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The increasing availability of disaggregated geodata enlarges the options to
characterize urban morphology in the form of such attributes. The question for
the researcher is which attributes are most useful to reflect characteristics of ur-
ban morphology and how can they be processed from the given data.

In this paper, we want to address this issue and give an overview of quantita-
tive descriptions of urban morphology. We base our work on a data model that is
simple enough to allow for reproducibility in any study area. These attributes are
classified in multiple scales to reflect different perceptions of urban morphology.
In a case study on the canton of Zurich, we furthermore prove how these char-
acteristics allow for the definition of

urban typologies at different scales.
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1 Introduction and state of the art

Urban morphology is the study of the form of human settlements at different scales in order to un-
derstand the spatial structure and character of these as well as the process of their development. Anal-
yses are often undertaken using cartographic data or geodata that represent the physical structure of
the built environment, which can be reduced to the buildings, open space, and connecting networks
of streets. This environment defines the outline of its possible usage and the options for possible
activities—it is the initial setting in which enterprises, individuals, and points of interests can locate.
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One might expect this setting to be important for the character of a certain area and useful for
understanding behavior in space. However, at the present time, spatial models of behavior such as
location choice and hedonic price models often integrate only very limited aspects of urban morphol-
ogy. We expect that this is due to missing best practices on how to quantify the characteristics of urban
morphology.

As Clifton et al. (2008) stress, the characteristics of the urban environment are multiple and de-
pend on the point of view, such as the discipline and purpose of a study. Many aspects of this system
are subjective perceptions that are difficult to quantify, while some others allow for quantitative and
deterministic descriptions.

Throughout the 20th century, we find an emerging interest in analyzing the urban fabric, defining
models of the ideal city, and experimenting with its form and layout; among others, Ebenezer Howards’
Garden City, the Charta of Athens, and the Plan Voisin of Corbusier are probably the best-known
examples.

However, some of these newly developed ideas created places that are now described as being un-
pleasant or having a low quality of life, often linked to social problems. Researchers began to link life
in the city with its shape and the distribution of uses and gave recommendations on the developments
of cities (Jacobs 1961; Katz 1993; Lynch 1984). Furthermore, rather young disciplines focused on the
planning and development of cities were established in the form of urban planning and urban design.
The focus of these disciplines lies in the functional and morphologic composition of urban space at
different scales.

Meanwhile, other research fields such as economics and transportation developed an interest in
representing the processes inside the urban landscape through mathematical models. Von Thiinen
(1826) formulated one of the first models with a simple representation of a monocentric city explain-
ing the distribution of prices and land use around a city. Later studies advanced this rather simple
model to form a variety of economic models, transport models, and land-use models. Good overviews
are given by Wegener (2004), Batry (2008), and Maguire et al. (2005). The introduction of discrete
choice models allowed for the modeling of urban processes through the behavior of its actors, such as
its residents or enterprises (McFadden ez 2/. 1978; Train 2009). As discussed above, this is expected to
be closely related to urban morphology. Furthermore, we would expect that the integration of mor-
phologic characteristics as variables in such models will allow for the evaluation of design proposals in
the related disciplines of architecture, urban design, and urban planning. This forms an essential step
for the practical use of these models as planning support tools.

The representation of the urban environment using independent variables in location choice mod-
els has mainly been simplified to the socioeconomic distributions available in census data (Schirmer
ctal. 2014). Reasons for this included the unavailability of spatial data, limited computational power,
or limited geoprocessing capabilities in these research fields. However, throughout the last decade
we find an emerging number of behavioral models that include attributes regarding the built environ-
ment. The wide range of attributes indicates limited knowledge of how to represent urban morphology
through quantitative attributes, which is clearly addressed by Clifton et al. (2008): “It would advance
urban form research to have some standardization in operational definitions and measurement pro-
tocols.” A standardization of these attribution processes might help to simplify their integration into
behavioral models, even if the researcher has limited knowledge of geoprocessing tools.

While Gil et al. (2012) claim “the use of computer technology to support urban morphological
studies and to build bridges to contemporary urban design processes,” we find that this will require a
standard set of attributes that characterize urban morphology. These attributes need to be based on a
data model and a definition of variables that allow the representation of urban characteristics indepen-
dent of the study area. Some approaches to such morphological characterization have been undertaken
in the past. Alexander et al. (1977) proposes patterns for cities, neighborhoods, and buildings as an-
swers to design problem, but they do not define algorithms that evaluate these patterns or their under-
lying characteristics on real-world data. Hillier and Hanson (1984) present a network-based algorithm
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to analyze the configuration of a network and finds a connection to the distribution of functions and
uses (Bafna 2003; Hillier 1996). Marshall (2004) extends these network analyses to a complete set
of network characteristics and street typologies using configuration, composition, and complexity of
streets. Sevtsuk (2010) also uses network analysis to include connectivity measures in the location
choice of retail.

Most of these studies are based on network analysis, but one would expect the urban form to not
only be characterized by its network but also by its buildings and open space. In recent years, we find
the first studies in this direction. Meinel et al. (2008) classify buildings and blocks using attributes
such as the shape of the footprint and the block to define urban density measures.

Gil etal. (2012) use cluster analysis of blocks and streets to identify morphologic urban typologies.
Dillenburger (2010) presents a tool that sketches a building outline and searches for morphologically
similar buildings. Ewing and Handy (2009) get even more detailed and ask people to rate images of
streets. They identify factors that lead to the perception of eight qualities of urban design: imageability,
enclosure, human scale, transparency, linkage, complexity, coherence, and tidiness. Using regression
analyses, they can link these to objective characteristics of the street, fagade, and buildings.

Planningdisciplines are also undertaking morphological studies: The Award of the American Soci-
ety of Landscape Architects in 2010 honored an interdisciplinary study by landscape architects, archi-
tects, and planners that compares urban spaces based on morphological and functional characteristics
of North American case studies (Cherry 2009).

All these studies indicate that form, quality, and use of a location are connected to each other and
suggest that urban morphology is of high importance to the modeling of behavior and prices. How-
ever, as Gil et al. (2012) state, “the analytical process is laborious and not entirely objective” and “there
is a need to integrate different morphological approaches to obtain a more complete and complex set
of urban environmental attributes.”

Within this paper, we will address this limitation and present a set of attributes that we believe
to represent the built environment at different scales. These attributes can then be used as variables in
quantitative modeling processes. We classify location characteristics at different scales that we believe
represent the different disciplines of architecture, urban design, and urban planningin order to support
the future development of planning support systems for design proposals.

2 Data model

2.1 Data models

The amount of geo-located data available to researchers has exponentially risen throughout the last
decade, and we can expect that this tendency will be reinforced through open-data initiatives (2).
While there is a tendency for harmonization across national boundaries—for example, the projects
INSPIRE, SRTM, and CORINE (European Environment Agency 1985; INSPIRE 2013; SRTM
2000)—the structures of most geodata currently differ significantly between study areas. This reduces
usability in spatial studies that cross administrative borders and reduces the comparability of studies
in different areas.

2.2 Global data

Google Earth and Google Maps (Google Inc. 2013a,b) were the first well-known public platforms
where thislimitation did not exist. They opened the door to what could be called the first global dataset
of spatial objects. Diverse Web 2.0 developments and national initiatives, such as OpenStreetMap,
Wikipedia, or the Shuttle Radar Topography Mission of NASA, followed that line and collected data
that became available independent of administrative boundaries. Automated image processing meth-
ods allow for the extraction of spatial information for large areas from satellite images. Light detection
and ranging data (LIDAR) offer precise volumetric representations of spatial objects from overflights
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and allow for the automatic creation of detailed volumetric models of whole cities. We can thus expect
the availability of spatial information to become more and more independent from official sources and
see a development away from local data and toward global data.

However, at the present time, these data are either not available to researchers because they are
owned by private companies or they are incomplete, such as those being collected by Web 2.0 projects.
In this paper, we assume a data model that reduces the impact of such limitations by being flexible
enough to allow for the integration of most datasets, whether or not it is official data, Web 2.0 data,
or a design proposal.

2.3 Anobject-driven data model

Our data model relies on objects representing the built environment in the form of built structures,
such as geometries and volumes of buildings, blocks, and the connecting street networks, which are
available in most official geodata and on OpenStreetMap. The transformation of these objects in the
real world requires construction activity. They thus form long-lasting structural components of the
built environment. We limit the use of further attributes describing these objects. We also avoid in-
cluding objects missing a standardized classification, since these would reduce the general usability of
our data model. Examples of excluded objects are recreational space, agricultural land, natural areas,
soil coverage, and open space. Our data model uses the feature types of polygons, lines, and points
as representation for real-world objects (see Figure 1) with the attributes shown in Table 1. These are
linked to specific methods of analyses.

2.3.1 Blocks

Blocks are defined by enclosing streets and have only the attributes given by their geometry. Meinel
ct al. (2008) use this block for their morphologic analyses based on raster maps. A block is clearly
defined by the border of the street and can be precisely described when cadastral information on streets
or parcels is given. Alternatively, it can be derived in sufficient precision when streets are given in the
form of an axial network with information or assumptions on their width.

It should be stressed that with this definition a block does not reflect urbanity and should not be
confused with the building typology of perimeter block development. Every building refers to exactly
one block. At the border of the settlement, these blocks might be very large and consist mainly of
unbuilt land. This specific situation is reflected in Section 3.2.1.

If available, the parcel could form an alternative to the block for most of the analyses presented
here. This would be advantageous since parcels reflect land ownership and legal regulations on con-
struction. However, our previous projects in various European countries showed that the parcel is
cadastral information that is rarely available on a regional or national scale. These data are created and
hosted by municipal administrations and only available with high costs. With a focus on the location-
independent usability of our data model, we thus decided to use the block as the morphological entity
instead.

2.3.2 Buildings

The building composite is a common representation of buildings in many geodata: Buildings touch-
ing each other are grouped as one object. Examples for such data are BDTopo in France, ATKIS in
Germany, Vector25 or TLM in Switzerland, and many buildings in OpenStreetMap. We choose the
building composite as the representation of buildings in our data model as well. However, the num-
ber of buildings should be kept track of if available, since it defines the granularity and diversity of a
building compound and its facade.

Buildings are expected to have geometry regarding their footprint and information on their height
(2.5D). Height information can be available as absolute height or the number of stories: either allows
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Figure 1: Initial objects represented in data model: buildings, blocks, and streets. Source: ©2010 Amt
fuer Raumordnung und Vermessung (GV2113) ©2011 Swisstopo (JA100120)

us to derive the other value. Absolute height is generally available through digital elevation models in
combination with a digital terrain model, but in many cases the height of buildings is also given as a
number of stories.

2.3.3 Streets

Streets form a connecting network, and their configuration and capacity form an important charac-
teristic of the built environment. As such, it is common to represent them in an abstract form through
their centerlines.

While capacities of streets are rarely available, we often find classifications of streets, which are
closely related to movement and access. Clifton et al. (2008) differentiate streets based on capacities
and speeds. In accordance with the Federal Highway Administration they distinguish local roads,
collectors, arterials and expressways or freeways.

We use a comparable classification in our data model for simplified routing. We identify categories
for motorways, arterials, collectors, or distributors and local streets as motorway, primary, secondary,
and tertiary roads, which is the definition as used in OpenStreetMap. Furthermore, we recommend
differentiating bridges and tunnels, since they simplify the cleaning of the network topology. As many
datasets do not include real three-dimensional objects, we assume that blocks and streets are situated
on a flat plane.

3 Classification

In their review on quantitative analysis of urban form Clifton et al. (2008) differentiate the scales of
block face, neighborhood, submetropolitan, metropolitan, and regional, which they link to different
data and research fields. The classification proposed here uses a predefined data model to define a set
of attributes characterizing urban morphology. This slightly changes the scales of analysis and includes
alternative approaches to characterize space from that reported by Clifton et al. (2008).

The scales introduced by Clifton et al. (2008) represent levels of aggregation. In location choice
models, we consider locations and their characteristics as alternatives. It thus seems more convenient
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Table 1: Proposed datamodel of the built environment

Feature = Columns Type Examples
buildings  building id  primary key
stories integer 1,2,10,35
height float 245
postcode integer 271, 8048

the_geom  geometry

blocks block_id primary key
postcode integer 271, 8048
the_geom  geometry

streets street_id primary key
type string primary, secondary
bridge boolean TRUE/FALSE
tunnel boolean TRUE/FALSE
maxspeed  integer 50
hierarchy integer 1,2,3,4,5

the_geom  geometry

to represent the scales of perception relating it to the actual location. As a consequence, we differ-
entiate six levels or scales of perception that are useful for the description of the objects in our data
model: object, composition, neighborhood, district, municipality, and region. Small-scale analyses
are specific to the form and appearance of objects. A composition is characterized by the interaction
of individual objects with their direct neighbors and the space these create. A neighborhood is de-
fined by the characteristics of the walkable surroundings. A district includes further transport modes
than the neighborhood and characterizes the area that is accessible within a short driving distance.
The municipality is comprised of the extent of the municipal border and includes information on a
polycentric or monocentric structure. Meanwhile, the region evaluates the interaction of various mu-
nicipalities and their catchment areas. We believe this classification to reflect the planning guidelines
and designs in the fields of architecture, urban design, and urban planning, although this paper and
the implied data model cannot cover all characteristics and details of these disciplines. Further details
on classification will be described later.

3.1 Object

The appearance and spatial impact of an object is defined by its outer geometry and volume. These
characteristics define the architectural type of a building. They are commonly communicated through
models and plans; it is rather uncommon to extract these characteristics in the form of attributes.
However, as Meinel et al. (2008) show, these attributes can be useful to characterize and classify objects,
and they are common in other applications such as image processing. We differentiate the attribute
from the form of an object according to the initial feature type.

3.1.1 Line

In the proposed data model, the street network consists of lines representing the streets’ axes. Its shape
only includes the information on the orientation and length of a street segment. In a three-dimensional
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(3D) model, we get additional information on the slope and 3D length, but as mentioned earlier we
assume a flat plane in our data model (see Section 2).

3.1.2 Polygon

Polygon characteristics  Buildings and blocks are represented as volumes in 2.5D—i.e., through poly-
gons and an attribute on its height. The geometry of a polygon includes information on the area and
the perimeter as well as its compactness. This allows us to distinguish linear housing from closed forms
or compact, detached housing. We also find the amount and size of inner polygons, such as courtyards
in a building.

Meinel et al. (2008) extract, among others, the bounding box and enclosing circle of buildings and
derive their area, perimeter, and compactness. Furthermore, the characteristics of the enclosing objects
and the initial objects are evaluated against each other in the form of ratios.

Volumetric information ~ Volumetric information is not used by Meinel et al. (2008). We propose
building the ratio of volume to area of the facade and using the height to estimate floorspace, assuming
ageneral floor height of 3 meters, which reflects most residential buildings but is too low for commer-
cial and retail buildings. If given, the use of the number of stories is advantageous.

Topological skeleton  The topological skeleton is a representation of polygons often used for shape
recognition and shape analyses (image processing, for example). A skeleton is a line string that repre-
sents a thinned version of the shape’s boundary but keeps the topological information—i.c., where each
point of the line string lies within the polygon and has a maximum distance to the closest boundary
(equidistant to boundary). It can be extracted using thinning techniques in image processing (Lam
et al. 1992) or through vector-based thinning techniques (Lee 1982; Ogniewicz and Kiibler 1995).
The skeleton of a building allows us to extract typological information such as the length, width, and
orientation of a building and also to characterize its shape by evaluating the number of unconnected
lines (“deadends”) and the number of connected lines. Figure 2 shows how these attributes can help to
define building types. However, it should be mentioned that due to the variance in existing construc-
tion and their cartographic representation, these ideal types cover only a part of the building data and
alternative classification techniques are needed to classify all buildings.

3.2 Composition

By relating blocks, networks, and buildings to each other we characterize the immediate environment,
or composition, of a location. While the building form mainly represents architectural characteristics,
composition reflects the spatial configuration of buildings and their perception—elements of urban
design. These types of attributes have rarely been used in quantitative models, so we have to rely on
expert knowledge in urban design to define them. We distinguish the configuration of a building from
other buildings, blocks, and streets.

3.2.1 Buildings

Influence zone  The interaction of buildings structures the space and defines its perception. The dis-
tance to the next building allows us to differentiate loosely spread buildings from grouped buildings.
By forming a topological skeleton on the unbuilt space, we can determine the “morphological influ-
ence zone” of a building, which represents the area of attraction that a building has if no other barriers
such as fences, vegetation, or roads exist. This influence zone forms a polygon that allows us to measure
the same characteristics as given in Section 3.1.2, including the ratio to the area covered by the building
and the volume of the building. For unrealistically large influence zones near open landscapes, their
extent is limited to 300 meters, which reflects the walkable surrounding of a location.
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Compactness = min

Skelet_lines =1

Deadends = 4

Skelet_length < Deadends_length = TRUE
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Figure 2: The shape and morphologic skeleton help distinguish building typologies

Figure 3: Influence zone of buildings (left), permeability of block (middle), and closeness of block
(right). Based on ©2010 Amt fuer Raumordnung und Vermessung (GV2113).

Courtyards  Courtyards form a semipublic space that can substantially benefit a location. While we
evaluated inner polygons forminga courtyards in Section 3.1.2, a courtyard can also be formed by dif-
ferent buildings. Depending on buildings’ footprints and heights, the space between them can form a
courtyard, even when they do not touch each other, as long as the area’s access is perceived as “closed.”
This perception strongly depends on the width of the access in relation to the height of nearby build-
ings. Assuming a courtyard is perceived as closed when the access is smaller than the building height,
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we can evaluate the number of courtyards based on their perception as semi-private spaces as well as
by their size.

Urbanplaces  The configuration of buildings furthermore allows us to extract and classify urban places.
Krier (1979) classifies urban places using their morphological characteristics. Following his theory an
urban place is characterized by enclosing buildings similar to a courtyard, but will additionally have
access to the network of streets and pedestrian links. The street connectivity, buildings height and the
size of the place can thus help to distinguish types of urban places. However, if applied on non-urban
areas, large parts would be recognized as urban place, so that further constrains on the compactness of
an urban place will need to be defined if applied on those.

3.2.2 Street and block

The positioning of a building in relation to nearby streets defines its perception. This can be essen-
tial for the success of a retail store, for example, where buildings with street-aligning facades are pre-
ferred for shop windows. We differentiate the distance from the block border, the number of enclosing
streets, the percentage of a facade that is visible from the street, and the orientation towards the street.
The last can be derived from the building skeleton, while the facade that can be seen from the street
and positioning at the corner of a block depend on the outer polygon shape.

Similar to courtyards, the character of a street also depends on its section. Therefore, not only the
width of the street is relevant, but also its ratio to the height of the aligning buildings.

While the block is defined by streets, it has individual characteristics through its polygon shape. A
Voronoi diagram of buildings reflects the visual permeability of a block and allows us to measure the

number of axial looks through the block.

Furthermore, we define the closeness of a block as the ratio of the building facades that are per-
ceived from the street to the actual perimeter of a block. Urban blocks can be expected to have a higher
closeness than areas consisting of many detached buildings, with a maximum closeness of 1.0.

Figure 3 illustrates the closeness, permeability, and influence zone as proposed here.

3.3 Neighborhood and district

In addition to the composition, we need to reflect the wider context of a location as well. In their
residential location choice model, Guo and Bhat (2007) differentiate between fixed neighborhood
boundaries, based on census tracts and blocks, and alternative neighborhood definitions using Eu-
clidean distance and network distances. Their results show a variation of spatial effects between the
attributes describing the built environment and the socioeconomic variables, which justifies a differ-
entiation of the surroundings into multiple dimensions: the neighborhood representing the walkable
surroundingand the district as the accessible space using various transport modes. While the neighbor-
hood mainly reflects local densities, the district should reflect structural configurations of the urban
landscape. We believe both of these scales to be mainly linked to the disciplines of urban planning,
while partly still reflecting issues of urban design.

However, our data model of the built environment does not allow for the inclusion of socio-
economic characteristics; it just reflects structural characteristics. As a consequence, we will group
these scales and group the same characteristics for different extents—i.c., using the Euclidean distance
of 300 meters as an approximation for walkable surrounding and the network distance of one minute
of free-flow travel time as the extent for a district (see Figure 4).
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Figure 4: The neighborhood of a location. Neighborhood characteristics capture the densities of the

built environment and the network structure in the close surrounding area of a location.
Based on ©2010 Amt fuer Raumordnung und Vermessung (GV2113) and ©2011 Swisstopo
(JA100120).

3.3.1 Densities

The density of building footprints or of floorspace is a common measure in community design as pro-
posed by urban planners. They normally measure density in reference to another polygonal object,
such as the parcel or a trafhic analysis zone.

However, this does not necessarily reflect the perception of space. Especially at the border of the
reference objects, where the space might be strongly influenced by neighboring buildings, we can ex-
pect inconsistencies. A simple and common way to avoid these is to use the sum within a predefined
Euclidean distance instead—within a walkable neighborhood of 300 meters, for example.

The Euclidean density might be appropriate for the direct neighborhood of buildings, but it has
significant limitations for evaluations of larger areas since it ignores barriers that reduce the accessibil-
ity of the neighborhood. In that context, a network distance-based density is a better approach. It is
sometimes labeled as accessibility since it represents a cumulative opportunities measure—the num-
ber of objects accessible in a certain time (Bhat et al. 2000; Vickerman 1974; Wachs and Kumagai
1973). The definition of a district in this paper reflects these considerations: we measure densities as
the amount of opportunities in the area that are accessible within two minutes of driving. However,
we prefer the term cumulative opportunities or network density, so as not to confound it with the
weighted distance accessibility measure presented below.



Classifying urban morphology I11

3.3.2 Homogeneity

We expect not only a mix of use but also the mix of building types to form an important characteristic
of space. Building types can be defined by the form of an object, as described in Section 3.1. On one
hand, we can count the variety of building types within a certain Euclidean distance. On the other, we
can form a zone around similar buildings and gain information on the extent and form of this area.

3.3.3 Network structure

If streets are represented as axial lines, we can create a graph consisting of nodes and edges. Graph the-
ory has been employed in various disciplines such as sociology, economics, or biology (Newman 2003)
and various network analyses on graphs have been developed and well discussed (Newman 2010).
Marshall (2004) gives a good overview of these with a focus on street networks. We can differentiate
attributes characterizing the network structure and those relating the network to destinations along it
as discussed in Section 3.4.2.

Dill (2004) reviews the literature and distinguishes connectivity measures based on intersection
density, street density, percent of four-way intersections, connected intersection ratio, the percentage
of grids, and pedestrian route directness. We base our network analyses on these previous studies and
evaluate the number of intersections, links, length, and number of dead-ends in the district of alocation
(within two minutes of free-flow travel time).

3.34 Local access

Clifton et al. (2008) highlight that the accessibility measures at the level of a neighborhood are more
diverse than on a metropolitan scale, with reference to Holtzclaw (1994) and Song and Knaap (2003),
who count among others specific commercial and retail locations within walking distance. Randall
and Baetz (2001) evaluate pedestrian connectivity; Dill (2004) extends this to bicycle connectivity.

Sevtsuk (2010) introduces further network-based characteristics that form extensions of the gravity-
based model and are used in his retail location choice models. Besides the ones already discussed, he
introduces remoteness as the cumulative distance, cumulative number of turns, or cumulative number
of intersections required to reach each of the available destinations in a given network radius along
shortest paths. He defined these destinations as the built volume, residents, jobs, transit stations, and
different types of retailers. Remoteness thus becomes an index that measures how compact a network
is in combination with the density of destinations.

We do not include information on retail or commercial locations or on pedestrian networks and
cycling networks in our data model. These types of characteristics thus cannot be evaluated and will
need to use dedicated points of interest, but the connectivity measures as proposed by Sevtsuk (2010)
can be implemented for floorspace (see also Section 3.4.2).

3.4 Municipality and region

While the neighborhood around a building defines the urban quality at a human scale, its relation to
the municipality and region defines the uniqueness of location and its role within a larger context.
On a municipal level, we search for centers and the monocentric or polycentric structure of a settle-
ment, while we evaluate the impact of these on the regional scale. These characteristics are mainly
operationalized through regional planning disciplines.

Christaller (1933) studies the urban settlements in Southern Germany in order to understand
how urban settlements evolve and are located in relation to each other. He finds a system of lower-
order, middle-order, and higher-order centers with a clearly defined spatial distribution, as argued in
his Central Place Theory. Even if these can be expected to be at least partly the outcome of planning
decisions, the weight of a center and its distance from similar centers have a high impact on available
opportunities, such as retail and administrative facilities as well as the diversity of job types.
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Figure 5: Municipalities can be characterized by their settlement area (grey), networks (black), and
global or local centers (red and orange). Based on ©2010 Amt fuer Raumordnung und Ver-
messung (GV2113) and ©2011 Swisstopo (JA100120).

34.1 Settlement area

Municipalities have administrative borders that do not necessarily represent morphological character-
istics and reduce their comparability. Those administrative boundaries form political regions, but the
current extent of the settled area often differs substantially from these. By dissolving the buffer around
buildings, we can define the morphologic settlement area; small areas need to be filtered to represent
only conglomerations of buildings.

This shape is a good basis for evaluating and comparing density measures and center structures
(e.g., polycentric, monocentric) of different municipalities. Their form and extent can then be de-
scribed using the attributes already mentioned in Section 3.1. The position of a location inside the
settlement area is described through its distance to the boundary.

We can also relate the settlement area to other the objects in our data, as described in Section 3.3.
The ratio of the block area to the settlement area forms an index related to the space occupied by roads
and railways.

We can use the ratio of the settled area’s size to the size of the administrative boundaries of a mu-
nicipality and gain information on the unused space or natural reserve and the potential for growth.
The last can be expected to reflect the pressure on the housing market in growing cities.

3.4.2 Centrality and accessibility

While object-specific network measures have already been discussed in relation to the district (see Sec-
tion 3.3.3), the topological information can be used to quantify the structural characteristics of cities
and regions. Centrality measures—namely closeness, betweenness, and degree (Newman 2010)—are
used to study the relevance of a node within a network. These analyses break down the network into
nodes and links to evaluate the connection of the nodes to each other and to consider the cost for
cach link. The degree counts the number of connections each node has and allows us to distinguish
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intersections. The closeness is the inverse of the summed up distances to all other nodes, while the
betweeness quantifies the number of times a node is part of the shortest path between other nodes. As
reported above, Sevtsuk (2010) calculates these characteristics on a predefined network radius instead.

Different weights or costs can be applied to the road segments in the calculation of centrality mea-
sures. We propose three cost functions: a constant of one per link, the length of alink, and the free-flow
travel time per link. The last can be estimated by assuming a certain speed per street type. An alterna-
tive cost function would be the change of orientation between links, as used in Space Syntax analysis
(Bafna 2003).

Accessibility is a measure of the spatial distribution of activities around a point, adjusted for the
ability and desire of people and firms to overcome this spatial separation or “the potential of opportu-
nities of interaction” (Hansen 1959). Accessibility calculations are used to represent local and regional
differences within the urban landscape. Accessibility as distance-weighted opportunities or a gravity-
type measure can use the free-flow travel time in the distance decay function to weight the impact
and number of opportunities around a location. We propose using floorspace in a building as such an
opportunity measure.

3.4.3 Urban centers

Density gradients as first presented by Clark (1951)(for a review see McDonald (1989)) are acommon
way of comparing cities in urban economics and have a proven correlation with the travel behavior and
distribution of income (Clifton et al. 2008). However, this assumes and only allows comparisons of
monocentric cities.

Motivated by these studies, we often find the distance to the central business district or other sup-
ply centers in choice models and regression analyses. These lack reproducibility and reduce the com-
parability of study areas since the location of centers is being defined manually, while an automatic
evaluation would be advantageous. Since we only integrate the built structure in our data model, the
distribution of functions cannot be evaluated here. However, assuming a higher density for urban
areas, we can analyze the built structure and define the location of centers based on these.

The spatial distribution of built densities can be represented by means of a kernel density function
or the interpolated accessibility measures of buildings. Both approaches form GIS-raster analyses and
result in a map that represents a smoothed surface. This data can be analyzed and described using
methods of terrain analysis (Wilson and Gallant 2000). An algorithmic definition of centers needs
to define the location of urban centers in the form of points and also express their extent and impact
within the urban landscape.

A comparable problem can be found in the geomorphologic classification of mountains, which
differentiate major peaks from minor peaks according to their topographic prominence. This topo-
graphic or orometric prominence defines the height of a peak, measured in relation to the lowest con-
tour line encircling it and no higher summit (see Figure 6). Using this method, we can not only dis-
tinguish the location of a center—i.e., its peak—but also its local weight (peak height), global weight
(height above sea level), and catchment area (area of lowest contour line). These values allow us to
quantify the impact inside a settlement area as well as the regional relevance. To allow for the compar-
ison of local centers, we propose scaling the range to a level of 0-255, which represents the range of a
monochrome raster with a bit depth of 8.

A location is linked to its closest center through an evaluation of the distance to this center and
the aforementioned values of the center. On a regional scale, we can evaluate the catchment area of a
city’s largest center and the distance to the next center with a higher global value (see Figure 5).

3.5 Defining scale-dependent types

These morphological attributes allow for the scale-dependent classification of locations by using at-
tributes of the individual scales. In our data, these single points of observations are the individual
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Interpolated accessibilities

Interpolated accessibilities

Figure 6: Weight and location of centers. The location can be evaluated through prominence analyses
on the interpolated accessibilities. The section allows for the differentiation of peaks as global
centers (A) and local centers (B) based on their local impact (1) and catchment area (2).

buildings, which form the highest level of disaggregation. However, through the aggregation of these
characteristics, the given attributes would also allow us to describe and classify alternative aggregation
areas, such as census tracts.

Hechtetal. (2009) introduce a rule-based classification using the morphological characteristics of
buildings, blocks, and the interactions between them. They predefine the types of buildings through
weighting impact and range of the morphologic attributes per building type. This method involves
the training of the data on a reference sample. Gil et al. (2012) take an alternative approach and use
a k-means cluster analysis to distinguish what they call urban typologies—each cluster represents one
typology.

The advantage of the carlier approach is the comparability of the typologies across study areas: the
definition of typologies is static and we can observe variations in behavior, price, and urban structure
in relation to each typology. The drawback of such an approach is the lack of usability in significantly
different areas and without prior knowledge of the types. If the predefined typologies do not cover all
observations, we fail in assigning locations to individual types.

In cluster analysis, the number and content of clusters are not predefined but data-driven. In con-
sequence, the number and characteristics of attributes used to define a cluster are less rigid as well. On
the other hand, the resulting clusters can vary across studies and reduce the comparability in relation
to the typologies. This comparability can then only be achieved through a comparison of the initial
attributes used for clustering.

In this paper, we propose the use of morphologic attributes that represent different scales of per-
ception for use in behavioral models. As we are not aware of the number existing types at these scales,
it seems more convenient to use cluster analysis, which we present in Section 4.4.
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4 Case study

4.1 Study area

After having described the morphologic characteristics at different scales, we will evaluate these char-
acteristics on a case study of the canton of Zurich. The data we use covers a large part of the case study
areaand has been described in detail by Schirmer et al. (2011). Buildings and blocks are from cadastral
plans and have been enriched with additional information on use, value, residents, and jobs. The street
network comes from the TLM Swisstopo (2013).

4.2 Software

Geoprocessing requires the functionality of a geographical information system (GIS), enabling the
querying of data through attributes as well as through their spatial location. Since desktop GIS has
limited performance and flexibility in terms of large data processing, so we decided to run this pro-
cessing on the open source database PostgreSQL 9.1 (PostgreSQL Global Development Group 2013)
with the spatial extension PostGIS 2.0 (PostGIS Development Team 2013). The latter allows for the
creation and transformation of geometric objects inside the PostgreSQL database. For routing algo-
rithms, we use the PostgreSQL-extension PGRouting 2.0 (pgRouting Global Development Group
2013), which includes functionality for the transformation of lines into a topological network. The
geometric features in these tools are rapidly evolving, but at the present time not all functions needed
are available. For example, the routines for Voronoi creation skeletonization are missing. Individual
functions and routines have been created for such processes.

While raster processing is possible with the latest version of PostGIS, it still showed limited func-
tionality at the present time. We thus relied on the raster algorithms of GRASS GIS 6.4.3 (GRASS
Development Team 2013), an OpenSource GIS that can be linked to PostgreSQL. GRASS GIS uses
a specific topological format that requires the import of the vector geometries, but the attributes can
be kept and processed directly with PostgreSQL. By importing locations as vector points, we matched
these to the raster-sets inside GRASS. Their values are directly written to PostgreSQL.

The evaluation of our data in the form of plots and descriptive statistics, as well as cluster analyses,
have been performed with the open source software package R (R Core Team 2013).

The whole proceeding has been scripted as shell-scripts and runs in an iterative process, allowing
for simultaneous execution on different cores or computers (multi-threading). For this case study,
the processing was performed on a dual core laptop with 8GB RAM under Ubuntu 13.04. The com-
putation of attributes for the study area needs 15 hours, and the clustering described below needs an
additional 20 hours since different clustering algorithms are tested and the number of clusters is esti-
mated.

4.3 Clustering

The cluster analysis has been performed for all scales described in Section 3 using k-means cluster analy-
sis with the Hartigans algorithm (Hartigan and Wong 1979) as integrated in the open-source software
package R (R Core Team 2013). However, in the following we will only report the details for the
clustering of individual objects.

Since the attributes described in Tables 1, 2, 3, and 4 represent different units and vary in range, we
standardize them prior to clustering. Many attributes proved to be strongly correlated—for example,
perimeter, width, and size of the building footprint. A principal component analysis (PCA) on the
standardized variables is used to remove these correlations. In order to be less sensitive to outliers, we
apply the robust principal component analysis, which is available as PcaHubert in R. Following the
kaiser-criterium, we included only those principal components that have an Eigen value higher than
1, which resulted in five principal components (PC) on the level of objects, one PC on the level of the
composition, four PC for the neighborhood, and four PCs for the scale of municipality. Since one



116 JOURNAL OF TRANSPORT AND LAND USE 9.1

PC for the scale of composition was not enough for the clustering, we also used the PC with an Eigen
value smaller than one, which resulted on a total of five PC.

4.3.1 Number of clusters

A key to k-means-cluster analysis is the definition of the number of clusters. Hecht et al. (2009) defines
4 basic types and 15 more detailed morphologic types in their rule-based approach, which uses mor-
phological aspects of buildings, blocks, and height information. Based on this classification, we would
expect to be able to distinguish between 4 and 15 types of buildings based on object form and vol-
ume. However, we can expect this to be specific to the German or eventually European context. The
evaluation of typologies in other regions and at other scales needs individual research or a data-driven
definition of the ideal number of clusters as proposed in this paper.

Following Roussccuw (1987) the silhouette of a k-means clustering can be used to control the
quality of a clustering. The silhouette evaluates the tightness of a cluster and the separation of its data
points from its neighboring clusters. A silhouette coeflicient around 1 indicates that an object lies
inside a cluster; a coeflicient around 0 indicates that an object lies between clusters; and a negative co-
efficient value shows that objects are closer to the neighboring cluster than to their own cluster center.
The average silhouette width forms a quality measure of a clustering and allows us to compare different
cluster outcomes in terms of optimal separation of data points: the highest coefhicient value represents
the optimal number of clusters.

We ran the clustering for 1 to 50 clusters and compared the average silhouette width to choose the
optimal number of clusters based on this one as £1. Furthermore, we chose the second best as £2 and
the third best proposal as £3 to control for alternatives (see Table 2).

The k-means algorithm chooses random centroids and generates their Voronoi to define the initial
cluster, which are then optimized based in Euclidean distances. This makes it rather sensible to the ini-
tial starting points. An alternative approach is the use of medoids instead of centroids. The k-medoids
algorithm chooses data points as centers (medoids or exemplars) and works with a matrix of distances
between these. According to its documentation, it is more robust regarding noise and outliers than
k-means because it uses the “mean (equivalent to the sum) of the dissimilarities of the observations to
their closest medoid” instead of squared Euclidean distances (R Core Team 2014).

The function c/ara of the software R uses k-medoids and is optimized for large datasets. The func-
tion pamk makes use of c/ara to estimate the ideal number of clusters through the maximum silhouette
width. These functions proved to be very stable in the estimation of outcome and highly efficient in
terms of computational performance. Following the k-means methods described above, we run the
algorithm for the optimal silhouette width (¢Z) and also for the second-best (¢2) and third-best result
(¢3) in order to have variety in the observations and be able to argue on the effect of the chosen number
of clusters.

As shown in Table 2, the proposed number of clusters is identical for the optimal silhouette width
in all scales, but it differs for the less-optimal ones. Both algorithms have a tendency to choose very
few clusters as the ideal number of clusters—all scales propose two clusters as the best solution. In
consequence, the clusters with a smaller silhouette width represent more detail of the urban structure
and seem more suitable for our purpose. Further studies will have to elaborate in detail on how to
control the ideal number of clusters.

The k-means method shows significantly less variance in the silhouette plot (Figure 7), which leads
to higher variety for the second and third optimal average silhouette width when using the k-medoids
algorithm. The effect and relevance of this observation will be discussed later.

4.4 Typologies

In this section, we give an overview of scale-dependent clustering and compare the results of k-means
and k-medoid. The attributes used for the scale-dependent cluster analysis are given in Tables 1, 2, 3,
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Figure 7: Average silhouette width for different number of clusters in the scale of objects.
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Table 2: Estimated number of clusters per scale

Algorithm for estimation  Object Composition Neighborhood Municipality
kmeans centroid

Silhoutte (best) 2 2 2 2
Silhoutte (second) 3 3 3 3
Silhoutte (third) 4 4 4 4
kmeans medoid

Silhoutte (best) 2 2 2 2
Silhoutte (second) 4 35 3 3
Silhoutte (third) 19 6 4 4

and 4. We review the differences and variances of the clusters based on the individual boxplot for each
of these variables. However, for interpretation and the practical use of this approach, we present these
results through maps showing the clusters of the different scales using the building geometry.

Object The high number of clusters proposed in ¢3 leads to a finer differentiation than for £3. Both
have the tendency to define buildings based on their number of wings. The four clusters of k-means
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represent punctual building developments, linear building forms, structures consisting of more than
one wing, and group large-scale buildings. These clusters can easily be understood and interpreted in
the maps and follow our expectation (see Figure 8).

Also ¢3 distinguishes punctual housing, linear housing, and buildings consisting of several wings.
Large-scale, mid-scale and small-scale objects are differentiated, and very long buildings get separated
from short buildings that still have a defined orientation. Buildings having two wings (forming an
“L”) are found in different clusters than those with three wings (forminga “U”) or those with multiple
wings forming irregular or closed structures.

This last group shows the drawback of using cadastral information as the starting point: buildings
often have small variations in shape (e.g., to represent entries). While these have no effect on the general
form of the building, they affect the skeletonization and the forming of different groups. The use of a
dataset with simplified polygons for the buildings, such as is present in the Swiss TLM, might be more
optimal in such cases.

Figure 8: Selection of building typologies
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These images show examples of the clustering results of the kmedoid-clustering on the scale of the

object. The focus lies on the similarity of the buildings. We can see a differentiation of linear housing

(1), large scale buildings (3), punctual building development (4) and buildings with multiple wings
(3).
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Composition  Only one principal component has an Eigen value larger than 1 for the scale of compo-
sition, which does not lead to any cluster solution. As a consequence, we include all principal compo-
nents for this scale, but further studies will have to elaborate on whether this scale needs to be merged
with the scale of objects.

The two cluster algorithms lead to partly different outcomes. A selection of the k-medoids results
are shown in Figure 9. We find that ¢3 groups buildings that are street aligning, thus having a high
portion of street-facing facade, and defines locations facing unbuilt space as their own clusters. The
latter generally have large influence zones (IZ) combined with large block sizes and low soil coverage
in their IZ. This typology is also found in the results of the k-means clustering (£3). However, we find
large-scale solitaries with irregular structures, such as found for campuses or industrial sites, to have
very similar characteristics, often with more extreme values: they have a very large IZ, big distances to
neighbors and block borders, and low soil coverage in their IZ.

Urban residential areas form a type of composition that is characterized by high density and a
closed block structure. They show high soil coverage in their IZ and have a high percentage of con-
struction along the block border. Residential areas of punctual or linear construction have smaller soil
coverage in their IZ.

The last typology consists of freestanding objects with a low amount of street front. These are also
characterized through a large distance to the block border, relatively high soil coverage in their IZ, and
a rather low percentage of construction along the block border.

K-means also identifies large-scale solitary objects and locations facing the unbuilt space. Further-
more, locations with high urban density get grouped: they have a high soil coverage ratio and a lot of
street front, thus occupying a large percentage of the block border. All other buildings fall into one

group.

Neighborhood  Opposed to the building and composition clusters, the neighborhood clusters define
areas of spatial homogeneity—they form spatial entities with comparable characteristics of density and
networks. The main effect we observe for all clustering algorithms is the differentiation of inner urban
areas and the border of settlement areas, which we expect to result from the lower amount of floorspace
in a certain radius of travel time. When comparing k-means (£3) to k-medoid (¢3), we find k-means
creates more compact areas—i.e., it defines strict borders between the clusters. The results of k-means
are shown in Figure 10.

Both algorithms represent disconnected areas, the borders of settlement, and urban cores very well.
K-means defines an additional cluster for locations of medium density, which represent the cores of
small settlements very well. K-medoid defines a dedicated group for areas that have a high percentage
of dead-ends in the close surroundings instead. This leads to the expectation that using more clusters
on this scale could reveal structural differences of the networks. Otherwise the clusters mainly rely on

the density of buildings.

Municipality The clusters on the scale of the municipality also define areas of similar spatial char-
acteristics. The k-means and k-medoid algorithm propose a maximum of four clusters based on the
average silhouette width. Their clustering results are consistent and comparable. They differentiate
urban cores, the border of settlements, and the city of Zurich from the outskirts.

Locations in the city of Zurich form an individual cluster due to the unique and large catchment
area of the global center and its high values of accessibility and connectivity. Urban centers outside of
Zurich form their own typology; furthermore, we find highly accessible areas outside of Zurich and
areas of low access in separated clusters.

The proposed set of variable shows a consistent behavior for the clustering and proves to be of
value. However, when we “force” the clustering algorithms to use more than four clusters, we get
a differentiation of locations along main streets from less-accessible locations (see Figure 11). The
limitation to four clusters thus reduces the amount of detail in the clusters and might have to be revised.
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Figure 9: Selection of composition typologies
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These images show examples of the clustering results of the kmedoid-clustering on the scale of the

composition. These types refer to similarity in the relation to neighboring objects. We find street-
aligning buildings (3), block-defining residential (4), block-filling solitaries of large scale (3), and de-
tached punctual forms that form a block (2).

5 Summary and conclusion

In this paper, we present attributes describing the urban morphology at the scales of objects, compo-
sitions, neighborhoods, and municipalities. We introduce a set of attributes suitable for quantifying
characteristics of these scales for modeling purposes (see Tables 1, 2, 3, and 4) and run a case study on
the canton of Zurich to use these for the scale-dependent definition of typologies. The attributes are
derived from geographic data with an underlying data model being simple enough to allow implemen-
tation in other study areas: it includes only form- and volume-based information buildings, networks,
and the street blocks.

We show the use of the proposed attributes in a k-means cluster analyses and a k-medoid cluster
analysis to identify typologies of the proposed scales. With this approach, we classify the built envi-
ronment into typological classes that can be directly used in location models or hedonic models. We
found these clusters to form different views of urban morphology and believe they can help to com-
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Figure 10: Selection of neighborhood typologies

Source: based on ©2010 Amt fuer Raumordnung und V errn‘essung (GV2113)
These images show examples of the clustering results of the k-means clustering on the scale of the

neighborhood. These types refer to similarity in the density of buildings and comparability of net-
work structures. In this example, the algorithms mainly classify based on densities. We find detached
areas (1), the border of settlements as low density (2), mid density at the border of Zurich and in the
core of small settlements (3), and the city of Zurich and smaller centers as high-density sites (4)

pare and understand spatial structures. While the scale of objects and composition differ between
individual buildings, we find the typologies of neighborhood and municipalities to define boundaries
of coherent structures. The results for individual buildings, the neighborhood, and the municipality
are especially promising and follow our expectations.

However, we also found limitations of the given approach. The processinghad to be performed per
municipality for computational reasons, so a regional interaction across the municipal borders could
not be represented. This especially has an impact on the accessibility calculations, where small munic-
ipalities directly near the city of Zurich are shown to have low accessibility values and become similar
to disconnected rural areas. The definition of center structure is based on the density of floorspace
of buildings since no other data is given in the data model. As a result, some retail centers as well as
large-scale buildings are interpreted as centers by the given algorithm. Further studies should evaluate
the alternative use of functions and points of interests to define such centers. The study area includes
many small-scale municipalities, where a differentiation of the network structure seems awkward: a
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Figure 11: Selection of municipal typologies

Source: based on ©2010 Amt fuer Raumordnung und Vermessung (GV2113)
These images show examples of the clustering results of the k-medoids clustering on the scale of the

municipality. These types refer to similarity in the accessibility and connectivity of locations. The
upper two pictures distinguish high accessible sites along the arterials (2) from locations of lower ac-
cessibility (1) in the city of Zurich, the lower pictures distinguish residential areas of low accessibility
(3) from centers (4) in the outskirts of Zurich

free-flow travel time of only a few minutes includes the whole settlement area and the centrality mea-
sures on the small network structure do not result in such large variations as found in the city of Zurich.
As aresult, we find that the city of Zurich is grouped into one typology for the scale of neighborhood
and municipalities.

This paper forms a first attempt to define a set of attributes on urban morphology that allow for
implementation in different study areas. However, the simple data model limits the characteristics
of the built environment and furthermore ignores a large set of aspects. Examples are the pedestrian
networks, public transport network, open space, natural resources, the topography, points of inter-
ests, and land use, which will need similar standard attributes. While this work reviews various other
studies and extends their findings, the validity of the proposed characteristics in the behavioral models
or regression models is outstanding. This will be part of our ongoing work and will be presented in
subsequent publications.
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Table 1: Attributes describing the building

ATTRIBUTE DEFINITION MEAN MED. s.d.
Building

floorsqm [m’]  Sum of floorspace indiv. buildings) 3696.50  1546.00 7120.08
footprint [m’]  Sum of footprints covering the soil 787.24 409.00 1553.18
height [m]  Height of buildings, ignoring the roof 12.73 12.00 6.12
stories - Avg number of stories in composite 4.12 4.00 1.82
var_floorsqm - Variance of area in composite 1993277.94 0.00  34265933.70
var_footprint - Variance of footprints in composite 110919.20 0.00 1905676.55
var_height - Variance of height in composite 8.96 0.00 53.36
var_stories - Variance of stories in composite 0.50 0.00 2.20
Composite

box_area [m’]  Areaof bounding box 1734.59 773.00 3198.15
box_length [m]  Length of bounding box 35.34 27.00 26.58
box_perim [m]  Perimeter of bounding box 142.61 114.00 95.79
box_width [m]  Width of bounding box 35.96 28.00 25.75
box_width2length - Ratio of width to length in bounding box 0.74 0.79 0.20
circ_area [m’]  Areaof enclosing circle 2346.14 977.00 4496.09
circ_perim [m]  Perimeter of enclosing circle 140.45 111.00 98.88
circ_radius [m]  Radius of enclosing circle 22.35 18.00 15.76
conv_area [m’]  Area of enclosing convex area 909.53 444.00 1626.45
conv_perim [m]  Perimeter of enclosing convex area 111.92 90.00 74.21
nr_bldg - Number of buildings in a composite 2.71 2.00 3.50
obj_area [m]  Areaof shape, ic. the footprint 677.67 397.00 1135.20
obj_centnr - Number of centerlines 2.94 2.00 3.68
obj_compact - Compactness of the building defined as C = 2.50 2.03 1.49

obj_peri2[/(4xbox_areaxm)
o_courtnum [m*]  Number of courtyards 0.07 0.00 0.69
o_courtsiz [m?’]  Size of inner courtyard 1145.73 876.00 1258.12
obj_deadnr - Number of lines in skeleton that are only connected 5.78 5.00 3.15
to one side

obj_dist2cent [m]  Avg.distance of building corners to centroid 16.70 14.00 10.35
obj_EW [m]  Length of centerline w.orientation E-W/ 8.76 0.00 23.72
obj_floorsqm [m?’]  Floorspace, estimated on avg stories 3317.35  1442.00 6364.10
obj_length [m]  Total length of centerline 40.52 23.00 60.90
obj_lengthmain [m]  Longest centerline of unique orient. (<45°) 20.24 15.00 18.45
obj_maxwidth [m]  Maximum width 12.46 11.21 6.32
obj_minwidth [m] Minimum width 9.35 9.36 297
obj_NESW [m]  Length of centerline w.orientation NE-SW 8.98 0.00 22.60
obj_NS [m]  Length of centerline w.orientation NS 10.20 0.00 22.28
obj_orient - Main orientation of centerline - - -
obj_orientnr - Number of orientations for centerline 1.69 1.00 091
obj_perim [m]  Perimeter of shape 136.56 99.00 122.68
obj_SENW [m]  Length of centerline w.orientation SE-N'W 12.48 0.00 26.30
obj_volskin - Ratio of volume to area of facade 3.24 3.11 0.90
obj_width [m]  Average width along centerline 11.03 10.46 4.19
obj_wings - Number of wings 2.15 1.00 2.79
r_boxarea - Ratio of area to bounding box area 0.51 0.49 0.16
r_boxperim - Ratio of perimeter to bounding box perim. 0.90 0.88 0.16
r_circarea - Ratio of area to enclosing circle area 0.41 0.41 0.13
r_convarea - Ratio of area to enclosing convex area 0.86 0.89 0.13
r_convperi - Ratio of area to enclosing convex area 115 1.10 0.18
r_courtsqm - Ratio of courtyard to building footprint 0.37 0.42 0.34



128

JOURNAL OF TRANSPORT AND LAND USE 9.1

ATTRIBUTE

Street
obj_streetfr
obj_streetor

Building
dist_bldg
dist_bldgbl
obj_courtyper

obj_inflzone
obj_inflscr

Block
dist_block
r_blockscr
bl _area
bl_corner

bl_permind

bl_closind

Table 2: Attributes describing the composition

DEFINITION

Length of facade that is perceived from street
Facing the street or aligning the street

Distance to closest neighboring builinding
Distance to next building in neighboring block, as
alias for street-width

Allows for
gab between buildings according to height
(1/2*height)

Area if influence zone around building

Number of perceived courtyards:

Soil coverage ratio of building footprint to influ-
ence zone

Distance of building to block border: is alias for dis-
tance to street

Ratio of building footprint to block area

Area of block

Building is at corner of block, i.c. at streets with
change of orientation (> 45°)

Permeability: number of views between buildings
in ratio to perimeter of block

Closeness of block: ratio of street facing facades to

length of perimeter of block

MEAN

37.93

dummy
10.89
36.30
0.12

3494.93
0.20

9.25

0.03
216143.59
dummy

0.02

0.45

MED.

20.00

10.26
25.08

0.00

2358.00
0.19

5.62

0.01
31336.00

0.02

0.43

s.d.

53.32

6.08
30.38

0.38

3480.99
0.10

11.55

0.07
1011385.80

0.01

0.25
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Table 3: Attributes describing the neighborhood

ATTRIBUTE DEFINITION MEAN MED. s.d.
Building
dens_areal00 [m®]  Sum of sqm from footprints in 100m radius 10716.54 8374.00 8549.01
dens_area300 [m?]  Sum of sqm from footprints in 300m radius 55139.72 48780.00 31891.91
dens_area500 [m*]  Sum of sqm from footprints in S00m radius 12424893 107257.00  71949.85
dens_bldg100 - Number of buildings in 100m radius 26.49 26.00 10.71
dens_bldg300 - Number of buildings in 300m radius 148.58 148.00 59.91
dens_bldg500 - Number of buildings in 500m radius 33142 326.00 135.04
dens_sqm100 [m®]  Sum of floorspace sqm in 100m radius 44715.62 26056.00 51208.07
dens_sqm300 [m?]  Sum of floorspace sqm in 300m radius 224104.17  145908.00  209793.94
dens_sqm500 [m*]  Sum of floorspace sqm in S00m radius 506427.27 313623.00 480519.09
Streets
net_dead100 - Number of deadends within 100m 1.71 1.00 1.01
net_dead300 - Number of deadends within 300m 7.48 7.00 4.44
net_deadS00 - Number of deadends within 500m 18.71 17.00 9.33
net_inter100 - Number of intersections with 100m 4.25 4.00 2.49
net_inter300 - Number of intersections with 300m 32.37 31.00 13.84
net_inter5S00 - Nr of intersections with 500m 80.74 79.00 33.37
net_length100 [m]  Total length of network within 100m 1665.77 1556.00 711.62
net_length300 [m]  Totallength of network within 300m 1096591 10671.00 3064.01
net_length500 [m]  Totallength of network within 500m 27006.88 27166.00 7215.57
Streets & Buildings
net_prox_bldg - Buildings in 2min driving distance 349.69 321.00 182.91
net_prox_sqm [m’]  Floorspace in 2 min driving distance 517091.33  310493.00 531606.89
net_prox_area [m®]  Catchment area of 2 min driving distance 79754226  803723.00 33129891
net_prox_length  [m]  Network in 2 min driving distance 12669.59 11967.50 6611.57
net_prox_dead - Dead ends in 2 min driving distance 21.09 19.00 12.09
net_prox_inter - Intersections in 2 min driving distance 101.40 93.00 58.30
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Table 4: Attributes describing the settlement area

ATTRIBUTE DEFINITION MEAN MED. s.d.

Streets

net_betw_length - Betweeness of road-network using length of seg- 25172675  36512.00 510824.22
ment as cost

net_betw_one - Betweeness of road-network using constant perseg-  641827.12  42436.00  1703168.58
ment as cost

net_betw_speed - Betweeness of road-network using traveltime of  287518.95  39579.00 590446.09
segment as cost

net_close_length - Closeness of road-network using length of segment 3179.27 2656.21 1745.70
as cost

net_close_one - Closeness of road-network using constant per seg- 37.49 28.63 20.96
ment as cost

net_close_speed - Closeness of road-network using traveltime of seg- 249.18 220.00 127.54
ment as cost

net_degr_speed - Degree of road-network, identifies intersections 0.00 0.00 0.00

Streets & Buildings

net_acc_bldg - Accessibiltity of buildings as distance decay func- 9.85 9.16 5.01
tion

net_acc_sqm - Accessibiltity of floorspace as distance decay func- 14755.86  9849.28 14741.02
tion

Urban Centers

cent_area [m®]  Catchment area (prominence) of next center 505259.15  90921.95 1708064.28

cent_dist [m]  Distance to next center 200.83 187.30 120.68

cent_loc - Local impact of clostest center, scaled to range of 49.34 30.00 52.06
0-255

cent_max - Maximum value of closest center, scaled to range of 136.34 128.00 56.75
0-255

Settlement

dist_settle [m]  Distance to border of own settlement 303.59 263.16 176.01
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