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Abstract:  Due to the impact of urban sprawl, the need for respon-
sible property investing, and the emerging evidence supporting the 
linkage between walkable environment (in terms of built environment 
and walk accessibility) and residential property value, there is a criti-
cal need to develop systematic methodologies to quantify the impact 
of walkable environment on residential property value. This study 
provides a new generalized dissimilarity index for quantifying land-
use mix, a key component of built environment, and a new method 
for measuring a property’s walk accessibility and then links them to 
residential property values. Ordinary least squares (OLS) regression 
models are used to validate these methods by examining the empirical 
property data in Eastern Adelaide, Australia. The results of the OLS 
models show that the proposed dissimilarity index and property walk-
accessibility method outperform other commonly used land-use mix 
quantification and walk-accessibility methods in estimating single-
family residential property values in terms of the goodness-of-fit and 
explanatory power. This study provides insights for investors to under-
stand the impact of walkable environment on single-family residential 
property values to enable them to make more informed decisions on 
property investment, and for planners to design neighborhoods featur-
ing better walkable environments.

1	 Introduction

Over the past decade, extensive studies have been performed to address the negative impact of land-
use zoning ordinances that result in most residential properties being developed at locations featuring 
highly segregated land uses and curvilinear or cul-de-sac street patterns (Matthews and Turnbull 2007). 
Substantial distances have been created between residential properties, commercial properties, and ser-
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vices locations. This practice leads to social and economic issues such as traffic congestion, air pollution, 
and job-housing imbalance, etc. The concept of designing a more walkable environment that embod-
ies principles of new urbanism (Congress of New Urbanism 2014) has been considered as one of the 
solutions to this complex problem. A walkable environment is defined as a neighborhood with physical 
attributes that encourage walking for functional and recreational purposes. Numerous studies have ad-
dressed the impact of a walkable environment on a variety of transportation-related environmental and 
social benefits. The potential environmental benefits of a more walkable environment include improved 
air quality (Frank, Stone, and Bachman 2000), and reduced traffic congestion (Ewing and Cervero 
2001) and gasoline consumption (Ewing and Rong 2008). Possible social benefits include promoting 
active travel (Rodríguez et al. 2009) and increasing social capital and quality of life with greater com-
munity cohesion, trust, reciprocity, and diversified social activities among citizens (Leyden 2003). 

Apart from the potential environmental and social benefits, recent empirical studies also illustrate 
that a more walkable environment can improve residential and commercial property values (Pivo and 
Fisher 2009; Boyle, Barrilleaux, and Scheller 2013). In addition, the emerging domain of responsible 
property investing (Pivo and Fisher 2009) seeks to promote real estate investments that benefit both in-
vestors and the common good. The methods and terminologies used are different given the large num-
ber of potential factors in the context of walkable environment (Congress of New Urbanism 2014). As 
the interest increases for developing more walkable environments (Levine and Inam 2004), systematic 
methodologies are needed to characterize and quantify walkable environments by leveraging available 
social and demographic information. The development of desktop and mobile web mapping service ap-
plications can also serve an important role in assisting the residential housing development and planning 
process. 	The proposed study seeks to develop systematic methodologies and leverage desktop/mobile 
mapping service applications to quantify the walkable environment (in terms of built environment and 
walk accessibility) and its impact on the residential property values. Built environment represents the ur-
ban form of the neighborhood, including density, diversity, and design of a neighborhood (Cervero and 
Kockelman 1997). Walk accessibility quantifies the ability to access different services/destinations from 
a property at a micro-scale level. Based on the generalized definition of accessibility (Chen et al. 2011), 
a residential property’s walk accessibility is defined as the ease with which opportunities for activity can 
be reached by walking from that property. Previous studies (e.g., Manaugh and Kreider 2013) proposed 
different methods to quantify walkable environment or attempted to address the potential impact of 
walkable environment on property values, but these methods often have either methodological or ap-
plicability limitations.

In this study, a new generalized dissimilarity index for land-use mix quantification, and a new 
approach to calculate property walk accessibility are proposed to quantify the walkable environment 
to address the limitations of previous methods. To validate the two proposed methods, ordinary least 
squares (OLS) regression models were constructed to compare with other commonly used land-use mix 
and walk accessibility methods, and empirical property data from Eastern Adelaide, Australia, was used 
for the comparison in terms of the goodness-of-fit and explanatory power. The model insights can help 
investors to understand the impact of walkable environment on the single-family residential property 
value to aid them to make more informed decisions on property investment. In addition, they can also 
assist planners to design neighborhoods with a better walkable environment to enable transportation-
related environmental and social benefits, as well as financial benefits to the residents.

The remainder of the paper is organized as follows. Section 2 describes the methods used in the 
literature to quantify built environment and property walk accessibility. Section 3 proposes a new (gen-
eralized) dissimilarity index for land-use mix quantification, a key component of built environment, 
and a new approach to calculate property walk accessibility. Section 4 discusses data acquisition for the 
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Eastern Adelaide Government Region (or the Eastern Adelaide region), Australia, which is used as a case 
study to analyze the impact of built environment and property walk accessibility on the single-family 
residential property value. Section 5 discusses numerical experiments using the case study, compares the 
performance of the proposed land-use mix quantification and walk accessibility methods with other 
commonly used ones, and analyzes the case study results to provide insights. Section 6 provides some 
concluding comments.

2	 Literature review

Several studies have been performed to quantify walkable environment and address the potential ben-
efits of walkable environment on residential property value. Built environment and property walk ac-
cessibility were identified as two major components for quantifying walkable environment and under-
standing the impact of walkable environment on residential property value. Sections 2.1 and 2.2 review 
the methodologies used to quantify built environment and walk accessibility, respectively. Section 2.3 
reviews studies that focus on understanding the impact of built environment and/or walk accessibility 
on residential property value.

2.1	 Methods to quantify walkable environment

Several potential factors have been studied to quantify the built environment. They include street con-
nectivity, sidewalk availability (McCormack et al. 2012), expert opinion (Saelens, Sallis, and Frank 
2003), residents’ perception (Cerin et al. 2007), census data, and land-use mix (Matthews, and Turnbull 
2007). Given the large number of potential factors that can be used to quantify built environment, 
Frank et al. (2010) introduced the concept of “walkability index” based on conceptual and empiri-
cal literature data, by factoring density, mixed land use, and connectivity. Four key components were 
included in the study: 1) net residential density (population divided by total residential land area), 2) 
retail floor area ratio (retail building floor area footprint divided by retail land floor area footprint), 3) 
intersection density (ratio between number of intersections to total land area), and 4) land-use mix using 
the entropy index (ENT) method. Frank et al. provides a practical starting point to quantify walkable 
environment since all the variables included are widely available in existing datasets. However, the en-
tropy index method used to calculate the land-use mix has two potential limitations that may impact the 
performance of walkability index. Equation 1 shows the general form of the entropy index calculation 
(Song, Merlin, and Rodriguez 2013),

	 					     (1)

where Pj is the percentage of each land-use type j in the area and k is the number of land-use types j. 
The first limitation related to entropy index is that it fails to consider the micro-scalevariation within the 
neighborhood. Figure 1 presents four different neighborhoods in terms oflayout and scale. Dotted lines 
represent the neighborhood boundaries and solid lines represent streets. The shaded areas indicate non-
residential properties and the non-shaded areas represent residential properties. Both neighborhoods in 
Figures 1(a) and 1(b) contain 16 properties of the same size (0.25 mile × 0.25 mile). Each neighborhood 
includes eight residential properties and eight non-residential properties. Figures 1(a) and 1(b) present 
two neighborhoods with the same land-use mix value using the entropy index; ENT is equal to one for 
both neighborhoods, representing the highest land-use mix. However, the entropy index cannot reflect 
the different spatial arrangements of residential and non-residential properties, which can greatly impact 
the level of access and connectivity in neighborhoods. For example, the average walking distance from 
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the centroid of a residential property to the centroid of the nearest non-residential property is 0.25 miles 
in the neighborhood in Figure 1(a), but the average walking distance is double that in the neighborhood 
shown in Figure 1(b).

The second limitation of entropy index is that it is sensitive to the size of the neighborhood con-
sidered. Figures 1(c) and 1(d) are the neighborhoods created by further dividing neighborhoods in 
Figures 1(a) and 1(b), respectively, into four equal-sized parts. The land-use mix for the four smaller 
neighborhoods in Figure 1(c) remains identical to that for the neighborhood in Figure 1(a). However, 
the land-use mix values for the four smaller neighborhoods in Figure 1(d) reduce from the highest (one) 
to the lowest (zero).

To address the limitations of using entropy index to quantify land-use mix, a dissimilarity index 
and an interaction index were introduced in previous studies. Cervero and Kockelman (1997) intro-
duced a dissimilarity index (Equation 2) to represent the impact of land-use diversity on travel demand. 
It is calculated based on measuring the proportion of dissimilar land uses among hectare grid-cells 
within a census tract. For each tract, it is computed as:

								        (2)

where K is the number of actively developed hectare grid-cells in a tract, and Xik = 1 if the land use type 
of the active center grid-cell k differs from that of a neighboring hectare grid-cell i (0 otherwise). The 
number 8 in the equation represents the eight neighboring parcels of the hectare grid-cell k. The major 
advantage of using this dissimilarity index is that it can address both the aforementioned limitations of 
entropy index. It considers the micro-scale variation within the neighborhood. For the neighborhoods 
in Figures 1(a) and 1(b), the micro-scale variation within the neighborhood is reflected using this dis-
similarity index as the neighborhood in Figure 1(a) has a higher land-use mix value (0.59) and the neigh-
borhood in Figure 1(b) has a lower land-use mix value (0.19). This dissimilarity index is not sensitive 
to the size of the neighborhood as the land-use mix values for the neighborhoods in Figures 1(c) and 
1(d) are identical to those for the neighborhoods in Figures 1(a) and 1(b), respectively. However, the key 

Figure 1:  Neighborhoods with different land-use patterns
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limitation of the dissimilarity index proposed by Cervero and Kockelman (1997) is that it requires the 
land-use data to be recorded at the hectare grid-cell level. The underlying assumption for this method is 
that within one hectare grid-cell, there can only be one type of land use. In the real world, the land-use 
data is often not recorded at the hectare grid-cell level. Also, each individual land-use parcel varies sig-
nificantly in size and shape, making it intractable to quantify the land-use type at hectare grid-cell level.

Manaugh and Kreider (2013) propose the interaction method to improve the measurement of 
land-use mix. It calculates the land-use mix by dividing the length of the interaction lines between 
different land-use types within a census collection district by the size of the census collection district. 
This study shows that its method performs better than the entropy index in estimating the percentage 
of people that uses walking or bicycling as the primary mode to work. However, this method may not 
be the best fit for some types of land-use situations where there are significant gaps between different 
land-uses parcels. The existence of these gaps varies, as some gaps are caused by the presence of road net-
works while others are due to a river, lake, or Indian reservation. For any data with such gaps, the results 
generated by the interaction method would not be sufficient to reflect land-use mix as the length of the 
interaction lines between different land-use types may be significantly reduced.

The aforementioned methods to quantify land-use mix have either methodological or applicability 
limitations. Hence, a new method to quantify the land-use mix is needed to address these limitations.

2.2	 Methods to quantify walk accessibility

The property walk accessibility is defined as the ease of access to different types of opportunities by walk-
ing from a residential property. Some studies (Pivo and Fisher 2009; Boyle, Barrilleaux, and Scheller 
2013) use walk score (Walk Score 2014) to quantify walk accessibility and its impact on residential, 
retail, and industrial property values. Walk score is calculated by measuring the straight-line distance be-
tween a property and its nearest educational, retail, food, recreational, and entertainment destinations. 
A score is assigned to each category and summed to generate a score between 0 and 100. A higher walk 
score indicates a property has better access to different services. While it provides an easy way to quantify 
a property’s walk accessibility, it has four limitations. First, the walk score calculation only considers a 
property’s distance to the nearest destination. It does not consider that a property with multiple destina-
tions (e.g., grocery stores) within walking distance has a higher walk accessibility than a property with 
only one destination. Second, it fails to address the impact of neighborhood layout on walking distance 
and time. By only measuring the straight-line distance between a property and its potential destina-
tions, it does not consider street patterns, connectivity, physical barriers, and neighborhood topography. 
This would result in underestimating the walking distance and time to reach the intended destinations. 
Third, it assigns equal weight to all destinations in terms of size and purpose. This fails to consider that 
people may consider a large department store with more selection options more attractive than a smaller 
convenience store with limited options. Fourth, Lee and Moudon (2006) found that some destinations 
(e.g., grocery stores) are more associated with home-based walking than other destinations (e.g., movie 
theaters). It indicates that the accessibility to some types of locations may have a larger impact on resi-
dents’ home-based walking distance than accessibility to other types of locations.

The Hansen-gravity accessibility measures and the class of floating catchment methods (FCMs) are 
considered the two most common robust approaches to quantify automobile or transit accessibility, but 
few studies use them to quantify walk accessibility. The Hansen-gravity accessibility measure is consid-
ered more conceptually complete, but is not intuitive to interpret and requires more data for calculation 
(Manaugh and Kreider 2013). The FCM is a relatively new method to calculate accessibility (Equation 
3). It has advantages similar to a gravity model, and is also more intuitive to interpret (Manaugh and 
Kreider 2013). The accessibility FCMi of property i is calculated as follows. Given a property i, search all 
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the intended destinations j (e.g., restaurants) within a threshold walking time (d0). Then,

							       (3)

where dij is the walking time between i and j, and Sj is the weight of destination j. The FCM has been 
increasingly used in health applications (e.g., Song, Merlin, and Rodriguez 2013) and nonhealth- based 
studies (e.g., Manaugh and Kreider 2013). It addresses the first aforementioned limitation of using walk 
score by factoring multiple accessible destinations within the walk range (by adding d0, the threshold 
walking time). However, all intended destinations within a threshold walking time are weighted only by 
their sizes and not their distance to the property (the second limitation of walk score). For example, two 
convenience stores with the same size located at 5 minutes and 20 minutes from the property would be 
weighted equally if the threshold walking time is 30 minutes.

A new method to quantify a property’s walk accessibility is needed to address the limitations of the 
walk score and FCM methods.

2.3	 The impact of walkable environment on residential property value

In previous studies (e.g., Pivo and Fisher 2009), global regression models (e.g., OLS regression or he-
donic price models) are often used to study the impact of a walkable environment related attribute 
(either land-use mix or walk accessibility) on residential property value. For example, Song and Knaap 
(2004) used entropy index method to study the impact of land-use mix on residential property values. 
They found that residential property values are higher in neighborhoods with low land-use mix, where 
the land use is dominated by single-family residences. Pivo and Fisher (2009) used the walk score to 
study the impact of walk accessibility on office, apartment, retail, and industrial property values in the 
United States. They found that, all else being equal, a property with a higher walk score can increase the 
property value of office, apartment, and retail properties. But no effect of walk score was found related 
to industrial property value. However, these studies only apply to the aforementioned commonly used 
quantification methods of land-use mix and walk accessibility, which due to issues discussed in Sections 
2.1 and 2.2 may not be able to accurately capture the impact of walkable environment on residential 
property value or cannot be applied to some datasets.

This study proposes new methods to quantify land-use mix (generalized dissimilarity index) and 
property walk accessibility. To validate them, OLS models are applied to compare the model fit of the 
proposed methods with those of existing ones discussed in Sections 2.1 and 2.2.

3	 Methodology

As discussed heretofore, there are limitations in existing studies related to the quantification of built 
environment and walk accessibility. Further, they cannot capture the spatial non-stationarity associated 
with the impacts of built environment and walk accessibility on residential property values. This section 
describes the proposed methods used to quantify built environment and property walk accessibility.

3.1	 Built environment

The study uses the following approach to quantify built environment. Residential density, a generalized 
dissimilarity index for land-use mix, and intersection density are introduced to address the three aspects 
of built environment: density, diversity, and design, respectively.

A generalized dissimilarity index (DIS) is introduced (Equation 4) to quantify land-use mix instead 
of entropy index,
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	 				    (4)

where B is the size of census collection district, bni is the size of a parcel n neighboring parcel i, I is the 
total number of parcels in the district, and Xni = 1 if land-use category of neighboring parcel differs from 
parcel i (0 otherwise). The proposed generalized dissimilarity index can address the limitations of en-
tropy index by considering the micro-scale variation within the neighborhood, and it is not sensitive to 
the size of the neighborhood. In addition, it can also be applied to all types of land-use data. The dissimi-
larity index (Equation 2) proposed by Cervero and Kockelman (1997) is a special case of the DIS when 
the data is available at the hectare gridcell level. Six land-use types are considered for the four methods 
in the numerical analysis section, including residential, commercial, vacant, institutional/public service, 
social/recreational, and mining/primary production/agricultural.

Empirical property data from Eastern Adelaide, Australia, is used in Section 5 to compare the per-
formance of the proposed dissimilarity index with those of the entropy index and interaction methods.

3.2	 Property walk accessibility

A modified FCM method is proposed to calculate a property’s accessibility to different destinations 
by adding a distance decay function in the FCM method. The consideration of the distance decay func-
tion can help to overcome the limitation of FCM that within a threshold walking time (d0) the weight 
of the potential destinations is based only on its size and not the walking time between them (dij). This 
can address Tobler’s first law of geography that “everything is related to everything else, but near things 
are more related than distant things” (Tobler 1970). The proposed method further addresses all three 
limitations of using walk score to quantify accessibility, by considering the neighborhood layout, the 
size (weight) and purpose of the potential destinations, and the total number of potential destinations.

The walk accessibility Ai of property i is calculated as follows. Given a property i, search all the 
intended destinations j (e.g., restaurants) within a threshold walking time (d0). Then,

				    (5)

where dij is the walking time between i and j, f (dij, d0) represents the distance decay function, and Sj is 
the weight of destination j. The distance decay function is usually in the form of a kernel (KD) function 
(Tobler 1970). The KD function used here is the Epanechnikov function. The Epanechnikov function 
is written as follows:

			   (6)

Threshold walking times ranging from 5 to 40 minutes, with 5-minute increments, are tested for 
different types of walk accessibility in the numerical experiments. The threshold walking time indicates 
that only the destinations within this walking time threshold are considered accessible by walking, and 
those outside are not.

Empirical property data from Eastern Adelaide, Australia, is used in Section 5 to compare the per-
formance of the proposed modified FCM method with that of the walk score.
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4	 Case study data acquisition

This section discusses the data acquisition for a case study to understand the impact of built environment 
and property walk accessibility on single-family residential property values. In this study, the Eastern 
Adelaide Government Region (or the Eastern Adelaide region) was selected for the case study (Figure 2). 
As shown in Figure 2(a), it is one of four government regions in the much larger Adelaide government 
region. Unlike the other three regions, the majority of the Eastern Adelaide region belongs to the urban 
area. It contains 411 census collection districts (CCDs) located in seven cities (Figure 2b). Each CCD 
represents a neighborhood and contains 220 dwellings, on average. Adelaide city contains the central 
business district (CBD) of the Adelaide metropolitan region. The city of Prospect is a suburb of the 
Adelaide metropolitan region and the capital city of South Australia. The city of Unley is the only com-
mercial suburb of the study region. The other four cities are residential suburbs in the Adelaide metro-
politan region.

Figure 2: (a) CBD location, Eastern Adelaide region (blue shaded area), and Adelaide region (includes blue and green shaded 
areas), and (b) local councils in or neighboring the Eastern Adelaide region

Four types of independent variables were considered, including physical characteristics of single-
family residential properties, social and economic characteristics of the neighborhoods, neighborhood 
built environment, and property walk accessibility. Based on this, four types of data were collected in-
cluding census data, road network data, land-use data, and the walking time from selected single-family 
properties to potential destinations. The census data was collected to measure the variables related to the 
social and economic characteristics of the neighborhoods, and the road network data was used to com-
pute the neighborhood intersection density, a variable related to the neighborhood built environment. 
The land-use data was used to provide physical characteristics of single-family residential properties and 
calculate the neighborhood land-use mix and residential density, two variables related to the neighbor-
hood built environment. The walking times from selected single-family properties to potential destina-
tions were collected to compute different types of property walk accessibility.
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4.1	 Social and economic data

The social and economic data for each CCD is obtained from the 2006 census data collected by the 
Australian Bureau of Statistics. It is important to note that census data is collected every five years in 
Australia; however, for the most recent census (2011), only part of the data is available.

4.2	 Property data and built-environment data

The land-use data is acquired from the Land Services Group of the Department of Planning, Transport 
and Infrastructure of Australia. It was collected in 2009 and represents the most current and complete 
land-use information of the Eastern Adelaide region. It contains more than 30 different attributes (the 
value of property, the value of land, year built, physical attributes, number of modifications made, 
etc.) for each property. The road network data was acquired from the South Australia Department of 
Planning, Transport and Infrastructure; it was also collected in 2009. Residential density, land-use mix 
(entropy index, interaction index, and generalized dissimilarity index), and intersection density of each 
CCD are calculated using the land-use data and road network data.

4.3	 Property walk accessibility data and walk score data

Seven different property walk accessibility types are considered, including walk accessibility to 289 edu-
cational locations (schools), 2764 retail stores (groceries, clothes, and hardware), 330 restaurants (coffee 
shops, restaurants, and bars), 823 social and recreational locations (movie theaters, parks, and fitness 
centers), 1345 regular bus transit stops, and 3 O-Bahn Busway interchanges in the Eastern Adelaide 
region. Different types of accessibility were separated because studies (Dai 2011) indicate that acces-
sibility to some destinations has a stronger influence on people’s walking behavior compared with other 
destinations. The traditional walk score does not separate different types of accessibility, but provides a 
score that weighs them equally. The weights assigned for educational locations, retail stores, restaurants, 
and social and recreational locations are quantified by the sizes of the parcel. We assume that a location 
with a larger land size provides greater access to the related activities compared to the same type of loca-
tion with a smaller land size. The information on the sizes and locations of different types of destinations 
is based on the database provided by the Land Services Group of the Department of Planning, Transport 
and Infrastructure of Australia.

The weights of regular bus transit stops and O-Bahn Busway interchanges were assigned based on 
the bus service frequency at each stop. While the Eastern Adelaide region is not serviced by rail transit 
services, it is connected by high-speed guided buses known as O-Bahn. O-Bahn Busway operates on 
specially built tracks and has three interchanges located in the Eastern Adelaide region (Adelaide O-
Bahn 2014). Compared to regular bus transit, O-Bahn Busway serves as a bus rapid transit system with a 
maximum speed of 62 mph. Owen et al. (2007) indicate that the rapid transit system has a larger impact 
on residential property pricing due to its high service frequency, shorter transit time, and better service 
quality. The service frequency and locations of regular transit and O-Bahn Busway stops were extracted 
from Adelaide Metro (Adelaide O-Bahn 2014).

The walking time between a property and its potential destination was measured using the “walk” 
option on Google Maps between the centroid point of a property land parcel and the centroid point of 
the destination location land parcel. The shortest walking time is used. Google Maps considers neigh-
borhood topography, physical barriers, and street patterns. This addresses the weakness of measuring the 
straight-line distance used in the walk score and other methods (e.g., Pivo and Fisher 2009). In addi-



250 JOURNAL OF TRANSPORT AND LAND USE 10.1

tion, the traditional methods of measuring walking time depend largely on data availability, as informa-
tion (such as elevation, street connectivity, and mountain trails) may not be included in a traditional 
database. Google Maps also enables acquiring more accurate walking time between two locations. One 
assumption made in the study experiments by using Google Maps to measure walking time is that there 
is no significant road network and built environment changes between the time that walking time data 
is collected (in 2014) and the time property value was evaluated (in 2009). Another advantage of using 
Google Maps is that when the centroid points of the origin and destination land-use parcels are provided 
to Google Maps, it measures the shortest walking time from the entrance of the origin parcel to the near-
est entrance of the destination parcel.

The walk score data of each property was collected in 2014 using the walk score website (https://
www.walkscore.com/).

5	 Results and insights

5.1	 Comparisons of different land-use mix qualification methods

Figure 3 presents the land-use mix results using the three different methods for 411 census collection 
districts in the Eastern Adelaide region of Australia. These methods, as discussed in Sections 2.1 and 3.1, 
are the entropy index (ENT), the interaction index (INT) and the generalized dissimilarity index (DIS).

Six different land-use classes are considered for each method. The highest class, Class 1, represents 
that this census collection district has a land-use mix, as calculated by a particular method, that is higher 
than the Eastern Adelaide regional average by two or more standard deviations (SD). Class 2 and Class 3 
represent that the census collection district is higher than the Eastern Adelaide region average by one SD 
but lower than two SDs above average, and higher than the Eastern Adelaide region average but lower 
than one SD above average, respectively. Class 4 and Class 5 represent the census collection district is 
lower than the Eastern Adelaide region average but higher than one SD below average, and lower than 
the Eastern Adelaide region average by one SD but higher than two SDs below average, respectively. 
Class 6 represents that this census collection district has the lowest level of land-use mix, which is lower 
than the Eastern Adelaide regional average by two or more SDs. The results of ENT method (Figure 
3a) and DIS method (Figure 3c) are similar, since no significant clustering exists in the study area. The 
INT method results (Figure 3b) are very different from those of the other two methods and significant 
clustering exists for low levels of land-use mix (Class 6) in the cities of Unley and Campbelltown.

To understand the similarity/dissimilarity of the results of the three land-use mix calculation meth-
ods, Spearman’s ranked correlation coefficients are computed because in most cases the raw numbers 
provided by the different land-use mix methods do not have an intuitive or meaningful interpretation 
by themselves (Song, Merlin, and Rodriguez 2013). Spearman’s ranked correlation coefficients are used 
to statistically compare the results of these three methods. The results are found to be significantly dif-
ferent from each other at the 0.05 significance level. It indicates that the three methods provide different 
levels of land-use mix for the same neighborhoods located in the study region.

Section 5.2 provides more detailed comparison of these three methods in terms of model perfor-
mance in estimating the single-family residential property value per equivalent square meter.
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Figure 3:  Land-use mix results for using three different methods in the Eastern Adelaide region

5.2	 Comparison of OLS models

A total of 2700 single-family residential properties were randomly selected for this study in the Eastern 
Adelaide region and 26 of them were removed due to missing data (such as year built or estimated prop-
erty value). The dependent variable, the single-family residential property value per equivalent square 
meter, is the evaluated property value per equivalent square meter in 2009. The single-family residential 
property value includes both the value of the property and the land value that the property is located in. 
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We combine these two values because previous studies (e.g., Glaeser and Gyourko 2003; Kok, Monk-
konen, and Quigley 2014) recommend the inclusion of land value in the estimation due to the strong 
correlation between the value of the property and the value of the land. The equivalent area of a property 
represents the calculated weighted total area of a property based on the purpose and the construction 
type of each component in the property. For example, the area of the building under the main roof is 
included at 100 percent, but the area of the carports is only weighted 33 percent.

To validate the proposed methods to measure land-use mix (the generalized dissimilarity method) 
and property walk accessibility, a series of seven OLS models were created. The first model is the base 
model and includes only two types of independent variables, physical characteristics of single-family 
residential properties, and social and economic characteristics of the neighborhoods. Three other mod-
els were created to compare the performances of the proposed generalized dissimilarity index method, 
the entropy index method, and the interaction index method. Each model contains the same types of 
independent variables as the base model, as well as residential density and intersection density, and one 
of the aforementioned land-use mix quantification methods. Two other models were created to compare 
the proposed property walk accessibility with walk score. They contain the same independent variables 
as the base model, but one model includes walk score while the other includes the proposed property 
walk accessibility method. The final model contains all four types of variables, including physical charac-
teristics of single-family residential properties, social and economic characteristics of the neighborhoods, 
neighborhood built environment, and property walk accessibility.

To compare different model results, the “corrected” Akaike’s information criterion (AICc) and ad-
justed R2 were used as AICc can measure the relative quality of a statistical model for a given set of data 
by computing the trade-off between the estimate of the goodness-of-fit of the model and its complex-
ity (Brunsdon, Fotheringham, and Charlton 2003). A model with lower AICc values indicates it has a 
better fit with the observed data and better model performance compared to models with higher AICc 
values for the same set of data. The adjusted R2 can be used to interpret the proportion of total variance 
explained by independent variables (Washington et al. 2010). A higher adjusted R2 value implies that 
the collection of independent variables accounts for a higher percentage of the uncertainty or variation 
in the single-family residential property value per equivalent square meter. The results of regression pa-
rameters of the OLS with the lowest AICc and highest adjusted R2 are shown in Table 1, which includes 
all four types of variables. Only estimates of variables that were found to have statistically significant 
(p<0.01) correlation with the single-family residential property value per equivalent square meter are 
included. Further, the variance inflation factor (VIF) of a variable is an indicator of its multicollinearity, 
and a high VIF value indicates significant multicollinearity. None of the variables having a statistically 
significant correlation with the single-family property value per square meter has a high VIF, illustrating 
the low multicollinearity in the OLS regression results shown in Table 1.
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Table 2 compares the base model (without land-use and walk accessibility variables) and the three 
land-use quantification models and includes variables that are significantly (p<0.01) correlated with the 
single-family residential property values per equivalent square meter, AICc values and adjusted R2.

Table 1:  OLS regression results

Variable Estimate t-Statistic VIF
Intercept 2142.04 16.3 --

Property physical characteristics 
Good condition: 1 if the property condition is “very good” or “top quality and 
excellent”, 0 otherwise

192.9 5.4 1.4

Property age: The age of the property in year 2009 10.3 19.6 1.7
Symmetrical cottage: 1 if the building style is symmetrical cottage, 0 otherwise -175.4 -2.9 1.2
Conventional: 1 if the building style is conventional, 0 otherwise 84.0 2.8 1.3

Social and economic characteristics of the neighborhood 
% migrant: Percentage of population born outside Australia -14.2 -5.4 1.6
% high prof: Percentage of higher professional occupations in workforce 28.1 15.7 2.0
% no vehicle: Percentage of dwellings that do not have motor vehicle 13.8 5.6 1.3

Built environment of the neighborhood
DIS: Land-use mix index using dissimilarity index method -97.5 -3.6 1.1
Inter density: Total number of intersections in the census collection district area -21.7 3.2 1.2

Property walk accessibility 
Access to edu: Property walk accessibility to educational (schools) locations with 
40-minute threshold walking time

104.4 7.0 1.1

Access to retail: Property walk accessibility to retail (groceries, clothes, and hard-
ware) locations with 35-minute threshold walking time

37.0 5.3 1.4

Access to soc: Property walk accessibility to social/recreation (parks, recreational 
reserves, etc.) locations with 30-minute threshold walking time

19.5 3.1 1.6

Summary statistics
Number of observations = 2674 
Dependent mean = 3394.27 (Australian dollars per equivalent square meter)
Adjusted R2 = 0.512 
AICc = 40540.3
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As shown in Table 2, the collection of independent variables in the base model (adjusted R2 = 
0.396) can only account for about 39.6 percent of the uncertainty or variation in single-family residen-
tial property value per equivalent square meter. The model with intersection density and ENT (adjusted 
R2 = 0.398) can account for only 0.2 percent more uncertainty or variation in the single-family resi-
dential property value per equivalent square meter compared to the base model. By contrast, the model 
with intersection density and DIS (adjusted R2 = 0.466) can account for 7 percent more uncertainty 
or variation in the single-family residential property value per equivalent square meter compared to the 
base model. This shows that the proposed DIS improves the goodness-of-fit of the model compared to 
ENT. In addition, the model with DIS also has a relatively lower AICc compared to the base model 
and the model with ENT. It indicates that the model with the DIS provides better model performance 
in estimating the single-family residential property value per equivalent square meter compared to that 
with ENT.

INT and residential density were not found to have a statistically significant (p<0.01) correlation 
with the single-family residential property value per equivalent square meter.

The comparisons of the base model and the two models with either walk score or proposed prop-
erty walk accessibility are shown in Table 3; they include the variables that have significant (p<0.01) 
correlation with the single-family residential property value per equivalent square meter, AICc values 
and adjusted R2.

Table 2:  OLS models comparison of the base model and the models with the three different land-use quantification methods

Variable
Base Model ENT INT DIS

Estimate Estimate Estimate Estimate
Intercept 2025.8 2015.6 2025.8 2045.6
Good condition 173.3 173.2 173.3 173.2
Property age 10.1 10.1 10.1 10.1
Symmetrical cottage -190.4 -187.7 -190.4 -188.1
Conventional 134.0 126.5 134.0 128.3
% migrant -10.4 -8.9 -10.4 -9.0
% high prof 28.8 28.0 28.8 28.4
% no vehicle 14.9 12.7 14.9 13.6
Inter density --* -24.9 --* -37.9
ENT --* -48.4 --* --*
INT --* --* --** --*
DIS --* --* --* -92.1
Adjusted R2 0.396 0.398 0.396 0.466
AICc 42929.9 42921.6 42929.9 41312.3

	 Note: --* indicates the variable was not included in the model estimation 
	 --** indicates the variable was not statistically significant for that estimation
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The model with walk score and the same independent variables as the base model can account for 
only 0.3 percent more uncertainty or variation in the single-family residential property value per equiva-
lent square meter compared to the base model. By contrast, the model with the proposed property walk 
accessibility (adjusted R2 = 0.453) can account for about 6 percent more uncertainty or variation in the 
single-family residential property value per equivalent square meter compared to the base model. This 
shows that the proposed property walk accessibility improves the goodness-of-fit of the model com-
pared to walk score. In addition, the model with property walk accessibility also has a relatively lower 
AICc compared to the base model and the model with walk score. It indicates that the model with the 
proposed property walk accessibility provides better model performance in estimating the single-family 
residential property value per equivalent square meter compared to the other two models.

5.3	 Estimation results of OLS models

As shown in Table 1, 12 variables were found to have a statistically significant (p<0.01) correlation with 
the single-family residential property value per equivalent square meter, including four variables related 
to physical characteristics of the property, three variables related to social and economic characteristics of 
the neighborhoods, two variables related to neighborhood built environment, and three variables related 
to property walk accessibility. Section 5.3.1 illustrates the correlation of variables related to physical char-
acteristics of the property and social and economic characteristics of the neighborhoods with the single-
family residential property value per equivalent square meter. Sections 5.3.2 and 5.3.3 analyze in detail 
the correlation of the neighborhood built environment and property walk accessibility, respectively, with 
the single-family residential property value per equivalent square meter.

5.3.1. 	 Property physical characteristics, social and economic characteristics of neighborhoods, 	
	 and the single-family residential property value

Over 30 independent variables related to the physical characteristics of a residential property were con-
sidered, including property age at the time of evaluation, last sold date, numbers of modifications made, 
wall materials, roof materials, number of bedrooms, number of stories, property condition, and prop-
erty style. Four physical characteristics, including whether property condition is very good or top quality 

Table 3:  OLS models comparison of base model, walk score and property walk accessibility

Variable
Base Model Walk Score Property Walk  

Estimate Estimate Accessibility Estimate
Intercept 2025.8 1819.5 2158.2
Good condition 173.3 175.3 181.6
Property age 10.1 10.0 10.1
Symmetrical cottage -190.4 -187.7 -189.5
Conventional 134.0 100.4 123.7
% migrant -10.4 -10.6 -15.0
% high prof 28.8 27.9 28.9
% no vehicle 14.9 11.8 13.9
Walk Score --* 4.1 --*
Access to edu --* --* 96.0
Access to retail --* --* 83.5
Access to soc --* --* 31.2
Adjusted R2 0.396 0.399 0.453
AICc 42929.9 42919.6 41369.2

	 Note: --* indicates the variable was not included in the model estimation
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and excellent, the age of the property, property style if it is symmetrical cottage, and property style if 
it is conventional building, were found to have a statistically significant (p<0.01) correlation with the 
single-family residential property value per equivalent square meter. The results show that if the property 
condition is “very good” or “top quality and excellent,” it has a positive correlation with property value 
per equivalent square meter. In the property valuation process, the condition of the property was given 
on an eight-point Likert scale, from “top quality and excellent” to just “habitable.” Since the properties 
in “very good” or “top quality and excellent” condition suggest good maintenance, these properties are 
valued higher.

Another observation is that the age of a property at the time of valuation contributes positively to 
that property’s value per equivalent square meter. A possible explanation for this is that mature neigh-
borhoods in urban areas typically lack space for building new single-family residential properties. Since 
such neighborhoods typically represent the most desirable areas to live given their proximity to many 
potential destinations of people’s activities, these older properties are valued higher. 

Two variables related to building style, including property style if it is symmetrical cottage, and 
property style if it is conventional building, were found to have a statistically significant (p<0.01) corre-
lation with the single-family residential property value per equivalent square meter. The results indicate 
that a property with symmetrical cottage building style leads to a lower property value per equivalent 
square meter, while a property with conventional building style leads to a higher property value per 
equivalent square meter. Symmetrical cottages were one of the most common style of dwelling in East-
ern Adelaide of the 19th century, with general symmetry around a central corridor, and a majority 
of them were constructed between the 1870s and the 1890s (City of Prospect Planning Department 
2014). It is one of the 39 property styles included in the sample and accounts for 7.2 percent of the 
properties in the sample. A possible explanation for this is that the symmetrical cottage style is not a 
contemporary style and hence does not add value. The conventional style represents the most common 
building style (34.1 percent) in the sample. A property with conventional building style can increase 
property value per equivalent square meter. It suggests that the conventional building style may be a 
preferred style in the Adelaide region. 

Three social and economic variables at the census collection district level were found to have sta-
tistically significant (p<0.01) correlation with the single-family residential property value per equivalent 
square meter. The positive coefficient of the proportion of higher professional occupations in the work-
force reflects that the neighborhood has relatively high-income residents and this factor contributes 
positively to the residential property value. A neighborhood with a relatively high proportion of migrant 
population may indicate a relatively low-income neighborhood. A possible explanation is that neighbor-
hoods with higher-income families can afford the typically higher property costs associated with such 
precincts, while neighborhoods with low-income families cannot.

The proportion of dwellings with no motor vehicles has a statistically significant (p<0.01) positive 
correlation with the single-family residential property value per equivalent square meter. A possible ex-
planation is that neighborhoods with a higher percentage of dwellings that do not have personal vehicles 
are those with a low dependency on a personal vehicle and may have better access to public transit or 
better bicycling and walking options. These features can contribute positively to the single-family resi-
dential property value per equivalent square meter

5.3.2. 	 Built environment and the single-family residential property value

The OLS results indicate that land-use mix has a statistically significant negative correlation with the 
single-family residential property value per equivalent square meter (Table 1), suggesting that a relatively 
higher land-use mix would reduce the single-family residential property value per equivalent square me-
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ter. Several previous studies (e.g., Aurand 2010) used similar results generated by other global regression 
models to explain the correlation of land-use mix and property value, and conclude that offering a more 
diverse land use can potentially provide affordable housing. It indicates that larger or intense develop-
ment of commercial, institutional/public service, and mining/primary production/agricultural property 
development (high land-use mix) can potentially reduce the single-family residential property value per 
equivalent square meter. This is because residents may have a negative view of these developments in the 
neighborhood due to the associated social and environmental costs.

The other variable found to have a statistically significant correlation with the single-family resi-
dential property value per equivalent square meter is intersection density. The OLS results suggest that 
it has a significant negative correlation (Table 1) with the single-family residential property value per 
equivalent square meter. It indicates that in general a relatively high intersection density would reduce 
the single-family residential property value. A possible explanation is that more intersections in a neigh-
borhood (high intersection density) may be indicative of more traffic and congestion.

5.3.3.	  Property walk accessibility and the single-family residential property value

Six types of residential property walk accessibilities were considered corresponding to six different po-
tential destinations. For each type of property walk accessibility, threshold walking times were tested, 
ranging from 5 to 40 minutes with 5-minute increments. However, only three property walk accessibil-
ity variables with specific threshold walking times were found to have a statistically significant correla-
tion with the single-family residential property value per equivalent square meter (Table 1), including 
walk accessibility to education locations, walk accessibility to retail locations, and walk accessibility to 
social and recreational locations. All of them are positively correlated with the single-family residential 
property value per equivalent square meter, indicating that walk accessibility has a positive impact on 
property value. Other tested thresholds, when included, either reduced the overall model goodness-of-fit 
or were found to not be statistically significant (p<0.01). These results also suggest that different types of 
walk accessibility should be separated to understand their specific impacts on residential property values.

6	 Concluding comments

This study aims to quantify the impact of built environment and property walk accessibility on single-
family residential property values. Previous quantitative studies on the impact of built environment 
and walk accessibility on residential property values have key limitations in terms of quantifying built 
environment and walk accessibility. To address these limitations, a generalized dissimilarity index, which 
is not limited by the data recorded type used in practice, is introduced to quantify land-use mix, a key 
component of built environment. The study also presents a new approach to measure a property’s walk 
accessibility, which factors neighborhood topology, physical barriers, street patterns, and the size and 
total number of potential destinations. A case study is conducted using empirical data in the Eastern 
Adelaide region of Australia. 

The performances of the proposed generalized dissimilarity index and the property walk accessibil-
ity method in estimating the single-family residential property value per equivalent square meter were 
compared to those of other commonly-used land-use mix quantification and walk-accessibility meth-
ods. The proposed methods outperformed other methods in terms of goodness-of-fit and explanatory 
power.

Twelve variables were found to have a statistically significant correlation with the single-family 
residential property value per equivalent square meter, including four variables related to the physical 
characteristics of the property, three variables related to the social and economic characteristics of the 



258 JOURNAL OF TRANSPORT AND LAND USE 10.1

neighborhoods, two variables related to the neighborhood built environment, and three variables related 
to the property walk accessibility. 

As illustrated by Table 1, walkable environment has mixed impacts on single-family residential 
property value per equivalent square meter. On the one hand, some features of walkable environment 
such as high land-use mix or intersection density can potentially reduce the single-family residential 
property values per equivalent square meter. On the other hand, other features of walkable environment 
in terms of high property walk accessibility to education, retail, and social and recreational locations can 
potentially increase the single-family residential property values per equivalent square meter. These re-
sults suggest that the single-family residential property value per square meter is higher in homogeneous 
residential neighborhoods (low land-use mix) with well-distributed education, retail, and social and rec-
reational locations (high property walk accessibility). It also indicates that larger or intense commercial, 
institutional/public service, and mining/primary production/agricultural properties (high land-use mix) 
can have a negative effect on the single-family residential property value per equivalent square meter in 
the neighborhood.

The study analysis suggests that the following factors should be considered by planners to design 
neighborhoods featuring better walkable environment: 1) intense commercial, institutional/public, 
and manufacturing developments in a neighborhood (high land-use mix) should be avoided and new 
developments should be scaled in size to fit the neighborhood (low land-use mix); 2) dense road net-
works should be avoided (high intersection density), and pedestrian sidewalks can offer better access to 
pedestrians in the neighborhood (high property walk accessibility); and 3) new businesses, social and 
recreational areas, and education locations need to be carefully allocated, as they can be beneficial to 
single-family properties in the neighborhood (high property walk accessibility).

 The study analysis also suggests that the following aspects of single-family residential property 
and the associated environment can aid the property investment strategies of investors: 1) maintaining 
older single-family residential properties with “very good” or above condition can potentially increase 
property values; 2) understanding the building style preference of a region, since certain building styles 
can increase and/or decrease the single-family residential property values; 3) investing in neighborhoods 
that have people with high professional occupations and/or low automobile dependency; 4) avoiding 
neighborhoods with intense commercial, institutional/public, and manufacturing developments (high 
land-use mix), and/or dense road networks (high intersection density); and 5) investing in single-family 
residential properties with close proximities to education, retail, and social and recreational locations.

A limitation of this study is that the evaluated property value of the single-family residential prop-
erty is used as opposed to the sale value due to the non-availability of such data. This study focuses on 
the development and validation of the proposed generalized dissimilarity index for quantifying land-use 
mix, a key component of built environment, and a new method for measuring a property’s walk accessi-
bility, and links them to single-family residential property values. The two proposed methods address the 
limitations of the methods used in previous studies and outperform other commonly used land-use mix 
and walk accessibility methods in estimating the empirical property data in Eastern Adelaide, Australia, 
in terms of the goodness-of-fit and explanatory power. Thereby, this study lays the foundation for a more 
comprehensive study that focuses on understanding the potential similarities and dissimilarities in terms 
of the impacts of walkable environment on single-family and multi-family residential property values. 

The various findings and insights from this study can be used to assist planners to efficiently plan 
and implement neighborhood development planning so that the potential impact on the single-family 
residential values in the affected areas can be addressed. It can also be used to assist private investors to 
make more informed decisions on real estate investment in single-family residential properties.
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