and s. In this paper, the notations are all scalars if there are 
not specific statements. The path flow pattern can be calculated by the logit model

	 (1)

where θ is a positive dispersion parameter, which reflects an aggregate measure of drivers’ perception of 
path cost (Sheffi, 1985). 

Fisk (1980) developed the following mathematical programming formulation for the logit-based 
SUE problem

	 (2)

subject to 

 	 (3)

	 (4)

	 (5)
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where z(x) is the objective function;  δrsa     ,k  is a link/path indicator, which equals 1 if link a is on path 
k∈Krs , and 0 otherwise. Note that   and therefore fk lnfk can be assumed to be zero for 
fk = 0. 

To solve the SUE model by using the path-based algorithm, we reformulated the above MP into a 
variational inequality (VI) in terms of path flow. That is, find f * ∈ Ω , such that

  		  (6)

where the mapping C is the vector form of the perceived path cost function with respect to path flow f. 
The perceived path cost function is given by

		  (7)

Also, the feasible set Ω  consists of Eq. (3)-(5). The next section presents a novel solution algorithm 
for the SUE problem.

3	 A multiple-path gradient projection method

3.1	 A brief description of the GP algorithm

Jayakrishnan et al. (1994) adopted the Goldstein-Levitin-Polyak gradient projected algorithm to solve 
the user equilibrium traffic assignment problem with fixed demand. During the past two decades, this 
algorithm has been applied to different traffic assignment models on realistic networks (see Section 1), 
and the numerical experiment results of these applications are quite encouraging.

The GP algorithm starts with a given estimate of the optimal solution (the objective function value 
is lowest at the optimal solution). At each iteration, the algorithm first generates a descent direction and 
then determines a suitable step size to produce a new estimate of the optimal solution (also called as an 
approximate solution). The descent directions are such vectors along which the objective function value 
can be decreased with the current approximate solution moving. A good descent direction allows the ob-
jective function value to decrease sharply. The step size is used to guide how far the current approximate 
solution should move along the descent direction. After that, the GP algorithm employs the projection 
operation to make the newly obtained approximate solution feasible (i.e., satisfy the constraints). This 
procedure is repeated until the algorithm obtains an approximate solution with some level of precision 
(the precision indicates how close the current approximate solution gets to the optimal solution). For 
path-based traffic assignment solution algorithms, the approximate solutions are produced by transfer-
ring the flow from some paths to the others, which is called flow transfer (or shift) in this paper. In traffic 
assignment, the convergence speed is widely used to evaluate how far the solution algorithms converge 
to the optimal solution. The convergence speed can be measured by the computing time required to 
obtain an approximate solution with some level of precision.

As a typical path-based algorithm, the GP algorithm exploits the O-D pair decomposition scheme. 
The original problem is separated into several subproblems, each with respect to only one O-D pair. 
Then, these subproblems are solved sequentially. Consequently, the focus is on every single O-D sub-
problem. Given an O-D pair rs, the objective function of the traffic assignment problem for a specific 
O-D pair rs can be approximated by the second-order Taylor expansion as follows
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				      (8)

where f denotes the path flow vector; fⁿ  is the path flow vector at nth iteration; Hrs( fⁿ ) is the Hessian 
matrix at fⁿ.

Some terms in Eq. (8) are constant and the problem can be simplified as follows

	 (9)

subject to

	 (10)

	 (11)

where E  is the unit column vector (1, …, 1)T.

In the GP algorithm, the demand conservation constraint is eliminated by expressing the shortest 
path flow with the others, which is

  	 (12)

where k  ̅  is the shortest path.

Thus, the problem is transformed into

	 (13)

subject to 

	 (14)

where  is the new objective function in terms of non-shortest path flow. The first-order derivative of 
the new problem can be derived

	 (15)

Note that the first-order derivative of Zrs with respect to path k is simply the sum of the link costs 
on that path, which is

 	 (16)

where ck  denotes the path cost on path k. Besides, the second-order derivative is
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 	 (17)

where t 'a ( xa )  is the first-order derivative of the travel time function on link a.

If the non-negative constraint is not considered contemporarily, the transformed problem turns 
into an unconstraint optimization problem and the stationary point can be easily calculated by

	 (18)

where  is the path flow vector excluding the shortest path k  ̅ .

Once the Hessian matrix, , is assumed to be diagonal, the following equation can be ob-
tained

	 (19)

where  f'k - fnk is the flow increase on path k and denoted as ∆fk  in the following.

A small increase in the flow on path k results in an equal decrease in the flow on the shortest path. 
Obviously, there is no change in the flow on the common part of the two paths. The flow shift between 
path k and the shortest path can be calculated as

	 (20)

where Ak ,k  ̅  is the set of links belong either to path k or to k  ̅ , but not both.

 To avoid violating the non-negative constraint, the new solution will be projected onto the feasible 
region

	 (21)

  	 (22)

where α  is the step size, α ∈ (0,1]. Here we do not specify a particular step size determination strategy, 
because different strategies can be embedded into the GP algorithm.

To better understand the GP algorithm, we use the example in figure 1 to illustrate how this algo-
rithm works. Consider that there are three paths for a given O-D pair, and path 3 is the shortest. The 
solid lines are the first-order approximation (by Taylor’s expansion) of the path cost functions based 
on the current path flow (i.e.,  fnk  , k =1, 2, 3). The purple line shows that the corresponding paths are 
equilibrated based on the linearized cost functions. The transferred flow (∆ fnk  , k =1, 2, 3) of the paths 
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can be calculated as dividing the cost difference between non-shortest and shortest paths by the sum of 
the slopes of the corresponding path cost functions, as Eq. (20) presents.

c1 f1  

∆f2
 n 

∆f1
 n 

flow

path cost
 c3 f3  

c2 f2  

Equilibrium between
path 2 and 3

∆f3
 n = ∆f1

 n+∆f2
 n 

Equilibrium
between

path 1 and 3

0 f3
 n  f2

 n f1
 n 

∆f2
 n 

∆f1
 n 

the shortest path

 

Figure 1. llustration of the path flow transfer strategy in the GP method

Remark 1: The flow transfer scheme of the GP algorithm is to shift the path flow from each non-
shortest path to the shortest one (the flow on paths 1 and 2 decreases and the flow on path 3 increases). 
Since the path cost will not be updated right after flow transfer, the shortest path flow could be over 
high after the flow shifts of all paths (for example, the shortest path becomes the longest one in figure 
1). Besides, the flow shifts between the non-shortest ones are not involved. This strategy can have good 
performance to equilibrate a few paths. But when the path number grows, which is usual for the SUE 
problem formulated in the space of path flows, it is difficult to calculate a good descent direction. In 
this paper, we develop a new path-based algorithm to deal with this issue, based on the GP algorithm.

3.2	 The proposed multiple-path Gradient Projection algorithm

Since the GP algorithm only shifts path flows from each non-shortest path to the shortest one, it may 
not have good performance in achieving equilibration among a large number of paths. To avoid this, we 
seek a new approach to solve the problem Eq. (9) with constraints Eqs. (10)-(11). 

Similar to the GP algorithm, we do not consider the non-negative constraint at first, which is 
one of the most fascinating characteristics for solving large-scale problems by the Goldstein-Levitin-
Polyak algorithm. In contrast, for the algorithms like Rosen’s gradient projection method (Rosen, 1960), 
the motion along the descent direction stops once a new constraint is encountered, which will slow 
the convergence speed in large-scale problems with many constraints binding at the optimal solution 
(Bertsekas, 1976). Then, the problem Eq. (9) with constraint Eq. (10) is an optimization problem with 
only the equation constraint, and can be directly solved by the method of Lagrange multipliers. The 
optimal solution will satisfy
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	 (23)

Once the Hessian matrix is assumed to be diagonal, Eq. (23) can be expressed as follows

(24)

Eq. (24) has clear physical meanings. The left terms can be viewed as the linear approximation of 
the path cost function and the right term is the path cost after equilibration. It is indicated in Eq. (24) 
that the linearized path cost functions of all paths should be equal, which is consistent with the idea of 
the UE condition.

From Eq. (24), we have

	 (25)

Besides, according to the demand conservation condition, the sum of all path flows will not change 
after the equilibration. Therefore, we have

  	 (26)

Rearrange Eq. (26), and obtain

	 (27)

Substituting Eq. (27) for  τ  in Eq. (25),
 

 	 (28)

Then, an approximate solution can be obtained by

 	 (29)

wherewhere
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Where  α  is a predefined step size,  α ∈ (0,1] . Different step size strategies can be embedded into 
the proposed algorithm and some promising ones will be introduced in the next section.

The new method is referred to as “multiple-path gradient projection method” (for short, MGP) 
in this study. It attempts to shift the flow among all the paths. Figure 2 illustrates the flow transfer 
strategy in the MGP method. As indicated in Eq. (24), the goal of transferring path flow is to make all 
path costs equal. The path cost after flow transfer, τ (the purple horizontal line), can be calculated by 
Eq. (27), which indicates that the new flow on each path is the abscissa of the intersection point of the 
corresponding solid line and the purple horizontal dash line. As shown in figure 2, the cost of path 1 is 
greater than τ but the other two are not, so equilibrium can be achieved by shifting flow from path 1 to 
paths 2 and 3. The transferred flow can be calculated by dividing the difference between the path cost 
and τ by the solid line’s slope, as Eq. (28) presents. 

τ 

c1 f1  

∆f3
 n 

∆f2
 n 

∆f1
 n 

0
flow

path cost  c3 f3  

c2 f2  

Equilibrium among all paths

f3
 n  f2

 n f1
 n 

 

Figure 2. Illustration of the path flow transfer strategy in the MGP method

Remark 2: Comparing figures 1 and 2, we can see that the MGP algorithm intends to achieve 
equilibrium among all paths, while the GP algorithm tries to equilibrate each non-shortest path and 
the shortest one. Note that when there are only two paths between the O-D pair, these two algorithms 
are almost the same. The MGP method can define a better descent direction than the GP method with 
the growth of the path number within each O-D pair, because the latter does not focus on shifting flow 
among the non-shortest paths.

In addition, note that the above formulation does not take the non-negative constraint into ac-
count, so a projection strategy should be developed to avoid the violation of feasibility. When there is at 
least one path carrying flow in the new approximate solution, the path set  Kprs  is divided into two parts, 
P_   and  

_
P.  P_  consists of paths with the flow decreased (∆fkn < 0) and  

_
P contains paths on which the flow 

did not decrease (∆fkn < 0). Only the paths in P_ are possible to carry negative flow, and the negative flow 
should be projected to 0, which is given by

	 (30)

where fkn ⁺¹ is the new flow on path k;
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The total path flow, required by paths in P_  to avoid the violation, is denoted as  π  which can be 
calculated by

	 (31)

Besides, to satisfy the demand conservation condition, the total required path flow can be provided 
by the paths in  

_
P. If the flow on each path in  

_
P decreases by the proportion of ∆fkn , the path flow on 

paths in  
_
P can be calculated by

	 (32)

The projection process is illustrated in figure 3. Consider a special case in the above example shown 
in figure 2. As shown in figure 3, the flow on path 1 (i.e., the left black dot abscissa) is negative (assume 
that the step size, α , equals 1), which violates the non-negative constraint. So a projection process 
should be executed to satisfy the non-negative constraint. According to Eq. (30), the flow on path 1 will 
be projected to 0. For paths 2 and 3, the decreased flow on each path is proportional to the correspond-
ing element of the descent direction (i.e., ∆fkn ), and the absolute sum of the decreased flow should be 
equal to the increased flow on path 1 according to the demand conservation constraint. Then, a new 
feasible approximate solution, {0, f2n ⁺¹ , f3n ⁺¹ }, is provided. It is noteworthy that the negative path flow 
will be projected not to 0, but to a sufficiently small amount of flow in solving the SUE problem, since 
the logarithmic term (Eq. (7)) cannot admit zero path flow.
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path cost
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flow adjustment

before projection
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Figure 3. Illustration of the projection process of the MGP method

The GP method and proposed MGP method have a lot in common. For instance, both methods 
calculate the flow shift with the second-order derivative of the objective function and assume the Hes-
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sian matrix to be diagonal; the projection approach is also similar, in which the motion along the direc-
tion does not stop when a new constraint is encountered. The difference between them is the way to 
solve the approximated problem (Eqs. (9)-(10)). The GP method transforms it into a problem without 
the equation constraint by expressing the shortest path flow with the others. This strategy can do well in 
equilibrating a few paths within each O-D pair, but may perform poorly while the path number grows, 
which is usual for the SUE problem formulated in the space of path flow. On the other hand, the MGP 
method tries to achieve equilibrium directly among all the paths under the circumstance where the 
original problem is approximated as a quadratic program. The path flow shifts are no longer limited to 
between each non-shortest path and the shortest one. As a result, the new method can converge faster 
than the GP method in solving the logit-based SUE problem.

4	 Adaption of the MGP algorithm for solving SUE problems

4.1	 Determination of step size

Step size determination is a significant step for solving the SUE problem. In the literature, there are 
three main types of step size determination schemes: predetermined, adaptive and optimized step sizes 
(Gibb, 2016). 

The predetermined step size schemes provide a sequence step size without considering any proper-
ties of specific problems. The most widely used predetermined step size scheme is the method of succes-
sive averages (MSA). The MSA generates a predetermined sequence {αⁿ } that satisfies Blum’s theorem 
(Blum, 1954) to guarantee the convergence (i.e., αⁿ → 0, ∑ ∞ⁿ⁼ 0 αⁿ =∞ ). The MSA is quite simple to 
implement, but it suffers from a sublinear convergence rate (Liu, He, & He, 2009; Chen et al., 2014). 
To improve the convergence speed of the MSA, some researchers have proposed alternative predeter-
mined schemes to slow down the decrease of the step size. For eaxmple, Polyak (1990) suggested a new 
predetermined step size sequence as αⁿ = n-2/3, and Nagurney and Zhang (1996) proposed to determine 
the sequence as { αⁿ } = { 1, ¹_2 , ¹_2 , ¹_3 , ¹_3 , ¹_3 ,…, n repetitions of  ¹_ⁿ } . Unfortunately, these inspiring works 
lead to only minor improvement in convergence speed, as indicated in the results presented by Liu et 
al. (2009). Recently, Bar-Gera and Boyce (2006), and Boyce, O’Neill, and Scherr (2008) empirically 
found appropriately chosen fixed (constant) step sizes can converge much faster than the MSA for vari-
ous models.

The adaptive step size schemes try to distinguish whether the iterations tend to diverge or converge 
based on certain measures, and then adaptively adjusts the step size (the step size will be decreased if the 
iterations tend to diverge; otherwise, the step size should be increased). The most widely used adaptive 
step size scheme is the self-regulated averaging (SRA) method (Liu et al., 2009). The SRA method is 
developed on the basis of the MSA, but an adaptive step size adjustment rule is incorporated. 

The optimized step size schemes determine the step size based on the principle that reduces the ob-
jective function along the given descent direction. Chen and Alfa (1991) suggested the exact line search 
method (e.g., the golden section and bi-section methods) for determining the step size, while Maher 
(1998) proposed the optimal step length algorithm (OSLA) for solving the SUE problem. Bekhor and 
Toledo (2005) and Chen et al. (2014) employed the Armijo’s rule for solving various SUE models and 
both reported promising results. Recently, Chen, Xu, Ryu, and Zhou (2013) proposed the self-adaptive 
Armijo step size strategy to accelerate the convergence of the Armijo’s scheme.

Three promising step size strategies, including the fixed, self-regulated averaging and self-adaptive 
Armijo’s step size schemes (corresponding to three types of step size), are detailed below.
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4.1.1 	 Fixed step size scheme

The fixed step size scheme defines an appropriate constant step size for all iterations. This scheme is quite 
simple to implement and an appropriate step size can indeed accelerate the convergence (Bar-Gera & 
Boyce, 2006; Boyce et al., 2008). However, it is not an easy task to choose an appropriate constant step 
size, since the choice of step size is problem-specific and too large a step size will lead to divergence. It 
usually requires to conduct a series of experiments (trial-and-error method) for an appropriate choice of 
step size (Perederieieva, Ehrgott, Raith, & Wang 2015; Gibb, 2016).

4.1.2 	 Self-regulated averaging (SRA) scheme

This scheme utilized the information between iterations to guide the choice of step size either “speeding 
up” or “slowing down.” The absolute residual error, ‖ yk - xk ‖, is treated as the monitor of the conver-
gence. The SRA scheme satisfies Blum’s theorem (Blum, 1954) to guarantee the convergence. The step 
size is calculated by

	 (33)

The SRA scheme has been adopted to solve various SUE models, e.g., the MNL SUE model (Liu 
et al., 2009), the C-logit SUE problem with elastic demand (Xu & Chen, 2013), the pair combinatorial 
logit SUE model (Chen et al., 2014), the unconstrained weibit-based SUE problem (Kitthamkesorn & 
Chen, 2014), and the weibit-based SUE problem with elastic demand (Kitthamkesorn, Chen, & Xu, 
2015). These studies reported that the SRA scheme is quite promising.

4.1.3 	 Self-adaptive Armijo (SAA) step size strategy

Armijo’s rule (Armijo, 1967), one of the most popular inexact line search strategies, was originally pro-
posed for unconstrained optimization problems. Bertsekas (1976) proposed a generalized Armijo strat-
egy for constrained optimization problems. Recently, Chen et al. (2013) suggested the self-adaptive 
Armijo step size strategy, allowing the starting step size of each iteration to increase by exploiting the 
information derived from former iterations. The self-adaptive Armijo’s step size can be described as:

Given that xk is not an optimal solution, set

       	 (34)

Where mk is the first nonnegative integer such that 

	 (35)

Where σ ∈ (0,1/2)  and  β ∈ (0,1)  are fixed scalars, and γk > 0. Eq. (35) is to find a suitable step 
size in iteration k. To set a “smart” initial step size for iteration k+1, the following criterion is used:



551A multiple-path gradient projection method for solving the logit-based stochastic user equilibrium model 

If

	 (36)

Where  η ∈ (0,1)  is a fixed scalar, then

 	 (37)

Where ρ > 1 is a fixed scalar and  γ ̅ > 0 is a predetermined constant as the upper bound of step size. 
Otherwise, set

 	 (38)

Compared with the original Armijo’s rule, the self-adaptive one can reduce the number of evaluat-
ing the objective function and derivative values efficiently, which comes from the observation that the 
step sizes of two consecutive iterations are very close for most of the iterations (Chen et al., 2013). The 
numerical results shown by Chen et al. (2013) are quite promising.

4.2	 Algorithm procedures

According to Eq. (7), the perceived path cost in the SUE problems can be represented as the summa-
tion of the path cost and an associated logarithm. Note that the logarithmic term cannot admit zero 
path flow at any iteration, so the path flow less than ϵ should be set to ϵ (where the demand conserva-
tion condition can be satisfied by decreasing the flow on another path by ϵ and ϵ is a sufficiently small 
amount of flow). 

Consequently, the SUE problem can be solved easily by the path-based algorithms and the detailed 
procedures of the MGP algorithm are summarized as follows.

Initialization: Set  ta = ta  (0), a ∈ A  and calculate the path costs  ck  ( fk )  (not ck  ( fk ) ). Get the 
initial path flows pattern by the route choice probabilities calculated by Eq. (1). Update all links flow, 
cost and first-order derivative of cost function. 

Main Loop: Step 0: Update all paths augmented cost function ck ( fk )  by Eq. (7) and its first-order 
derivative.

Step 1: Calculate the descent direction. Calculate the descent direction for all O-D pairs, i.e.,    
∆ f kn  ∀ k ∈ Krsp ,∀r ∈ R , s ∈ S .

Step 2: Compute the step size. Based on the descent direction, search a proper step size.
Step 3: Transfer flow. For some O-D pair, check if  fkn  + α ∆ fkn  ≥ 0 for all paths. If it does, obtain 

the new solution and visit next O-D pair; otherwise, go to step 4.
Step 4: Projection. Project the infeasible solution onto the feasible region. Update the path flow by 

Eqs. (30)-(32). Visit next O-D pair.
After all O-D pairs are visited, update all links flow, cost and first-order derivative of the cost func-

tion, go to step 5.
Step 5: Convergence test. If the convergence criterion is met, or the iteration number reaches the 

upper limit, terminate the algorithm; otherwise, go to step 0.
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5	 Numerical experiments

This section presents several experiments to compare the performance of the GP and MGP algorithms 
and analyzes the performance of the MGP method with different path set sizes. The experiments are 
conducted on the Winnipeg network whose configuration is available at http://www.bgu.ac.il/~bargera/
tntp. The Winnipeg network consists of 154 zones, 1,067 nodes, 2,535 links, and 4,345 origin-desti-
nation (O-D) pairs. A working path set from Bekhor, Toledo, and Prashker (2008) is used. In this path 
set, there is a total of 174,491 paths, and the maximum number of paths for any O-D pair is 50. The 
dispersion parameter θ  equals to 1.0.

The convergence measurement used in this paper is based on the relative gap (RGAP). It is calcu-
lated as follows

			   (39)

where Ck denotes the perceived path cost on path k and is calculated by Eq. (7);  Crsmin  denotes the cost 
of the perceived shortest path from origin r to destination s. The RGAP is a magnitude of the “deviation” 
of the perceived cost on paths.  If the RGAP is near to 0, the perceived path costs are almost to the same 
for each O-D pair. Particularly, the RGAP is equal to 0 if and only if the perceived costs on all paths 
are the same for each O-D pair, which is exactly the SUE principle. Hence, if the RAGP is nearer to 0, 
the flow pattern gets closer to the SUE condition. The algorithm codes are conducted on the Microsoft 
Windows 8.1 operating system and with Intel Core i5-5200U CPU @ 2.20 GHz, 8GB RAM. All of 
the algorithms are coded in Visual C#.

5.1	 Computational result comparison with different step size schemes

To draw more general conclusions, the experiments are conducted under three step size search strategies: 
1) fixed step size scheme; 2) self-regulated averaging (SRA) scheme, in which the information between 
iterations is used; 3) self-adaptive Armijo (SAA) step size scheme, in which the objective function and 
derivative values are evaluated. The parameter setting of the SRA and SAA step size schemes follows Liu 
et al. (2009) and Chen et al. (2013). The parameters  ψ  and  φ  are set to 1.9 and 0.01 in the SRA step 
size scheme. For the SAA step size strategy, the initial step size is 1.0 and the other parameters are set as: 
γ  ̅  = 1.0 ,  σ = 0.45,  β = 0.7,  ρ  =2 and  η  = 0.9.
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Figure 4. RGAP versus CPU time under fixed step size

Firstly, the fixed step size scheme is applied and the computational efforts of the GP and MGP 
algorithm are compared. The fixed step size should be set to guarantee the convergence of both algo-
rithms. Based on the trial-and-error strategy, we set the fixed step size to 0.05.

Under the circumstance described in the above, the computational result of the GP and MGP 
methods with fixed step size is shown in figure 4. The testing algorithms are stopped if RGAP achieves 
1E-7 or 10 minutes is taken. As shown in figure 3, the MGP method can achieve RGAP=1E-7 within 
10 minutes, while the GP method can only achieve RGAP=1E-4. Besides, it takes the MGP method 
only 62 seconds to achieve RGAP=1E-4, which is almost 9 times faster than the GP method. Also, the 
MGP algorithm is ahead of the GP algorithm in the whole convergence process. Table 1 shows some 
detailed results. The objective function value that the MGP takes 97 iterations to reach costs the GP 900 
iterations and the time they cost is 394.88 seconds and 32.54 seconds respectively.

Table 1. Computational Efforts of the GP and MGP methods

GP MGP 

Iterations 
Obj. 

function Time(sec) Iterations 
Obj. 

function Time(sec) 

100 1070560.0 40.67 5 1068885.6 1.57 
300 1057364.8 130.53 19 1057213.8 5.60 
500 1055478.8 222.30 68 1055456.6 22.69 
700 1055209.6 304.22 85 1055201.6 28.42 
900 1055142.9 394.88 97 1055142.4 32.54 

 

Secondly, two practical step size schemes, the SRA and SAA, are embedded into these two algo-
rithms. The computational result is shown in figure 5. The testing algorithms are stopped once RGAP 
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achieves 1E-7 or 20 minutes is taken. Obviously, the MGP algorithm is much faster than the other un-
der both step size schemes. Embedded with the SAA scheme, both algorithms have a linear convergence 
speed and the MGP method is about 19 times faster than the other. Incorporated with the SRA scheme, 
the MGP algorithm can achieve RGAP= 1E-7 within less than 12 minutes and the other converges at 
a very slow speed. 

It can be observed that the algorithms incorporated with the SRA scheme seem to perform poorly 
(especially for the GP algorithm). Note that the projected process of both algorithms will allow the mo-
tion along the descent direction even if a new constraint is encountered. At the beginning of the conver-
gence process, the frequent projection process does not make the distance decrease between the auxiliary 
solutions of two sequential iterations. Hence, the step size gets very small after several iterations at the 
beginning, which leads to the slow convergence. Consequently, the SRA scheme may be not very suit-
able for these algorithms employing the projected process of the Goldstein-Levitin-Polyak algorithm.
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Figure 5. RGAP versus CPU time under the SRA and SAA step sizes

It can be seen that the new proposed algorithm has much better performance than the GP algo-
rithm under these three step size strategies. Overall, the MGP algorithm is greatly faster than the GP 
algorithm to solve the SUE problem.

5.2	 Effects of the path set size on computational performance

This subsection is designed to demonstrate that the MGP method is more suitable than the GP method 
to handle the situation in which the path set size grows.

In this experiment, three path set sizes are involved, which are 5, 20 and 40 paths contained within 
each O-D pair on average. The fixed step size scheme is employed and the step size is set to 0.05. In 
addition, the convergence criterion is that 10 minutes is taken or RGAP=1E-7 is achieved. The compu-
tational result comparison is shown in figure 6.
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Figure 6. Effects of the path set size on computational performance

As shown in figure 6, the curves are colored differently for different path set sizes. The solid and 
dash curves represent the performance of the GP and MGP algorithms, respectively. It is clearly shown 
that the computation cost grows with the growth of the path set size for both algorithms. Also, the 
MGP algorithm performs better than the other with all path set sizes. Moreover, the outperformance 
of the MGP method is relevant to the path set size. To achieve RGAP=1E-4, it takes the GP and MGP 
algorithms 580.8 and 62.1 seconds when 40 paths are involved within each O-D pair; 136.9 and 21.6 
seconds when 20 paths are involved; 15.5 and 5.4 seconds when only 5 paths are involved. In other 
words, the MGP algorithm is 8.4, 5.3 and 1.9 times faster than the GP algorithm, when 40, 20 and 5 
paths are involved within each O-D pair, respectively. Obviously, the MGP algorithm performs much 
better than the GP algorithm for large-size path sets. As analyzed in Section 3, once there are only two 
paths, these two algorithms will generate almost identical directions. Theoretically, the MGP algorithm 
can perform better when over 2 paths are involved within each O-D pair.

Resulting from solving the objective problem by expressing the shortest path flow with the others, 
the GP algorithm shifts flows from the non-shortest paths to the shortest one and does not take the flow 
shifts among the non-shortest paths into account. Consequently, the GP algorithm performs poorly to 
equilibrate a large number of paths, which has been also demonstrated by the experiment results. 

In summary, the new proposed MGP algorithm shows better performance than the GP algorithm 
in solving the SUE problem especially when there are lots of equilibrated paths.

6	 Conclusions and perspectives

Based on the well-known gradient projection method, this study proposes a multiple-path gradient 
projection method to solve the SUE problem. These two algorithms utilize a similar projection pro-
cess, in which the motion along the descent direction will not stop immediately once a new constraint 
is encountered. This projection process makes it possible to take a more aggressive motion along the 
descent direction. Hence, solving the original problem can be separated into two steps: moving along 
the direction and projection. The first step can be regarded as an optimization problem with only the 
equation constraint and the second step is to make the new solution feasible. For solving the first step, 
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the GP method eliminates the equation constraint by expressing the shortest path flow with the others. 
However, it leads to the path flow shifted only between each non-shortest path and the shortest and it 
performs poorly to achieve equilibrium within a large-size path set. 

In order to handle this issue, the proposed algorithm shifts flow not only between each non-short-
est path and the shortest one but also among the non-shortest ones. It is realized by solving the problem 
with the method of Lagrange multipliers. Several experiments are conducted on the test network with a 
given path set. To draw a more general conclusion, three practical step size schemes, the fixed step size, 
the SRA scheme and the SAA strategy, are embedded into the GP and MGP algorithms. The compu-
tational efforts are compared. The results show that the MGP algorithm has much better performance 
than the GP algorithm to solve the SUE problem. Furthermore, the effects of the path set size on 
computational performance are also analyzed. It is indicated that the MGP method is much faster than 
the GP method when the path set size gets larger. Hence, the MGP method may also have good perfor-
mance to solve other traffic assignment problems with a large of number paths existing within each O-D 
pair based on the conclusion of this paper, which is the focus of further studies.
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