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Abstract: UrbanSim has signiđcant data requirements. In particular, it requires disaggregate data (tra-
ditionally at the 150 meter by 150 meter gridcell level) for employment, households, and buildings.
While such data are not always easily available, most regions have readily available data in a more ag-
gregate form, oĕen at the level of traffic analysis zone (TAZ) or other municipal divisions. ăis paper
describes two UrbanSim applications for the cities of Brussels, Belgium and Lyon, France that adopted
different approaches of using aggregate data. In Brussels, aggregate zonal data were disaggregated to
the gridcell level. In the Lyon application, the zone was used as the unit of analysis and as such, each
zone corresponds to one gridcell. ăe objectives of this paper are: 1) establish whether an UrbanSim
model can be developed using aggregate data; 2) describe two different approaches to using aggregate
data with UrbanSim and evaluate; and 3) evaluate the advantages and disadvantages of using aggregate
data, as well as the two different approaches described. In doing so, it advances knowledge in the đeld
of transportation and land use modeling by helping modelers evaluate the use of an increasingly popu-
lar integrated transportation land use modeling option. Several conclusions Ĕow from this work. First,
aggregate data can be used to developUrbanSimmodels. Second, only a limited amount of disaggregate
information can be drawn from aggregate data. In the context ofUrbanSim, this is manifested inmodels
with relatively few variables and dubious simulation results—in other words, while it is possible to de-
velop an UrbanSim application with aggregate data, it should not be used for applied analysis. Finally,
the development of suchmodels can be a relatively low-cost exercise to gain familiarity withUrbanSim’s
functioning and data requirements. As a result, it can also be seen as an important đrst step to developing
or evaluating UrbanSim for application in a new region.
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1 Introduction

UrbanSim (Waddell 2002; Waddell et al. 2007a) is an increasingly popular integrated trans-
portation/land use model that has been under development since the late 1990s by Paul Wad-
dell at the University of Washington. Two features makeUrbanSim particularly interesting for
planners and researchers: 1) it is open source, meaning that anyone can freely use the soĕware
and, if desired, access, modify and redistribute its code, and 2) it is disaggregate. ăe model
is implemented at the level of individual households, jobs, and real estate developments and
operates at đne geographical detail, traditionally at 150 m by 150 m gridcell.

Operating at such a đne level of detail means that it requires a great deal of disaggregate
data. While allowing for a rich analysis, this can present signiđcant challenges to model im-
plementation. ăis paper is written by two research teams, one from the École Polytechnique
Fédérale de Lausanne (Switzerland) that developed amodel for the Brussels region in Belgium,
and the other from theLaboratoire d’Économie desTransports inLyon (France) that developed
a model for Lyon in France. Both research teams were interested in better understanding and
developingUrbanSimmodels; however, given the complexity and data requirements ofUrban-
Sim, each was also hesitant to launch directly into full-scale model development. As a result,
both teams independently decided to develop models with aggregate data they had available.

ăe objectives of this research were as follows: 1) establish whether an UrbanSim model
can be developed using aggregate data; 2) describe two different approaches to using aggregate
data with UrbanSim and evaluate; and 3) evaluate the advantages and disadvantages of using
aggregate data, aswell as the twodifferent approaches described. In doing so, it advances knowl-
edge in the đeld of transportation and land use modeling by helping modelers evaluate the use
of an increasingly popular integrated transportation land use modeling option. ăe two case
studies describe two different approaches to using aggregate data in UrbanSim.

ăe paper begins with some background, a literature review, and a brief introduction to
how UrbanSim works and what this implies for the data required to run it. It then describes
the Eugene template distributed with UrbanSim and a description of the two case study re-
gions and the data that were available for the analysis, before explaining how aggregate data
were used in the two applications and providing reports on the results of the UrbanSim model
estimation and simulations. ăe penultimate section describes the effort required to develop
the UrbanSim application and evaluates the two approaches, and the đnal section presents the
main conclusions about what can be learned from the development of UrbanSim models with
aggregate data.

2 Background and Literature Review

In the words of (Wegener 1995), who recognized the tendency of transition from zonal to spa-
tially disaggregate data structures in transportation/land usemodeling, “We are aĕer (or still in
the process of ?) a quantum leap in terms of disaggregation of variables and spatial and temporal
resolution.” According to Wegener, disaggregate models are easier to implement and calibrate,
more practical in their data needs (because they can work with sample data or synthetic micro
data), more Ĕexible with respect to testing new hypotheses or policies, and easier to communi-
cate to non-experts and decision makers. In the overviews of Wegener (2004) and Hunt et al.
(2005), UrbanSim is analyzed among the selected contemporary frameworks representing the
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state-of-the-art in transportation/land use modeling. ăe latter review notes that UrbanSim is
the most disaggregate of the frameworks reviewed.

Its disaggregation allows detailed analyses, but also implies signiđcant requirements for
data—in particular, UrbanSim requires disaggregate data (traditionally at the 150meter by 150
meter gridcell level) for employment, households, and buildings. ăe data needed to run Ur-
banSim and their availability in the United States context is discussed in Duthie et al. (2007),
who note that disaggregate data required for UrbanSimmay takemonths or even a few years to
ređne to an acceptable level of reliability. While such data are not always easily available, most
regions normally have readily available data in amore aggregate form, oĕen at the level of traffic
analysis zone (TAZ) or other municipal divisions.

In addition to the above sources, many articles and reports have been written about Ur-
banSim in the formal and grey literatures. For a recent description of this literature, refer to
Patterson and Bierlaire (2010). To summarize, the work on UrbanSim has tended to concen-
trate on descriptions of UrbanSim itself and its applications (e.g. Waddell 2001; Waddell et al.
2007a), computing science aspects of UrbanSim (e.g. Noth et al. 2003), and methodological
developments that have used data relating to, or resulting from, UrbanSim (e.g. de Palma et al.
2007). However, within this literature, none looks directly at the suitability of using aggregate
data in this disaggregate context (although the issue is broached by Duthie et al. 2007). ăis
paper directly addresses this question.

Spatial disaggregation issues are most commonly discussed by geographers and natural sci-
entists, whose models are based on cellular automata approach (see the review of Irwin and
Geoghegan 2001). Although there is no explicit propagation from a gridcell to its neighbors,
UrbanSim nevertheless has some features in common with cellular automata, e.g. its “within
walking distance” concept. It is worth noting that cellular models themselves are viewed by
some authors as capable of bridging the gap between aggregate and disaggregate description
(Couclelis 1985) or between absolute and relative space through geo-algebra (Couclelis 1997;
Takeyama and Couclelis 1997). ăe practical implementation of the latter ideas can be seen
today in fully operational GIS tools, such as ESRI’s Spatial Analyst. In the context of the cur-
rent study, an interesting example of the application of cellular automata is Liu and Ander-
sson (2004), where, as highlighted by Benenson and Torrens (2004), the inĔuence of nearest
neighbors is considered at the highest resolution, while an increase in the distance of neighbors’
inĔuence is considered in a more aggregate manner.

Briassoulis (2001)has considered thequestionof data disaggregation in the integrated anal-
ysis of land use change. ăe data available and the methods used to disaggregate the data in the
two case studies are described using her framework of analysis. In particular, we discuss:

• the availability of adequate and proper data to disaggregate,

• the georeferencing of disaggregated data, and

• the ease and cost of disaggregation.

We also apply her criteria of data compatibility, consistency, and reliability to the data used
in the two case studies and consider her general question, “How to insure that the disaggregate
data measure the concept of interest?”
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3 Functioning and data requirements

In order to understand data requirements and how these requirements were overcome in these
case studies, a basic understanding ofUrbanSim is needed. UrbanSim is composed of a number
of models that together predict the location of households, jobs, and new real estate develop-
ments. ăe study region is structured geographically by at least two levels: at a more aggregate
level, the region is structured at the TAZs of the transportation model used with UrbanSim,
whereas at the disaggregate level, the region is structured by gridcellsƲ. Gridcells are geograph-
ical units that have traditionally been 150 mby 150 m. Households, jobs, and buildings are
located in gridcells. ăus, using rather traditional modiđable geographical units, UrbanSim
also includes the spatially non-modiđable elements, though their resolution is not completely
“atomic” as in geosimulation (Benenson and Torrens 2004).

For simulation of future years, UrbanSim requires exogenous data—control totals for pop-
ulation and employment. ăeprobabilities that households or jobswillmove fromtheir current
location are user-deđned. Every simulation year, lists of the new and relocating households and
jobs, as well as new development projects, are created. ăe households, jobs, and real estate
developments are then placed with multinomial logit models (MNL)Ƴ—the location choice
models. ăe land price model (LPM) is used to update the value of land, while the residential
land share model (RLSM) calculates the share of residential land across the region. ăe LPM
and the RLSM are ordinary least squares (OLS) regressionmodels. Estimation of thesemodels
for the region studied is how UrbanSim is “tailored” to each application.

ăe backbone of UrbanSim is the base year database. In this relational database, the main
UrbanSimdata are found in six tables: gridcells, households, jobs, buildings, development event
history, and development constraints tables. ăe gridcells table is central and links all the other
tables. It identiđes and characterizes each gridcell in the urban system (see following section).

Each record of the households table represents one household. Households are character-
ized by socio-economic attributes and the gridcell in which they are found. Each record of the
jobs table represents one job. Jobs are characterized by industrial sector and location. Each
record of the buildings table identiđes the building’s location and its characteristics.

ăedevelopment eventhistory table contains informationonhistorical developments, char-
acterizing them and noting where they took place. ăe development project transition model
samples from this table to create developments in simulation years.

ăe development constraints table identiđes what constraints are placed on different types
of gridcells. ăese can be zoning constraints, physical constraints (e.g. no building in stream
buffers), or idiosyncratic individual gridcell constraints.

UrbanSim data requirements include at a minimum for a region, a record for:

• each job, its characteristics, and in which gridcell it is located,

• each household, its characteristics, and in which gridcell it is located,

• each building, its characteristics, and in which gridcell it is located, and

• each gridcell with its many characteristics.

Ʋ In the latest development release ofUrbanSim, it is possible to use land parcels as a geographical unit, but stable
versions of UrbanSim use gridcells. ăe use of zonal models remains experimental and unstable.

Ƴ See Ben-Akiva and Lerman (1985) or Ben-Akiva and Bierlaire (2003) for more on discrete choice models.
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4 The Eugene package as a template

ăe đrst UrbanSim application was developed for the Eugene/Springđeld, Oregon region in
the United States (Waddell 2000). An example base year dataset of Eugene/Springđeld is dis-
tributedwithUrbanSim. Both applications described here used the Eugene dataset as a starting
point. ăe approach adopted was to gain experience and understand the data requirements of
UrbanSim through the examination of the Eugene dataset; it was then used as the structure on
which to build the new applications. First, the main data (see Section 3 above) of the Eugene
base year database was replaced with data for the new region, then the various models were
replaced aĕer having been estimated with the new data.

ăe disaggregate data in the Eugene package is comprehensive. ăe gridcells table includes
not only data on environmental and planning attributes, but also such detailed data as area of
premises occupied by different real estate types and property value with separation between
land and improvement values. ăe buildings table contains such detailed data as area, build-
ing type, year built, number of residential units, and improvement value for more than 9000
buildings. ăe households table in the Eugene dataset includes about 200000 people. More-
over, there is comprehensive development history data, development constraints data, and vari-
ous UrbanSim constants, which refer to geographical, demographic, and planning data, as well
as to core models parameters. ăe list of working UrbanSim models in the Eugene package
consists of the household location choice model (HLCM), the employment location choice
model (ELCM), the development project location choice model (DPLCM), the RLSM, and
the LPM.

5 The case study regions

ăe motivation for research in both cases was to create a working application of UrbanSim,
while balancing the challenges of time-consuming data preparation and model development
with limited time and human resources. In other words, it was necessary to start modeling as
quickly as possible, even if initial results were not completely realistic. Two teams working on
two cities faced the same challenge and found solutions in the use of aggregate data, but chose
different approaches.

ăe two case study regions were chosen because of the availability of signiđcant land use
(employment, population, real estate, land price, etc.) and transportation data. Brussels was
chosen as a case study because of the availability of land use and transportation data that had
been used for the development of a TRANUS-integrated model of the Brussels region. Lyon
was chosen because signiđcant aggregate land use data existed, and also transport data could be
calculated, exploiting the available Lyon transportation model. While both teams had access
to aggregate data, they approached the use of these data in differently. In the Brussels case,
aggregate data were disaggregated from the zonal (TAZs) to the gridcell level. In Lyon, TAZs
were considered as the unit of analysis, i.e. as gridcells.

Summary statistical information for Brussels and Lyon is presented in Table 1.
Brussels is the capital of Belgium and home to many international organizations. It is per-

haps best known for its importance relative to the European Union—among other EU institu-
tions, the European Commission and the Council of the European Union are located in Brus-
sels. ăe study region covers 4361km2 around the city of Brussels and includes 139 town-
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Table 1: Summary information on case study regions.

Parameter Brussels Lyon

Population (million) 2.9 1.6
Area (km2) 4361 3325
Households (thousand) 1293 662
Jobs (thousand) 1353 697

ships in parts of Wallonia (French-speaking area to the south of the region) as well as Flanders
(Flemish-speaking area to the north). In addition to Brussels, the region also incorporates a
number of other important cities, withMechelen, Aalst, and Leuven being the largest. As such,
the study region represents roughly 15 percent of the entire country of Belgium.

Figure 1 shows household and employment density across the region. ăe highest concen-
tration of households and jobs are found in and around the center of the region. ăere is also
signiđcant employment and household density near and around the larger population centers
of the region. Circles (generally with higher densities) are found inside the larger townships
and represent the central area of these townships. With the inclusion of these township cen-
ters, there are 152 total TAZs.

With 1.6 million inhabitants, the Lyon urban area is the second largest agglomeration by
population in France. Administratively, the territory occupies parts of the départements of
Rhône, Ain, Isère, and Loire. Figure 2 shows population and employment density across the
region. ăe central part of the agglomeration, with a population of 613000 people, consists of
the cities of Lyon and Villeurbanne. ăese two cities, having a common planning structure and
transportation network, make up the core of the region and have the highest concentration of
population and employment. ăe rest of the region is much less urbanized, primarily agricul-
tural, and has lower population densities. Apart from few cases mainly in the south, there are
no signiđcant centers in the periphery. ăere are 777 TAZs in the region.

6 Available data

6.1 Available data in Brussels

ăanks to a research partnership with the Brussels transportation engineering đrm Stratec, the
research team had access to data that had been used for another integrated model, TRANUS.
TRANUSworks with larger geographical units (152 zones for the Brussels region). Almost all
of the data used for UrbanSim came from the TRANUS data.

ăe TRANUS dataset included household and job totals per zone. Household data was
relatively coarse, with households being divided into seven different typeswith categorical char-
acteristics (e.g. families with children, families without children, etc.). Jobs were categorized
by industrial sector, of which there were 13. ăere was also information on overall surface area
by zone, but was not ultimately used. Other zonal data included land prices for residential and
non-residential land, interzonal travel times, and generalized costs that were estimated with the
TRANUS transportation model.
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(a)Household density

(b)Employment density

Figure 1: Household and employment density in the Brussels region in 2001.



        ()

(a
)P

op
ul

at
io

n
de

ns
ity

(b
)E

m
pl

oy
m

en
td

en
sit

y

Fi
gu

re
2:

Po
pu

la
tio

n
an

d
em

pl
oy

m
en

td
en

sit
yi

n
Ly

on
.



Disaggregate models with aggregate data 

In addition to zonal data, there were GIS data on road infrastructure (highways and main
arterials) as well as zoning data that covered the entire region. For some types of land use,
the zoning data were quite good; however, there were limitations in zoning for commercial
land uses. In particular, there were very few areas (and therefore gridcells) that were zoned as
commercial, especially outside of the central part of the region.

Finally, there were some data that were essential to the way the rest of the data was dis-
aggregated but that were not available, such as household and employment relocation rates.
Assumptions, oĕen based on the experience of Stratec, were used for these types of data.

A summary of available data can be found in Table 2. As can be seen, a great deal of data
normally required for UrbanSim was not available. ăe most obvious and important missing
data related to buildings and their characteristics. ăere were no individual building data and
therefore no information on improvement values. Equally crucial, there were no data on his-
torical development (i.e. buildings built in the past).

6.2 Available data in Lyon

In Lyon, there are 777 TAZs roughly comparable to municipalities, whose population usu-
ally does not exceed 4000 inhabitants. Estimated public transit travel times for the morning
peak (2007) were obtained for the current study from theMOSART transportationmodel for
Lyon. Public transport, which is well-developed in the urban area, includes buses, trolleybuses,
tramways, metro, and commuter trains.

For each zone, the available data includes centroid coordinates, number of residential units,
distances to highway and arterial, percent coverage for water, open space, residential land, and
industrial land for 1999 (population refers to 1999; income to 2006). For themajority of zones,
average price per square meter for a combination of apartments and houses was also available.

ăe synthetic households in Lyon distributed among zoneswere imputed from the INSEEƴ
data. Compared with the Eugene households table, there is no information about the number
of children or household race. ăe absence of data about racial composition is a peculiarity of
French statistics. Instead, there are data on home ownership status and job status of head of
household. ăough there are some data about relocation rates for households, there is no link
with income level.

ăe available data on jobs in Lyon in 1999 contained the total number of jobs in each zone
and the percentages of jobs in four employment sectors in 304 communes, which consist of one
or several zones. ăe sectors are agriculture, industry, construction, and the tertiary sector.

Another peculiarity of French statistics is that commercial employment is not considered
a separate employment sector. Instead, there is the tertiary sector, which includes commercial
jobs as well as jobs in education, medicine, transport, public services, etc.

Although different temporal references in the data imply inconsistency, it was not possible
to collect all the data for the same reference year. As for Brussels, many important data issues for
Lyon are missing (e.g. buildings, historical construction, development constraints, etc.). ăe
summary of available data is in Table 2.

ƴ Institut national de la statistique et des études économiques (National Institute for Statistics and Economic
Studies).
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Table 2: Summary of available data.

Data Brussels Lyon

Vacancy rates; household
relocation rates

Assumptions from Stratec From INSEE

Employment relocation
rates

Assumptions from Stratec n/aƲ

Transport measures TRANUS interzonal
logsums

MOSART interzonal travel
times by public transport

Jobs From TRANUS base data:
• zonal employment
• 13 sectors

From INSEE:
• zonal employment
• 4 sectors in

communes

Households From TRANUS base data:
• zonal population
• 7 household types

From INSEE:
• zonal population
• 3 income groups

Development constraints Stratec GIS zoning data n/a

Land and improvement
values

From TRANUS base data:
• residential land

values
• non-residential land

values

From OTIFƳ and Pervalƴ:
• residential

improvement values

Buildings n/a n/a

Historical construction
data

n/a n/a

ǟ n/a: data not available
Ǡ Observatoire des transactions immobilières et foncières, Lyon
ǡ Perval, France
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7 Data preparation and disaggregation

7.1 Data preparation and disaggregation in Brussels

Description of this model has been documented in various projects and technical reports (see
Patterson and Bierlaire 2007; Samartzis 2007; Singh 2008; Stoitzev and Zemzemi 2008). ăe
application for Brussels used the example of Eugene dataset.

Figure 3: Zonal data disaggregation to gridcell level.

Figure 3 presents a graphical representation of the disaggregation from the zonal to the
gridcell level. First, a system of gridcells was created with gridcell dimensions being the same as
for Eugene (150mby 150m). ăis resulted in a grid of roughly 193000 gridcells for the region
as a whole. Geographical characteristics of gridcells were assigned to the extent that data were
available. Particularly crucial for the following steps was assigning planning types to each of the
gridcells using the GIS layer of zoning described above. Data on built form (residential units,
surface area by building type, etc.) were included aĕer the creation of the buildings table that
đrst required the households and jobs tables as described below.

Second, the households table was created by disaggregating households to residential grid-
cells in their respective zones. Household characteristics were randomly assigned to households
based on their household category and readily available public data (e.g. age distributions from
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the Belgian statistical agency StatBel). Some data (e.g. income) were not easily available, so
coarse estimates were used.

ăird, the jobs tablewas created by disaggregating jobs to appropriately zoned gridcells (e.g.
industrial jobs of a given zone were randomly assigned to industrial gridcells in the same zone).
All jobs of a given sector were assigned to the same type of building, of which there were only
four (e.g. industrial jobs were assumed to be housed in industrial buildings).

Aĕer the overlay with aGIS layer of gridcells, zonal boundaries of TAZs and planning land
use zones became rectangular, i.e. distorted, meaning that the criterion of data compatibility is
not completely satisđed. Assigning households and jobs to gridcells through random selection
means that additional random errors arise during the disaggregation process.

Asmentioned above, aggregate information on building surface areas existed by zone in the
TRANUS data. One option would have been disaggregating surface areas in such a way that
đctional buildings were created in gridcells. At the same time, there were no data on residential
units, which is required for UrbanSim. It was reasoned that it was more logical to use house-
holds and jobs and to determine the amount of residential units and surface areas, but in order
to do this, it was necessary to have vacancy rates, or at least estimates of vacancy rates. No va-
cancy rate data were readily available, so assumptions were used. Residential vacancy rates were
assumed to be highest (10 percent) in the city center and lowest (2 percent) in the extreme pe-
riphery.⁴ Non-residential vacancy rates were assumed to be a constant 10 percent throughout
the region.

Buildings were created in gridcells in order to: 1) house the jobs or households present, and
2) account for vacancy rates. Building characteristics were a function of surface area or residen-
tial units. An example of industrial buildings will illustrate the process of building creation.
First, gridcells are assigned their zoning type. For a given zone, industrial jobs were assigned
randomly to the industrial gridcells of the zone. For each gridcell containing industrial jobs,
an industrial building with surface area sufficient to house the jobs (including vacancy rates)
was created. Its characteristics (i.e. surface area, improvement value, etc.) were determined as
a function of the number of jobs. Buildings for all jobs and households were created in the
same way. Once buildings were created, their characteristics could be used to đll in the missing
information on built form in the gridcells table. ăis is represented graphically in Figure 4.

Historical data on jobs and employment from 1991 were used to create the development
event history table. Buildingswere randomly selected to house the newpopulations or jobs that
appeared between 1991 and 2001, with each building representing one development event. For
example, if there was an increase in the number of industrial jobs in a zone between 1991 and
2001, enough buildings to house this increase were randomly selected as having been built over
that time period. Each of the buildings represented an entry in the development event history
table.

ăe result of these processes was that all households and jobs in the TRANUS data were
assigned individual characteristics and gridcells to which they were associated, and đctional
buildings constructed to house them. It was then possible to use these synthetic households,
jobs, and buildings to runUrbanSim simulations, particularly to calibrate the disaggregate loca-

⁴ ăis pattern of high vacancy rates in the center of the city is unusual for European agglomerations that tend to
have the lowest vacancy rates at the center. ăis is one of the reasons that Brussels has earned the reputation as the
“most American city in Europe.”
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Figure 4: Representaiton of method for incorporating data on buildings.

tion choice models (based on individual households, jobs, and buildings) and the LPM (based
on individual gridcells) using what was initially aggregate data.

7.2 Data preparation and disaggregation in Lyon

In Lyon, another starting point was chosen. In order to save time for data disaggregation and
to avoid the additional errors connected with this process, the same number of gridcells and
zones were created, with each gridcell being mapped to one zone, whereas buildings were not
included in themodeling. As such, the centroids of zones are considered as centroids of gridcells
and so an irregular network of gridcells was created, resulting in a more complicated problem
of incompatibility in spatial dimension than with the Brussels application. ăe cell size was
changed to 100 by 100 meters, because the shortest distance between these centroids is slightly
more than this distance. In the Lyon application, the irregular network of gridcells leads to sys-
tematic errors when applying the “within walking distance” concept. ăe majority of gridcells
have few, if any, adjacent neighbors and few neighbors in surrounding areas. To compensate
for this distortion, the walking distance circle radius is increased to 1200 meters, though this
compensation improves the measure only partly. Most of the other UrbanSim constants have
the same values as for Eugene.

ăe available data in Lyon were not sufficient to đll in all the tables and feed all the models
in UrbanSim. For example, consider the gridcells table in more detail. While data on some
environmental attributes for Lyon were available, some other data, (e.g. square footage per job)
in different sectors were used from the Eugene dataset. Moreover, some ad hoc assumptions
weremade for the area of premises occupied by different real estate types and for property value
attributes.

ăe only available data on property value is the average real estate price per square meter in
657 zones. For the remaining zones, this attribute was incorporated by GIS applying a trian-
gulated irregular network (TIN)model and converting it to a raster. Residential improvement
value in each gridcell was estimated as a product of the average real estate price per squaremeter,
the average apartment area, and the number of residential units. Possibly the coarsest assump-
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tions are done for land value—for instance, residential land value is assumed to be 20 percent
of residential improvement value.

According to the data available, the current average residential vacancy rate in the Lyon
region is đve percent. ăis đgure is used as a target total residential vacancy rate. For household
relocationprobabilities, ad hoc assumptionswere used. ăe target total non-residential vacancy
rate, as well as probabilities of job relocation, were taken from the Eugene template.

Percentages of jobs in employment sectors in communes were disaggregated to zones con-
sidering the total number of jobs in each zone. Each đĕieth job was considered as home-based;
the remaining industrial, construction, and agricultural jobs are assumed to be located in the in-
dustrial building type. Of the services jobs, three-quarters are assumed to occupy governmental
buildings and one-quarter chosen randomly is assumed to be located in commercial buildings.

In the development event history table, each gridcell is presented once, with a scheduled
year generated randomly from the interval of recent years, and with development size as a per-
centage of what exists for the base year. ăus, industrial square footage and improvement value
equal to 10 percent, while residential, commercial, and governmental areas and values equal to
đve percent of the corresponding magnitudes from the gridcells table.

7.3 Data Disaggregation and the Briassoulis Criteria

As mentioned in the background section, it is relevant in the present context to evaluate the
data and the disaggregation process in a more formal framework. Due to the applicability of
Briassoulis’ work, her framework is used here. For the most part, the data used are consistent
with Briassoulis’ criteria, with the exception of some aspects in both applications.

In terms of data availability, themost appropriate data was not available given the resources
available for the two case studies; one of the objectives of theworkwas to determine if aggregate
data could be used to overcome this problem.

Georeferencing of the disaggregate data and the ease (cost) of disaggregation can be ad-
dressed at the same time. In Lyon, since there was no disaggregation, there were no costs due to
disaggregation or other issues related to georeferencing of disaggregate data. For Brussels, how-
ever, there were costs associated with disaggregation. First, considerable effort was required to
disaggregate the data to the gridcell level. Second, additional random error and some spatial
incompatibility were introduced into the data.

ăe compatibility of the different geographical systems (i.e. zones vs. gridcells) is not satis-
đed in both applications. For Brussels, there was not strict compatibility since TAZ’s boundary
was able to cross a gridcell. In Lyon, TAZs were “transformed” to gridcells of equal size. At
the same time, the underlying data (e.g. jobs) were forced to be compatible—for example, the
number of jobs in a zone was the same as the sum of all jobs in all of the gridcells of that zone.

Consistency means that the same deđnitions and the same temporal references are applied
for the different geographical systems. ăere is some temporal inconsistency in the case of Lyon
mentioned in Subsection 6.1. In respect to space, the disaggregationprocess in both case studies
is consistent.

For reliability, or how likely the data are to represent real phenomena, this is the character-
istic to which both cases adhere the least. ăis is because there is an additional random compo-
nent in jobs and household distribution in Brussels, as well as for the job sectors in Lyon, where
it refers to transition from communes to TAZs.
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ăe đnal element of Briassoulis’ framework to consider is her question, “How can you in-
sure that the disaggregate data measure the concept of interest?” In this context, the concept of
interest is the development of an urban area. Section 9 examines the question of how well the
models simulate population progression in the two case studies.

8 Model estimation

Given the differences in the available data, different variables were used in the models of the
two regions. ăe models can be divided between discrete choice models and traditional re-
gression models (see Section 3). For the location choice models, the dependent variables are
always gridcells; that is, a random sample of different alternative gridcell locations for each of
the households, jobs, and real estate developments. By default, UrbanSim randomly samples
29 alternatives for a total of 30 alternatives for each locational decision. ăis random default
value was kept for both applications. For the regression models, the dependent variable is the
land value, residential land share, or real estate price of all the gridcells. Table 7 in theAppendix
provides a summary of themodels that were estimatedwith a few of their salient characteristics.

For the MNL models, the likelihood ratio test is presented, whereas for the OLS models,
the adjusted R-squared is reported. ăe UrbanSim default value of the number of alternatives
was not changed in both applications. For estimation of the HLCM, a 10 percent random
selection of households was used in both cases. Using actual households and locations from
survey data, as prescribed by theUrbanSimUsers Guide (UrbanSim Project 2008), would have
been a better sampling strategy, but the only available data was synthesized households, and
information about recent movers was not available either. ăus simple random sampling was
used, which was appropriate in providing sufficient information for estimating all the parame-
ters (see Ben-Akiva and Lerman 1985; Train 2003).

ăe following two subsections concentrate on only a couple ofmodels from each case study
to provide a sense of the type and quality of the models to have been estimated using the aggre-
gate data.

8.1 Model estimation in Brussels

All together, twelve different models (including submodels) were estimated for the Brussels
UrbanSim application (Table 7). For the location choice models, the dependent variable for
each was the location (gridcell) of an individual household, job, or real estate development and
29 random alternative gridcells. ăe locations of the households, jobs, and developments were
determined in the disaggregation process. For example, each household was randomly assigned
to one of the gridcells located in the zone where the household (actually) resided and that was
zoned for residential purposes. ăe dependent variable for the land price model was the land
price for each gridcell—this was the land price of the zone in which the gridcell was found.

In general, it was difficult to include many variables in the models. Whereas models in
well-developed applications, such as that reported in Waddell et al. (2007a), contain dozens
of variables, almost all of the models estimated for Brussels counted fewer than ten, for three
reasons.

First, the data required to calculate many of the variables were not available. In many cases,
proxies were used, but to the extent possible such variables were not included in models. One
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examplewas building or gridcell improvement values. Since all improvement valueswere simply
functions of residential or non-residential surface area, they couldnot be used in themodels and
therefore reduced the total number of potential variables to be used.

ăe two other reasons for the small number of variables in the models are a direct result
of the disaggregation process. One has to do with the small number of observations for some
models. Models that suffered the most from this problem were the DPLCM. Since there was
no data on historical construction, it had to be constructed, and the way in which the buildings
data were constructed meant that far fewer synthetic buildings were created than were built
in reality (see Section 7.3 on disaggregation above). Any positive changes in employment or
population in a zone were considered to be housed in newly constructed buildings. In order
to satisfy the construction needs of the new households and jobs, buildings in the historical
development events table were sampled from the existing synthetic buildings. In other words,
relatively few buildings were available to be selected for the development event history table
and, as a result, therewere relatively fewobservations of buildings built between1991 and2001,
particularly the commercial and industrial submodels.

ăe last reason is based mainly on intuition, since it is difficult to prove the contrary; that
is, there are fewer variables in the models because the disaggregation process added too much
noise to the disaggregated, synthetic data to allow otherwise meaningful variables to test sta-
tistically signiđcant. ăere are many examples of situations where this might be the case; one
example is proximity to highways. In general, we would expect(all else being equal) that jobs
or households would like to locate closer to highways (within reason). However, in none of
the models was this variable statistically signiđcant, despite having accurate GIS data on the
location of highways and main arterials. Given that synthetic households, jobs, and buildings
were randomly attributed to appropriately zoned gridcells in large TAZs, this should not be
surprising.

Table 3: HLCM for Brussels.

Variable Coefficient t -value

1. Cost to income ratio −0.07 −2.2
2. %high inc. householdswwd if high inc. 0.03 22.3
3. % low inc. households wwd if high inc. <−0.01 2.9
4. % low inc. households wwd if low inc. 0.06 55.4
5. Travel time to CBD <−0.01 −4.2
6. Dummy for location in Flanders −0.03 −3.1

Null log-likelihood: 440982.25
Likelihood ratio test: 3479.87
Alternatives: 30
Number of observations: 129655
Convergence statistic: 0.0000762

Despite theseweaknesses and the relatively small number of variables, the estimatedmodels
were generally pleasantly surprising, with the most important variables (e.g. land price, acces-
sibility measures, etc.) usually coming out signiđcant with the right sign. ăis was not always
the case.
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An example of a typical model is the HLCM shown in Table 3. ăe model contains six
variables and was estimated on a 10 percent sample of households in the region. According
to the model, households prefer locations that are less expensive, all else being equal (Variable
1). ăey also prefer to live near households with similar incomes (Variables 2 and 4), although
high-income families show some affinity to being near low-income households (Variable 3).
Geographically, households prefer being closer to the central business district (CBD) (Variable
5) and locations in the Central Brussels Region or Wallonia (i.e. not in Flanders) (Variable 6).

Table 4: Commercial non-sedentary services to enterprises for Brussels.

Variable Coefficient t -value

1. Land value −0.78 −26.17
2. Employment wwd 0.48 23.91
3. Work access to employment 0.06 2.05
4. Work access to population 2.43 19.71
5. Job of same sector 0.01 56.74

Null log-likelihood: −20913.96
Likelihood ratio test: 8612.07
Alternatives: 30
Number of observations: 6149
Convergence statistic: 0.000913

Another typical example is the ELCM for jobs in the “non-sedentary services to enter-
prises” sector in Table 4. It was estimated using a ten percent sample of jobs, as was the case
for households. It has only đve variables; however, the variables present have intuitive signs and
high t -values. ăis suggests that jobs of this sector tend to locate where land prices are lower
(Variable 1), there are other jobs withinwalking distance (Variable 2), there is high accessibility
to employment and population (Variables 3 and 4), and there are jobs of the same sector (Vari-
able 5). All together, a surprisingly acceptable model even if it does not have many variables.

8.2 Model estimation in Lyon

In the Lyon application, twelve models (including submodels) were estimated (Table 7) for
the base year of 1999. For the location choice models, the dependent variable for each was
the location (gridcell/zone) of an individual household, job, or real estate development and 29
random alternative gridcells/zones. ăe dependent variable for the LPM was the land price
for each gridcell. Price per square meter for the REPM was available for 657 gridcells/zones;
data for the other 120 zones were interpolated. ăe dependent variable for the RLSM was the
proportion of residential land for each gridcell.

ăe small number of variables can be explained primarily by the lack of available data.
Others’ experience with UrbanSim (e.g. Nguyen-Luong 2008) also shows that it is better to
start with simple models containing few variables than to build very sophisticated models with
plenty of variables, because all the models should be implemented in UrbanSim and used for
simulation.
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One model in particular, the HLCM, is described in detail as an example. ăe model was
estimated for all of the household types, as in the Eugene example. For estimation, a 10 percent
random selection of households was used. ăe attributes signiđcant at the đve percent level
are presented in Table 5. In the estimation, 66225 random households from 765 gridcells are
used. ăe extraction of different random samples of the same size does not signiđcantly change
coefficients and their t -values except in the case of the travel time to CBD.ăis variable, which
is only marginally signiđcant in Table 5, can easily lose its signiđcance. ăe log of this variable
is always insigniđcant.

Households do not like to live near households of different income levels (Variables 1 and
2). Interestingly, the reported speciđcation works better than that with the corresponding vari-
ables for similar income. ăe number of households (Variable 3) and percent of households
with own accommodation (Variable 4) both increase the utility of a particular location (though
the latter variable to smaller degree), whereas the log of the number of residential units (Vari-
able 5) is negative (i.e. the locations with fewer residential units are preferable). Attempts to
add the property value variables failed.

Table 5: HLCM for Lyon.

Variable Coefficient t -value

1. % high income households wwd if low income −0.08 −36.08
2. % low income households wwd if high income −0.03 −22.15
3. Log number of households 1.46 19.78
4. Log % households with own accommodation 0.02 2.52
5. Log residential units −1.43 −19.14
6. Travel time to CBD < 0.01 1.99

Null log-likelihood: −225244.3
Likelihood ratio test: −223963.45
Alternatives: 2561.7
Number of observations: 66225
Convergence statistic: 0.00001

ăe“size variables” of thenumber of households and residential units included in themodel
are highly signiđcant. As ourmodel estimated and then simulated at the same geographical level
of gridcells, we donot aggregate alternatives; therefore, the scaling restriction for “size variables”
(see Ben-Akiva and Lerman 1985) is not applied in this case.

ăe positive sign and low signiđcance of travel time to the Lyon CBD can be explained
by the distortion from the heterogeneity of zone sizes—outer zones are usually substantially
larger and consquently many of them have larger populations despite lower densities, meaning
thatHLCMattempts to explain why zones with larger travel times toCBD aremore attractive.
ăe apparent attractiveness of outer zones is illustrated by the map of population (Figure 5),
which should be compared with the map of population density (Figure 4). However, this fact
is not taken into account in the application where each zone corresponds to one gridcell. ăe
same is true for value attributes and other parameters.

For the ELCM estimation (Table 7), we use all the industrial and home-based jobs, but
only a portion of commercial jobs. ăus, we use only commercial jobs from the gridcells, where
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Figure 5: Zonal population in the Lyon urban area in 1999.

the number of such jobs is at least 700. ăere are 29 such gridcells, and the number of jobs in
commercial buildings used in estimation is 34895.

Anothermodel example is the ELCM-industrial for industrial jobs; its variables signiđcant
at the 5% level are presented inTable 6. ăe industrial jobs prefer locationswithhigher land and
improvement values (Variable 1), smaller areas of industrial premises (Variable 2), which are
farther from arterial (Variable 4), but closer to highway (Variable 5), and with low accessibility
to employment (Variable 5, which is calculated with travel time). ăe last peculiarity can be
explainedby the speciđcity of industrial sector, where jobs are oĕen concentrateddistantly from
other sectors. However, Variables 1 and 2 are based on ad hoc assumptions.

ăeDPLCMestimation results for Lyon (Table 7) show that in the industrial speciđcation,
the small number of observations (in comparison with commercial and residential speciđca-
tions) can be enough to construct a model with as few as three variables. However, the models’
performance depends on assumptionsmade for the base year and development history. Among
theOLS regressionmodels in Lyon (Table 7), the LPMhas the highest adjusted R-squared, but
its dependent variable is based on assumptions, which is not the case for the REPM.
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Table 6: ELCM – industrial for Lyon.

Variable Coefficient t -value

1. Log total value 1.59 53.77
2. Log industrial square footage −0.86 −68.76
3. Dummy for location near arterial −0.46 −25.65
4. Dummy for location near highway 0.29 10.59
5. Log home access to employment −0.13 −3.39

Null log-likelihood: −398749.58
Likelihood ratio test: −78171.2
Alternatives: 641156.76
Number of observations: 117238
Convergence statistic: 0.000583

9 Simulation results

ăe estimatedmodels are limited in the amount of information they contain that can affect the
evolution of the urban systems. At the same time, the models are pleasantly surprising for the
most part. ăe true test of the models, of course, is how all of them perform together, and the
following validation exercises examine how UrbanSim simulations performed. In the reported
results, population is the focus because it was the only indicator for which relatively current
“real” data existed.

9.1 Simulation results in Brussels

Simulation results compare surprisingly well with actual population growth in the Brussels re-
gion. Figure 6 shows a map of the difference between actual and simulated population growth
rates between 2001 and 2007—for more than half of the zones (most of which represent a
municipality), the difference in simulated population growth to actual growth was between 2
percent and−2 percent. All except one were within the range of ±10 percent.

More can be said about this result than simply the differences between actual and simulated
growth. In particular, there is a discernible pattern of under-prediction of population relative to
actual growth along a northwest axis that extends from the center of the region to the southwest
(see dashed ellipse). ăe reason for this under-prediction appears to be theHLCM.ăese zones
tend to correspond with zones with relatively high land values and relatively lower travel times
to the CBD. As such, it appears that since population is actually higher in these zones than
predicted by the simulation, the coefficient suggests exaggerated sensitivity to land prices. It
also suggests that the coefficient for travel time to CBD is not sensitive enough. In further
evidence, in the east of the region there is a band of zones where population has been over-
predicted. ăese zones correspond to areas with lower land prices and higher travel times to
the CBD.
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Figure 6: Difference in simulated and actual population growth, 2001–2007 (Brussels).

9.2 Simulation results in Lyon

Due to the smaller size of zones and therefore the smaller zonal populations in Lyon, it is more
reasonable to focus on population itself instead of population growth. ăere are two problem-
atic aspects, however. First, due to the changed methods at INSEE, only estimated population
is available aĕer 1999—we will refer to this as actual population. Second, aĕer 1999 there
were many changes in zonal boundaries and several partitions and amalgamations of zones. Of
777 zones used in 1999, only 721 had the same identiđer in 2005. In the terms of Briassoulis
(2001), the deđnitions of population and zones (in spatial dimension) do not remain constant
over time, which decreases the reliability of comparison.

ăe comparison of predicted population with actual population in 2005 is shown in Fig-
ure 7 (for the whole territory) and in Figure 8 (for its central part). Only 721 zones are com-
pared; the other areas are shown as white spots. Among the comparable zones, 11 percent have
the difference within the interval of ±2 percent; 29 percent within the interval of ±5 percent,
and 53 percent within the interval of ±10 percent. Small populations in some zones can partly
explain the high differences—if there are a few people, then even negligible absolute difference
between predicted and actual population leads to high relative difference. ăis is the case of, for
example, industrial areas in the south and sparsely populated areas in the northeast in Figure 8.
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Figure 7: Difference between simulated and actual growth in Lyon urban area 2005.

Generally, population is under-predicted inoutskirts andover-predicted in the central cities
of Lyon and Villeurbanne. Intuitively, this can be explained by distortion arising from the het-
erogeneity of zone sizes, which is not reĔected in the irregular network of gridcells (see Sec-
tion 7.2). Another explanation is an insufficient number of variables in theHLCM(e.g. adding
environmental variables would increase the attractiveness of remote areas). Figure 7 and Fig-
ure 8 are also good illustrations of the difficulty of applying the same model to both urbanized
and agricultural areas.

10 Effort required and aggregate approach adopted

One critical element of evaluating the advantages and disadvantages of using UrbanSim with
aggregate data is the amount of effort required to do so—a full-Ĕedged UrbanSim application
can take years to develop. A recent analysis of UrbanSim (Nguyen-Luong 2008) reports that it
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Figure 8: Difference between simulated and actual population, Lyon 2005.

took three years with four full-time staff to develop their application for Paris. ăis is perhaps
an extreme in terms of time required, since the goal for this model was a system (transportation
and land use models that run together with an integrated interface) that would run “…with the
push of a button…” It does, however, give a sense of howmuch effort can be required to develop
a full-functioningmodel. As such, an evaluation ofUrbanSimwith aggregate datamust be seen
in this context.

For Lyon, understanding the basic data requirements of the model, then obtaining and
preparing the available data took more than half a year. ăe đrst simulation results were ob-
tained aĕer about two person-months of additional work. Several additional person-months
were devoted to improving model performance and incorporating new data used in the re-
ported results, but the total amount of time is difficult to measure.

For Brussels, understanding the basic data requirements and preparing available data took
about two person-months of work. Anothermonth and one half person-months were required
for initial model estimation and preparation. ăe đrst simulations with the Brussels data were
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completed aĕer three and a half person-months, and another one and a half person-months
were spent improving the original dataset, including incorporating zoning data, to produce the
results presented here. In total, around đve person-months of work were required to get these
results.

ăe effort required is partly dependent on previous experience of the people involved in
model development. A wide range of knowledge and skills are used in the development of an
UrbanSim model. ăese include knowledge of statistical modeling, data treatment, GIS, and
general computer programmingwith emphasis on Python. Familiarity with transportation and
transportation and land use modeling, as well as data availability for the region of interest, are
also important ingredients. While the Brussels application was largely based on the existing
TRANUS base data, the database for Lyon was created from scratch.

Based on these two case studies, anUrbanSimmodel with aggregate data can be developed
between four and eight person-months of work—signiđcantly less than what was reported for
a fully functional application in Paris (see Nguyen-Luong 2008). While differences in sizes of
the regions should be accounted for in such a comparison, it still seems that using aggregate
data is a relatively low-cost solution to starting an UrbanSim project.

Assuming a research team were interested in developing an UrbanSim model with aggre-
gate data, either approach could be suitable in different circumstances. Based on the experience
of the two teams, the approach depends on the type of model the developers are interested in.
In terms of overall effort, the two approaches are comparable, but particular aspects of data
preparation and model estimation required different amounts of effort. ăe Brussels approach
required more effort in order to create gridcells and buildings, whereas the Lyon approach re-
quired more effort in certain data preparation and especially in model estimation and simula-
tion. ăis heightened effort was due to the small number of observations and the correction
of distortions caused by the irregular coverage of the area. As such, it is not so much the effort
that should guide the choice between aggregate approaches, but rather which type ofmodel the
developers are interested in.

Developers should choose the aggregate model that conforms most with the model they
would like to eventually develop. If a disaggregate gridcell (or parcel level) model is the objec-
tive, then the Brussels approach would be more suitable; if a zonal model is envisaged, it would
make sense to use the Lyon approach.

11 Conclusions

Anumber of things can be learned by comparing these two approaches of the use ofUrbanSim.
ăe đrst is that it is possible to start working with UrbanSim with aggregate data. ăe two case
studies show that this can be done in at least two ways. In Lyon, aggregate data were applied di-
rectly to theTAZswhile each zone corresponded to one gridcell. ăe approach for Brussels was
to create a gridcell system and disaggregate the aggregate data to the gridcells. In both cases, not
all important information was lost through disaggregation. Despite the use of aggregate data,
many ad hoc assumptions, and the use of some parameters directly from the Eugene template,
the applications produce surprisingly good models as well as simulation results.

Despite the surprisingly good results, there is a limit to howmuchdisaggregate information
can be drawn from aggregate data. Moreover, it does not seempossible to develop a reliable and
fully operationalUrbanSim applicationwith the use of only aggregate data. ăemain disadvan-
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tages of data disaggregation manifest themselves in two ways. First, aggregation does not allow
for the successful production of sufficient data to allow the estimation of robust models. ăis
was seen in the case of buildings data in the Brussels context and of gridcells in the Lyon con-
text. In the latter case, the main limitation is in the irregular network of gridcells that does not
cover the whole analysed territory and leads to distortions while applying the “within walking
distance” concept or ignoring density measures.⁵ For this, the Brussels approach better satisđes
the Briassoulis’ criterion of spatial compatibility. On the other hand, the Lyon approach allows
avoiding the random errors of data assignment to gridcells and in this respect better adheres to
the reliability criterion. Second, the use of aggregate data introduces sufficient noise that only
the most robust relationships will manifest themselves in analyses.

Finally, a particularly positive đnding is that given a lack of disaggregate data, developing
an application with aggregate data can be extremely useful for understanding how UrbanSim
works and what it requires. ăe applications reported here were begun with available data as
quickly as possible and were not stopped by the lack of disaggregate data. In fact, in the ab-
sence of readily available disaggregate data, it seemed a better way to proceed with application
development than by initially collecting the required disaggregate data. Moreover, it is easier to
understand the peculiarities of UrbanSim using limited aggregate data than to try to grasp its
principles by workingwith large detailed datasets. As a result, we conclude that if researchers or
planners were interested in evaluating the creation of a new UrbanSim application for a given
region, the use of aggregate data is worthwhile and a relatively low-cost exercise to evaluate Ur-
banSim requirements for a fully operational model. ăese two UrbanSim case studies can be
considered as important đrst steps in developing more robust applications.
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Appendix: Summary of models in the two case studies

Table 7: Summary of models in two case studies.

Brussels Lyon

Model Signiđcant Variables

LR test/adj. R2

χ 2 Crit. ValueƲ
(obs.) Signiđcant Variables

LR test/adj. R2

χ 2 Crit. Value
(obs.)

HLCM

• cost/inc. ratio
• % high inc. hhƳ wwdƴ

if high inc.
• % low inc. hh wwd if

high inc.
• % low inc. hh wwd if

low inc.
• travel time to CBD
• dummy for location in

Flanders

3480
22.458
(129655)

• % high inc. hh wwd if
low inc.
• % low inc. hh wwd if

high inc.
• log number of hh
• log % hh with own

accommodation
• log residential units
• travel time to CBD

2562
22.458
(66225)

ELCM – Industrial

Industrial

• log total value
• log work access to

employment
• travel time to CBD
• number of industrial

jobs
• number of heavy

tertiary jobs

1017
20.515
(15176)

• is near arterial
• is near highway
• log home access to

employment
• log industrial sq.ĕ
• log total value

641157
20.515
(117238)

Heavy
Tertiary

• log total land value
• log work access to

population
• number of industrial

jobs
• number of heavy

industrial jobs

999
18.467
(13598) N/A N/A

Continued
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Brussels Lyon

Model Signiđcant Variables

LR test/adj. R2

χ 2 Crit. ValueƲ
(obs.) Signiđcant Variables

LR test/adj. R2

χ 2 Crit. Value
(obs.)

Construction N/A N/A

• is near arterial
• is near highway
• log industrial sq.ĕ
• log total value

163867
18.467
(30415)

Agriculture N/A N/A

• is near arterial
• is near highway
• log industrial sq.ĕ

26341
16266
(4277)

ELCM – Commercial

Commercial N/A N/A

• avg. income
• commercial sq.ĕ
• 3 dummies for

development types
• 2 dummies for plan

types
• log distance to

highway
• log home access to

employment
• log home access to

population
• log total land value
• log travel time to CBD
• number of commercial

jobs
• number of hh
• population
• number of residential

units
• % of open space wwd

92889
36.123
(34895)

Continued
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Brussels Lyon

Model Signiđcant Variables

LR test/adj. R2

χ 2 Crit. ValueƲ
(obs.) Signiđcant Variables

LR test/adj. R2

χ 2 Crit. Value
(obs.)

Non-
sedentary
services

• land value
• employment wwd
• work access to

employment
• work access to

population
• jobs in same sector

8612
20.515
(6749) N/A N/A

Sedentary
services

• log total land value
• log work access to

employment
• log work access to

population
• log population wwd
• log employment wwd
• jobs in same sector

9405
22.458
(24000) N/A N/A

Retail

• log total land value
• log work access to

population
• retail jobs
• in Capital Region

5473
183.467
(24000) N/A N/A

Local private
services

• log total land value
• log work access to

employment
• log work access to

population
• travel time to CBD
• jobs in same sector
• in Flanders

3070
20.458
19498 N/A N/A

Continued
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Brussels Lyon

Model Signiđcant Variables

LR test/adj. R2

χ 2 Crit. ValueƲ
(obs.) Signiđcant Variables

LR test/adj. R2

χ 2 Crit. Value
(obs.)

Agriculture

• log total land value
• log work access to

population
• log total employment

wwd
• travel time to CBD
• agricultural jobs

2508
20.515
(1511) N/A N/A

ELCM –
Home-based N/A N/A

• log commercial sq.ĕ
• log residential units
• travel time to CBD

24004
16.266
(13580)

DPLCM

Industrial

• log total land value
• log basic sector

employment wwd

18
13.816
(26)

• dummy for plan type
• log total land value
• population

98
16.266
(33)

Commercial

• in Capital Region
• log work access to

employment

21
13.8186
(77)

• 13 dummies for
intervals of
commercial sq.ĕ
• log commercial sq.ĕ

328
36.123
(380)

Residential

• log total land value
• travel time to CBD
• in Capital Region

436
16.266
(1686)

• 3 dummies for
intervals of num. res.
units
• 7 dummies for

development types
• 3 dummies for plan

types
• number of residential

units

600
36.123
(601)

Continued
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Brussels Lyon

Model Signiđcant Variables

LR test/adj. R2

χ 2 Crit. ValueƲ
(obs.) Signiđcant Variables

LR test/adj. R2

χ 2 Crit. Value
(obs.)

RLSM N/A N/A

• log non-residential
sq.ĕ
• home access to

employment
• home access to

population
• is outside urban

growth boundary
• log commercial sq.ĕ
• log residential units
• population
• travel time to CBD

0.31
N/A
(569)

REPM N/A N/A

• home access to
employment
• home access to

population
• is outside urban

growth boundary
• log industrial sq.ĕ
• log number of hh
• log travel time to CBD
• number of commercial

jobs
• % low inc. hh wwd
• number of residential

units
• total land value

0.567
N/A
(777)

Continued
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Brussels Lyon

Model Signiđcant Variables

LR test/adj. R2

χ 2 Crit. ValueƲ
(obs.) Signiđcant Variables

LR test/adj. R2

χ 2 Crit. Value
(obs.)

LPM

• Constant
• log total employment

wwd
• log work access to

employment
• log work access to

population
• travel time to CBD
• 5 dummies for

development type
• log basic sector

employment wwd
• in Capital Region

0.517
N/A
(118951)

• home access to
employment
• home access to

population
• log commercial sq.ĕ
• log industrial sq.ĕ
• population density
• travel time to CBD

0.809
N/A
(777)

Ʋ χ 2 Critical value at 0.1%
Ƴ hh: household
ƴ wwd: within walking distance
⁴ sq.ĕ: square feet
⁵ inc.: income
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