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Modeling hedonic residential rents for land use and transport

simulation while considering spatial effects
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Abstract: ăe application of UrbanSim requires land or real estate price data for the study area. ăese
can be difficult to obtain, particularly when tax assessor data and data from commercial sources are un-
available. ăe article discusses an alternative method of data acquisition and applies hedonic modeling
techniques in order to generate the required data. Many studies have highlighted that ordinary least
square (OLS) regression approaches lack the ability to consider spatial dependency and spatial hetero-
geneity, consequently leading to biased and inefficient estimations. ăerefore, a comprehensive data set
is used formodeling residential asking rents by applying and comparingOLS, spatial autoregressive, and
geographically weighted regression (GWR) techniques. ăe latter technique performed best with re-
gard to model đt, but the issue of correlated coefficients favored a spatial simultaneous autoregressive
model. Overall, the article reveals that when housing markets are a particular concern in UrbanSim ap-
plications, signiđcant efforts are needed for the price data generation andmodeling. ăe study concludes
with further development potentials for UrbanSim.
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1 Introduction

One of the key components of UrbanSim is the use of land or real estate price data. ăese
are applied in the model system as an indicator of the relative market valuations for attributes
of housing, non-residential space, and location (Waddell and Ulfarsson 2003, 63). However,
đnding suitable data sources for real estate transaction prices and rents can be a challenge while
setting up an UrbanSim application when transaction and rent price data from data suppliers
are unavailable to researchers. As a minimum prerequisite for modeling purposes, sufficient in-
formation about a decent amount of properties is needed, including price (transaction cost or
rent) and some explanatory spatial variables to which the model system should be sensitive in
the application. ăese typically include at least some kind of regional accessibility, proximities,
and neighborhood characteristics. ăe hedonic approach is a suitable method to model price
values for every cell or parcel in the UrbanSim application based on such a sample. Moreover,
the analysis exposes the implicit prices of housing and location characteristics. In the case of the
UrbanSim application for Zürich (Löchl et al. 2007), tax assessor data and data from commer-
cial sources were unavailable. ăerefore, an alternative method of data acquisition was needed.

a loechl@ivt.baug.ethz.ch
b axhausen@ivt.baug.ethz.ch

Copyright 2010 Michael Löchl and Kay W. Axhausen.
Licensed under the Creative Commons Attribution – NonCommercial License 3.0.

http://jtlu.org
http://dx.doi.org/\@jtludoi 
http://creativecommons.org/licenses/by-nc/3.0


        ()

One pillar of those efforts included a household survey whose purpose was manifold. For the
hedonic modeling of residential rents, its sampling strategy was found to be too clustered, re-
sulting in insufficient variance of the spatial explanatory variables. Another pillar was the use
of a publicly available web-based portal of residential asking rents. ăe data were collected for
the area of Canton Zürich from the end of 2004 to fall of 2005, and used to generate a basic
hedonic model for the đrst application of UrbanSim in the Greater Zürich area. However, fur-
ther analysis of the data revealed the need to consider spatial effects and the introduction of
additional explanatory variables.

ăe hedonic approach was not adopted in the đeld of housing and real estate before the
work of Lancaster (1971, 1966), Griliches (1971), and Rosen (1974). Today, it is regularly
used in the đeld of real estate for property taxation and mortgage underwriting, but it has also
been used for property price generation in land use and transport models (e.g. Waddell and
Ulfarsson 2003).

Location is essential for determining housing prices. Bitter et al. (2007, 7) note that con-
trolling for location and the spatial structure of markets is essential to explaining price differ-
entials and deriving accurate coefficient estimates in hedonic residential price models. One
common way to incorporate information about the location in hedonic models is to introduce
distance to the central business district (CBD) or sub-market indicators including regional,
local, or neighborhood speciđc binary coded dummy variables or interaction terms into the
regression equation. However, previous studies have revealed that inclusion does not neces-
sarily take all of the spatial effect into account (Clark 2007, 189; Wilhelmsson 2002, 100).
Two types of spatial effects have been identiđed: spatial dependence and spatial heterogeneity
(Anselin 1988, 8), both of which have been major challenges in spatial data analysis (e.g. Du
andMulley 2006, 201). Anselin (1988, 12) deđnes spatial dependence (also called spatial auto-
correlation) as the existence of a functional relationship between what happens at one point in
space and what happens elsewhere. Spatial heterogeneity (or spatial non-stationarity) may be
present when there is a lack of uniformity from the effects of space or the spatial units of obser-
vation are not homogeneous. For example, price contributions of housing attributes may not
be constant throughout a study area and may vary over space. ăerefore, there may be spatial
heteroscedasticity or spatially varying parameters present. Páez et al. (2007, 1566) summarize
dependency as a locational/adjacent effect and heterogeneity as market segmentation. In gen-
eral, housing markets oĕen involve both spatial dependence and spatial heterogeneity due to
localized supply and demand imbalances (Bitter et al. 2007, 8). DeGraaff et al. (2001, 259) list
three reasons why spatial dependence and heterogeneity should be considered jointly. First,
there may be no differences between heterogeneity and dependence in an observational sense.
Second, spatial dependency induces a particular form of heteroscedasticity (see also Keljian
and Robinson 2000). Finally, it may be empirically difficult to separate the two effects. Over-
all, failure to incorporate spatial effects will result in biased or misleading coefficients and a loss
of explanatory power.

For more than two decades, researchers and practitioners have considered spatial effects in
hedonic regression models. Several advanced methods have been proposed to incorporate spa-
tial structural instability, spatial driĕ and spatial lag into models (Leung et al. 2000, 10). ăese
models commonly propose tomake use of the spatial characteristics of variables to improve the
results (Gao et al. 2006, 1040). Some of the most popular approaches are the spatially adap-
tive đltering methods (Trigg and Leach 1967; Widrow and Hoff 1960), expansion methods
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(Fotheringham and Pitts 1995), multi-level approaches (Goldstein 1987; Jones 1991), spatial
simultaneous autoregressive approaches such as spatial lag and spatial error models (Anselin
1988), aswell as geographicallyweighted regression (GWR)models (Fotheringham et al.2002).
Beyond that, there are, for example, the local kriging and co-kriging methodology of Haas
(1995, 1996) and the Bayesian spatially varying coefficient process models of Gelfand et al.
(2003). Each of these approaches has its beneđts and drawbacks, but all emphasize that pa-
rameters identiđed in global models may not resemble parameters estimated in local models.
ăerefore, they are oĕen non-stationary.

It is the aim of this article to comparatively analyze outcomes from spatial simultaneous
autoregressive approaches with results from GWR models that use the same data set, and fur-
thermore, to suggest onemethod for the housing pricemodeling for the next application ofUr-
banSim in the greater Zürich area. At the same time, the article seeks to add to the discussion
about appropriatemethods for the consideration of spatial effects andnon-stationarity in hedo-
nic rent models. Moreover, this article describes an innovative way to acquire publicly available
data and highlights possible further development potentials of UrbanSim applications. ăe fo-
cus is on residential rents in this article, due to the fact that Switzerland has (as compared with
the United States and other European countries) a very low ownership rate of 37 percent in
2006 (Wüest & Partner 2007, 76), which is even lower in the Swiss urban areas. ăe reasons
for the low ownership rate are manifold, including low land supply, rigorous mortgage down
payment constraints, and tax regulation and landlord-tenant laws. But foremost, prices are high
relative to rents and relative to household incomes and wealth (Bourassa and Hoesli 2010).

While there are many international studies on hedonic house and apartment transaction
prices (for a comprehensive review of around 125 studies, see Sirmans et al. 2005), only few
studies have focusedon residential rents. ăose rent studies either use thenet annual ormonthly
rent (Baranzini andRamirez 2005;Baranzini andSchaerer 2007;Baranzini et al.2006;Brunauer
et al. 2009) or the monthly gross rent (Banđ et al. 2006). For other hedonic rent studies, it is
not speciđed if gross or net rents have been used (e.g. Djurdjevic et al. 2008; Sirmans et al.
1989; Valente et al. 2005). Of all those studies, only a minority has focused on rents per square
meter (Brunauer et al. 2008), while the vast majority have been using the absolute rent or its
log-transformation.

ăe remainder of this article is organized as follows: Section 2 introduces the methods of
spatial simultaneous autoregressive models and geographically weighted regression. Section 3
gives a short overview of earlier studies, which compared the results of various hedonic model-
ing techniques. ăe data are introduced and described in Section 4, followed by the estimation
results in Section 5. In Section 6, the đndings are summarized.

2 Spatial simultaneous autoregressive models and geographically

weighted regression (GWR)

Spatial simultaneous autoregressive modelling is a popular approach to consider spatial effects.
It assumes that the response variable at each location is a function not only of the explanatory
variable at that location, but of the response at neighbouring locations as well. ăe models are
based on maximum-likelihood estimations and commonly applied in the đelds of regional sci-
ence, sociology, political science and the various đelds of economics (Anselin 2001, 310). A
comprehensive introduction might be found in Anselin (1988). Various studies are also avail-
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able in the đeld of real estate appraisal, such as Kim et al. (2003), Shin et al. (2007), and Wil-
helmsson (2002).

ăree different spatial simultaneous autoregressive models are usually distinguished, de-
pending onwhere the spatial autoregressive process is believed to occur (Kissling andCarl 2008,
61). ăe spatial simultaneous autoregressive lag model (SARlag) assumes that the autoregres-
sive process occurs in the response variable. A spatial lag hedonic rent model can be written as
follows:

P = ρW P +βX + ε (1)

where P is a vector of rents, ρ is a spatial autocorrelation parameter, W is a N × N spatial
weight matrix (where N is the number of observations),β is a vector of regression coefficients,
X is a matrix with observations on structural and spatial explanatory characteristics and ε is
assumed to be a vector of independent and identically distributed (iid) error terms. Typically,
the deđnition of neighbors used in the weights matrix is based on a notion of distance decay or
contiguity.

When spatial dependence is present in the error term, a spatial autoregressive speciđcation
for this dependence is usually assumed. ăis is called the spatial simultaneous autoregressive
error model (SARerr) and can be formulated as follows:

P =βX + u (2)

i.e., a linear regression with error vector u , and

u = λW u + ε (3)

whereλ is the spatial autoregressive coefficient,W is the spatial weightmatrix, and u is assumed
to be a vector of independent and identically distributed errors. ăis model is a special case of
a regression speciđcation with a non-spherical error variance-covariance matrix. ăerefore, W
now pertains to shocks in the unobserved variables (the errors u) but not to the explanatory
variables of the model (X ). Consequently, the price at any location is a function of the local
characteristics but also of the omitted variables at neighboring locations. ăis is the most pop-
ular spatial simultaneous autoregressive model and it is widely used in the literature (Taylor
2008, 25; Wilhelmsson 2002, 94).

Finally, spatial autocorrelation can affect both response and explanatory variables, having
both “inherent spatial autocorrelation” and ”induced spatial dependence.” In this case, an addi-
tional term (W X γ ) must appear in the model, which describes the autoregression coefficient
(γ ) of the spatially lagged explanatory variables (W X ) asKissling andCarl (2008, 61) describe.
ăe so-called spatial Durbin model (SARmix) takes the form

P = ρW P +βX +W X γ + ε. (4)

According to Valente et al. (2005, 110), one of the advantages of those models are a (near-
est) neighbor-based smoothing of the means and convenient computation besides the oĕen
shown improvement over OLS models.

ăe technique of GWR has been developed by Brunsdon et al. (1998); a more compre-
hensive overview is found in Fotheringham et al. (2002). ăe method attempts to incorporate
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geographical information into a regression model using a series of distance-related weights. Es-
sentially, it consists of a series of locally linear regressions that use distance-weighted overlap-
ping samples of the data (Farber andYeates 2006, 412). ăemethod explicitly allows parameter
estimates to vary over space, which leads to independent spatial error terms. Rather than speci-
fying a single globalmodel to characterize the entire housingmarket, GWRestimates a separate
model for eachdata point andweights observations by their distance to this point, thus allowing
unique marginal price estimates at each location (Bitter et al. 2007, 10).

ăe typical output from a GWR model is a set of parameters that can be mapped in the
geographic space to represent non-stationarity or parameter driĕ. Similarly, local measures
of standard errors and goodness-of-đt statistics are obtained (Fotheringham et al. 2000, 113).
ăerefore, the additional beneđt of the GWR approach is that it offers the potential of in-
creased understanding of the nature of varying relationships between variables across space.
Du and Mulley (2006, 201) describe GWR as an alternative to spatial simultaneous autore-
gressive models which “is perhaps more intuitive.” ăe GWR approach has recently found use
in various applications. ăere are examples in the đelds of climatology (Brunsdon et al. 2001),
ecology (Kimsey et al. 2008; Zhang and Shi 2004), education (Fotheringham et al. 2001), mar-
keting research (Mittal et al. 2004), regional science (Huang and Leung 2002), political science
(Calvo and Escolar 2003), and transport research (Chow et al. 2006; Clark 2007; Hadayeghi
et al. 2003; Lloyd and Shuttleworth 2005; Nakaya 2001). In the housing đeld, there are stud-
ies by Bitter et al. (2007), Farber and Yeates (2006), Fotheringham et al. (2002), Kestens et al.
(2006), Páez et al. (2007), and Yu et al. (2007). To our knowledge, there have been no stud-
ies on residential rents employing GWR so far, as all of the authors mentioned above focus on
apartments or single-family house transaction prices. Overall, GWR is considered a standard
tool in exploratory spatial data analysis due to its effectiveness and wide applications (Wang
et al. 2008, 987). Nevertheless, there are some limitations to the method, and authors have
pointed out that GWR results should be interpreted with caution (Shearmur et al. 2007, 701).
In particular, multicollinearity and correlation among local regression coefficients is a prob-
lem in GWR, even in the presence of uncorrelated exogenous variables in the data generating
process. ăe issue was raised by Wheeler and Tiefelsdorf (2005), who emphasized that the
effects of multicollinearity are substantially stronger in the GWR model than in global regres-
sion models. ăey suggested that this potentially invalidates any interpretation of individual
GWR parameter estimates and reduces conđdence in the method for more than exploratory
purposes—for example, there may be inĔated variances and, at times, counter-intuitive and
contradictory in sign to the global regression estimates. Young et al. (2008, 4013) notes that
local regression models are designed as exploratory smoothing methods and not as inferential
statistical tools.

ăerefore, several authors have compared the GWR models with alternatives in this re-
gard, particularly with methodological improvements of the GWR approach (Griffith 2008;
Wheeler 2007, 2009) and Bayesian spatially varying coefficient process models (Wheeler and
Waller 2009). Waller et al. 2007, 585 note thatmoremethodological research is required to de-
termine the most Ĕexible and robust structures. Additionally, the computational cost burden
of alternative methods might be high (Wheeler and Waller 2009, 21). Overall, the approaches
are still in an experimental phase and the debate about the most appropriate methodology is
ongoing.
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A weighting function is applied in GWR in order to give greater inĔuence to close data
points. A spatial kernel is usually used. Choosing the shape of the kernel and its bandwidth
are both important issues and various options are available (Fotheringham et al. 2002, 56). ăe
bandwidth choice is not a parameter relating to the model itself, but is essentially part of the
calibration strategy for a given sample (Fotheringham et al. 2002, 63).

In the case of rent estimations, a GWR model can be written as follows:

Pi =βi0+
∑

k

βi kXi k + εi (5)

where Pi is the i th observation of the rent, βi0 is the constant estimated for local regression
i ,βi k is the regression coefficient of structural or spatial explanatory variable k estimated for
local regression i , and εi is the i th value of a normally distributed error vector withmean equal
to zero. ăis differs from OLS by using distinct constants and regression parameters for each
data point. ăe estimation algorithm iterates through N OLS, each one modiđed by a unique
distance-decay weight matrix. ăe estimation takes the form:

βi = (X
T Wi X )

−1X T Wi P (6)

whereβi is the vector of estimated coefficients for observation i , X is the N ×K matrix of ex-
planatory variables, Wi is a diagonal distance-decay weight matrix customized for the location
of i relative to the surrounding observations, and P is the vector of observed rents.

3 Comparative studies in the literature

Recently, hedonic literature has shiĕed from simple applications of local models to compar-
ative studies, where several local model approaches are tested and evaluated. Because of the
increasing popularity of the approaches, the need for assessing the relative merits of the differ-
ent modeling techniques is obvious (Páez et al. 2007, 1566). Consequently, comparisons of
the performance of different measures, which take into account spatial effects, have begun to
emerge in the literature. Clark (2007) applied a spatial error model and GWR for estimating
local car ownership in the United Kingdom, but did not focus on comparing the results in par-
ticular. Wall (2004) compared conditional autoregressive models (CAR) and simultaneously
autoregressive models, but found possible counter-intuitive or impractical results.

Bitter et al. (2007) compared the spatial expansion method and the GWR approach for
a dataset from Tuscon, Arizona, applying seven housing characteristics, including two from a
principal components analysis. While they found spatial variation in both models, they could
not separate the observed spatial heterogeneity by localized supply and demand characteris-
tics and the impact of omitted variables. However, GWR outperformed the spatial expansion
speciđcation in terms of explanatory power and predictive accuracy in their study, although
the differences were narrowed to some degree with the addition of the spatial lag term in the
expansion speciđcation. ăe authors concluded that when explanatory power and predictive
accuracy are the primary objectives, GWR is the superior approach (Bitter et al. 2007, 23).

Farber and Yeates (2006) compared OLS with a spatial lag model, GWR, and a moving
window regression (MWR) approach. ăey found that the GWR approach is superior to all
others; therefore, it may be regarded as the one which accounts best for the spatial variation.
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ăey concluded that by allowing parameters to vary spatially, estimation accuracy of the re-
sponse variable improves dramatically while spatial biases diminish to nominal amounts (Far-
ber and Yeates 2006, 417). However, they observed some extreme coefficients in their GWR
model, which were clustered in speciđc neighborhoods of their study area. ăey noted that
in light of the unavailability of a robust statistical framework for GWR and MWR, irrational
coefficients pose a major threat to the adoption of GWR by assessment authorities (Farber and
Yeates 2006, 418). ăe đnding of extremely high coefficient variability is not unusual and oĕen
found in practice. ăis has raised some concern that GWR results may be misleading because
of the suspicion that the variability observed is somehow built into the model by its own cali-
bration and estimation mechanisms (Páez 2005, 163). By comparing GWR and the expansion
method in a simulation exercise, Páez concluded that, on average, spatial variability in GWR
is not an artifact of the calibration procedure, and that GWR is sufficiently Ĕexible to repro-
duce the type of map patterns used in the simulation experiment. Moreover, he found that
both approaches are able to provide reasonable representation of the spatial patterns inherent
in the simulated data. Kestens et al. (2006) comparedGWRand the expansionmethod as well,
highlighting the individual merits of both methods. While GWR provides additional insight
by measuring local regression statistics, the expansion term makes it possible to analyze and
explain the cause of parameter heterogeneity, whether its structure is spatial or not. ăey con-
cluded that both methods are complementary rather than substitutes for each other (Kestens
et al. 2006, 94).

Páez et al. (2007) comparedmoving windows regression (MWR), GWR, andmoving win-
dows kriging. ăey found that the MWR approach leads to superior results relative to single
market and global approaches and also to modeling spatial dependencies. ăerefore, they con-
cluded that market segmentation may be more important than spatial dependencies.

ăe authors of the above articles used various measures to compare and evaluate the model
approaches. ăe most popular OLS goodness-of-đt measure is the adjusted R-square. ăis
measure is useful and applied in GWR as well, but it is no longer applicable in spatial simulta-
neous autoregressive models (Yu et al. 2007, 1092). ăerefore, other measures such as residual
sum of squares (RSS), sum of squared errors (SSE), maximum likelihood value, Log likelihood
(Loglik), and Akaike’s Information Criterion (AIC) are applied. ăe null hypothesis that the
contribution of a relationship is zero is oĕen investigated based on t -test or F -test (Gao et al.
2006, 1041). Additionally, model prediction power veriđcation is evaluated through out-of-
sample testing (e.g. Bitter et al. 2007).

4 Data and variables

Butler (1980, 97) states that, in principle, all characteristics relevant to the determination of
market price should be included in a hedonic function. In practice, this cannot be done be-
cause the number of such characteristics is unmanageably large, and data on many of these are
either unavailable or of poor quality. In addition, even without data constraints, a relatively
small number of explanatory variables lead to considerable multicollinearity. ăerefore, the
aim is to đnd a broad set of statistically signiđcant variables with expected signs and moderate
impact of multicollinearity, while the estimate should have a sufficient model đt. Butler (1980,
97) notes that for the aforementioned reasons, any estimate of the hedonic relationshipmust be
misspeciđed because some of the relevant explanatory variablesmust be omitted. He concludes
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that consequently all estimates are to some extent “incorrect” and differences among themmust
be attributed at least in part to differences in adaptation to the speciđcation problems common
to all. However, ample and accurate variable speciđcation is essential to infer properly and to
generate statistically signiđcant results. Finding suitable data sources in the đeld of real estate
prices when transaction and rent data are not open to researchers presents an additional chal-
lenge.

ăe underlying data for this study were taken from a publicly available Web siteƲ between
December 2004 and October 2005. ăe database included rent offers from various Swiss real
estate online platforms. Duplicate entries, furnished and shared apartment offers, and apart-
ments of unusual sizes (<20 and >500m2) were dropped. ăe addresses for all dwelling units
in the dataset were geocoded at building level and matched with a wide set of spatial variables.
ăe generation of some variables included signiđcant further work (see Löchl 2007), for details
on the calculation of solar radiation and visibility variables based on a digital elevationmodel);
others were simply matched with available data or layers by a geographic information system
(GIS). Generally, the availability of additional non-spatial and spatial data are rather good in
Switzerland—for example, both the population census and the business census are available at
the hectare level. Overall, the dataset comprehended rents and additional information of 8,592
dwelling units in Canton Zürich, which consists of 171 municipalities.

Because of the source and characteristics of the input price data, several restrictions apply.
As the dataset includes asking rents, it does not necessarily reĔect paidmarket prices. Moreover,
the samplemight be slightly biased because certain vacant dwelling units do notmake their way
to the Web site. However, an earlier data comparison showed that the differences in the struc-
tural variables to the complete inventory in the Federal Building andApartment Register of the
Federal Statistical Office are minor (Löchl 2006, 6). Additionally, the structural characteris-
tics of the properties might include faulty information, as they are self-reported by the person
placing the ad. Finally, only a limited set of structural dwelling unit characteristics were avail-
able for the estimations. It included the price information and the dwelling unit size in square
meters, the number of rooms (a value which counts bedrooms, living room, and kitchen), and
some information about available facilities, such as balcony, đreplace, terrace/garden, and the
availability of a liĕ in the building. In cases where the age of the building was unavailable, the
records were matched with the Federal Building and Apartment Register to generate the infor-
mation. Some variables, which might have been important contributors, were unavailable and
had to be leĕ out of the equations, such as information about the last major renovation and
garage availability. However, parking costs are usually not included in the net rent. Another
known relevant factor is landlord identity since non-prođt organizations such as cooperative
building associations offer rents well below average market rents. ăey can be found in the
whole of Canton Zürich and have a market share of almost 20 percent (Statistical Office of
Canton Zürich 2008, 15). However, the landlord identiđcation was not possible with the data,
which leads potentially to some bias. In Figure 1, the observations are displayed as themonthly
asking rent per square meter.

ăe selection of explanatory variables was the result of exploratory data analysis through
OLS stepwise regression in SPSS Version 16.Ƴ ăe đnal dataset included two response and

Ʋ www.comparis.ch
Ƴ ăe GWR soĕware does not provide functions for variable selection such as forward, backward, and stepwise

methods.
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Figure 1: Net asking rent per square meter in CHF per month in Canton Zurich.

31 explanatory variables. ăe descriptive statistics are found in Table 1. Basically, all available
structural variables in the source data were used except for the number of rooms, as there is high
multicollinearity with the dwelling unit Ĕoor area. Additionally, a broad set of spatial variables
were found to be signiđcant without considerable correlation among each other and with the
structural variables. One was public transport accessibility (PTACC) besides car accessibility
(CARACC), as the study area has a well-developed public transport system. ăe last micro-
census in 2005 (StatisticalOffice ofCantonZürich 2008) revealed that public transport is used
by the inhabitants for almost 30 percent of all kilometers traveled. A remarkable feature of
the sample is that the mean distance to the next railway station is 910 meters on average. ăe
whole region of Zürich is connected by a dense network of suburban railways, and all stations
are served at least once per hour, with most served twice or even four or more times per hour,
assuring a very high quality of service. ăe seven explanatory time dummy variables not only
reĔect rent changes over time, but also include the known process that landlords tended to
reassign speciđc costs from the net rent to the additional costs in that period.
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5 Estimation

In general, hedonic theory does not strictly specify a functional form (Cropper et al. 1988;
Halvorsen and Pollakowski 1981). Sirmans et al. (2005, 6) explain that studies have wrestled
with the problem of the correct functional form and no consensus has been found of which is
most appropriate.ƴ ăe semi-log speciđcation has some advantages, such as the coefficients can
be easily interpreted as the percentage change in the price given a one-unit change in the char-
acteristic. Moreover, it helps minimize the problem of heteroscedasticity and mitigates the im-
pact of nonlinear relationships between market price and the explanatory variables (Malpezzi
2003). ăerefore, hedonic pricing equations are typically estimated using either linear or semi-
logarithmic models (Sirmans et al. 2005, 4). A second challenge is the adequacy of paramet-
ric speciđcation. Some authors (e.g. Anglin and Gençay 1996, 633; Martins-Filho and Bin
2005, 93ff ) indicate that this problem arises from the inability of economic theory to provide
guidance on how characteristics of similar products relate functionally to their market price.
Consequently, there have been attempts to use semi- or nonparametric methods (Clapp 2003,
2004; Fahrländer 2005; Pace 1993, 1998; Parmeter et al. 2007), which allow for the possibility
of nonlinearity in the hedonic price functions and Ĕexible modeling of the inĔuence of contin-
uous covariates on the dependent variable.

In this study, aĕer variable selection, further datamodeling anddiagnosticswere performed
in the open-source statistical soĕware R Version 2.8⁴ (R Development Core Team 2008). Fox
(2002) provides a good introduction into regression analysis with R. For a technical intro-
duction into the R package spdep and available functions for spatial data analysis, see Bivand
(2008). Kriström (2008) provides an example of the estimation of a hedonic model with the
statistical soĕware R. Both the dependent and the explanatory variables were transformed as
suggested byMosteller andTukey (1977, 109), whereas a logarithmic transformationwas taken
for an amount or count and a logit transformation was used for fractions.⁵ Due to memory
capacity issues of the GWR methods in R (the computational overhead of this method is con-
siderable, especially for a large dataset), theGWR3.0 soĕware byMartinCharlton and Stewart
Fotheringham was applied for the GWR approach. A documentation of the soĕware is avail-
able in Fotheringham et al. (2002).⁶

TwoOLSmodels (Models 1 and 2) were selected for the analysis including both structural
and spatial explanatory variables, taking the logarithmic transformation ofRENTas the depen-
dent variable (see Table 2). Similar models, considering rent per square meter as the dependent
variable, did not show any signiđcant difference of the coefficients, besides the one referring to
the Ĕoor area variable, but had a much lower model đt and are therefore not presented here.

ƴ Functional forms for the hedonic price function that have been proposed and used in the literature include the
linear, the quadratic, the log-log, the semi-log, the inverse semi-log, the exponential, and the Box-Cox transforma-
tion (Freeman 1993, 379).

⁴ http://www.r-project.org
⁵ Tests with Box-Cox transformations did not succeed since there are some independent dummy variables where

more than two thirds of the sample is coded zero, making it impossible to automatically compute a sufficiently large
constant in R (Fox 2002, 107). As it is, such speciđcations are not readily implemented in the presence of spatial
dependence (Kim et al. 2003, 31).

⁶ ăe fact that some variables do not show local variability (e.g. AIRNOISE) actually requires a mixed GWR
approach, in which the referring coefficients are global and the others are local as in the basic GWR model (Fother-
ingham et al. 2002, 65ff ). However, this procedure is not implemented in the GWR 3.0 soĕware; it is planned to
be included in the upcoming 4.0 release.

http://www.r-project.org
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ăe OLS results of two additional models (Models 3 and 4), which are only considering spa-
tial explanatory spatial variables, are found in the appendix. While models with solely spatial
explanatory variables can be used in UrbanSim currently, it is hoped that in the future the sim-
ulation systembecomes sensitive to structural variables of the building stock, since this presents
the opportunity to better reĔect the local situation and to make the simulation more realistic.

ăe explanatory variable selection is essentially the same in Models 1 and 2 with one ex-
ception: Model 1 uses car travel time to Zürich Central Business District (CARTT_CBD),
while Model 2 considers regional car accessibility to employment (CARACC). Both explana-
tory variables could not be used in one model due to multicollinearity issues. Model 1 using
CARTT_CBD reveals the best overall model đt, whereas Model 2 including CARACC has
more policy relevance, as it is sensitive to any improvement in the street network beyond those
affecting the travel time to Zürich CBD.

Outlierswere identiđed as suggestedbyFotheringham et al. (2002, 78) andChatđeld (1995,
265) where a data point with the absolute value of the studentised residual exceeding 3 is a
potential outlier. ăis threshold has been applied for both models. Efforts of modeling in-
teraction of the selected explanatory variables, particularly those with slope and the total view
variable, did not improve themodels. SLOPEmight indeed have an intrinsic value, as it usually
comes with a certain potential view (at least of immediate surroundings), while VIEW_ALL
and VIEW_LAKE include the total visible area in hectares, which is rather coarse and consid-
ers, in particular, the long-range view.

ăe adjusted R-square values indicate goodmodel đts, whileModel 1 performs slightly bet-
ter thanModel 2. Researchers oĕen apply out-of-sample testing for the purpose of model accu-
racy and model prediction power veriđcation, where a proportion of the available data records
are leĕ out from the estimations and used to be compared to estimated outcomes. However,
in this study, no such analysis was performed, as data đtting was the priority, and there was less
focus on the predictive power of the models.

When detecting and incorporating spatial effects, it is necessary to produce a weight ma-
trix based on some kind of contiguity. Several approaches are available (e.g. Anselin 2002,
258; Bivand 2008, 251ff ). Because of a relatively high heterogeneity of spatial distribution of
the data points (see Figure 1), a k-nearest-neighbors approach by Euclidean distance was cho-
sen, whereas k = 9 produced the best results in terms of model đt measured by log likelihood
(LogLik) and Akaike Information Criterion (AIC) for the spatial simultaneous autoregressive
models. ăerefore, each observation has the nine next observations in terms of linear distance
deđned as contiguity in the weight matrix.

A set of diagnostic tests for spatial autocorrelation were performed based on the contiguity
weight matrix for both models, which clearly indicated the need to consider spatial autocorre-
lation in the models. ăis is unsurprising, given that most variables in the estimation actually
have a spatial relation. ăe global Moran’s I measure clearly indicated spatial autocorrelation
in both cases, while the Lagrange Multiplier tests (Anselin et al. 1996) pointed to both spatial
lags and spatial errors in the models, as can be seen by the high signiđcance level even in their
robust versions, although the test values are much higher for the robust Lagrange Multiplier
test of the spatial error (Robust LMerr).

Consequently, the SARerr and the SARmix approach were considered besides the GWR
approach in the following analysis, all applying the variable selection from Model 2 due to its
higher policy relevance as described above. Visually inspecting the resulting residual scatter
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Table 2: Estimated OLS parameters (N = 8592).

Y = Ln(RENT) Model 1 Model 2

Explanatory Variable Estimate SE sig. VIF Estimate SE sig. VIF

(Constant) 5.214 3.638

Ln(SQM) 0.777 0.005 *** 1.392 0.776 0.005 *** 1.394
LIFT 0.026 0.004 *** 1.160 0.024 0.005 *** 1.159
FIREPLACE 0.108 0.010 *** 1.167 0.118 0.011 *** 1.167
BALCONY 0.033 0.004 *** 1.186 0.033 0.004 *** 1.186
GTERRACE 0.105 0.015 *** 1.013 0.107 0.016 *** 1.013
ISHOUSE 0.133 0.013 *** 1.153 0.125 0.013 *** 1.153
BUILTBEF21 0.077 0.006 *** 1.230 0.109 0.006 *** 1.209
BUILT21TO30 0.086 0.011 *** 1.062 0.094 0.011 *** 1.061
BUILT81TO90 0.018 0.005 *** 1.199 0.018 0.005 *** 1.199
BUILT91TO05 0.067 0.005 *** 1.305 0.067 0.005 *** 1.306
Ln(CARTT_CBD) −0.294 0.007 *** 2.089
CARACC 0.119 0.005 *** 2.471
PTACC 0.006 0.001 *** 1.472 0.011 0.001 *** 1.493
Ln(RAILSTATION) −0.012 0.002 *** 1.184 −0.012 0.003 *** 1.232
AUTOBAHN −0.060 0.013 *** 1.033 −0.067 0.013 *** 1.033
AIRNOISE −0.039 0.006 *** 1.281 −0.096 0.006 *** 1.276
Ln(HOTREST_JOBS) 0.020 0.002 *** 2.339 0.032 0.002 *** 2.447
Ln(POP_DENS) −0.028 0.002 *** 1.242 −0.026 0.002 *** 1.243
FOREIGNERS (logit) −0.018 0.002 *** 1.340 −0.023 0.002 *** 1.338
Ln(TAXLEVEL) −0.130 0.014 *** 1.326 −0.223 0.015 *** 1.292
SLOPE (logit) 0.016 0.002 *** 1.285 0.026 0.002 *** 1.255
Ln(VIEW_LAKE) 0.008 0.001 *** 1.759 0.012 0.001 *** 1.944
Ln(VIEW_ALL) 0.005 0.002 ** 1.450 −0.001 0.002 1.528
Ln(SOLAR_EVE) 0.037 0.003 *** 1.107 0.018 0.003 *** 1.089
1Q_04 0.080 0.013 *** 1.195 0.079 0.014 *** 1.195
2Q_04 0.038 0.012 *** 1.228 0.032 0.013 ** 1.228
3Q_04 0.059 0.009 *** 1.618 0.057 0.009 *** 1.618
4Q_05 0.032 0.007 *** 2.612 0.033 0.007 *** 2.613
1Q_05 0.045 0.007 *** 2.616 0.044 0.007 *** 2.616
2Q_05 0.026 0.007 *** 2.035 0.024 0.008 *** 2.035
3Q_05 0.037 0.007 *** 2.526 0.034 0.007 *** 2.526

Adjusted R-square 0.854 0.836
F -test 1677.000 *** 1460.000 ***

Probability of rejecting H0: *** p < 0.01; ** p < 0.05; * p < 0.1
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Table 3: OLS diagnostics (N = 8592).

Model 1 Model 2

Measure Value sig. Value sig.

LogLik 3685.653 3183.261
AIC −7307.306 −6302.522
Global Moran’s I 0.213 *** 0.287 ***
LMerr 2164.867 *** 3918.393 ***
LMlag 454.444 *** 977.235 ***
Robust LMerr 1722.903 *** 2981.065 ***
Robust LMlag 12.480 *** 39.907 ***
Probability of rejecting H0: *** p < 0.01; ** p < 0.05; * p < 0.1

plots of the model indicated a problem with heteroscedasticity, as very low and very high ob-
served asking rents tended to be overestimated. ăe problem may have been caused by missing
and unavailable crucial structural variables, such as information about building conditions or
the landlord. However, the standard error of theOLSmodel was compared to the results based
on the heteroscedasticity consistent covariance matrix and did not show any signiđcant differ-
ence (for the procedure in R, see Bivand 2008, 290). ăerefore, heteroscedasticity was not
considered to be a serious problem in this case.

Since the data points were not randomly located and sometimes spaced widely about (see
Figure 1), an adaptive kernel was used for the GWR approach. As there was no prior justiđca-
tion for supplying a particular bandwidth, the two available options for đnding themost appro-
priate bandwidth were tested: 1) minimization of the cross-validation (CV) score and 2) min-
imization of the AIC measure (Fotheringham et al. 2002, 212). Both methods suggested the
same bandwidth. In Table 4, the results of the OLS, SARerr, SARmix, and GWR estimations,
based on the variable selection in Model 2, are shown. For the GWR model, the mean and the
standard deviations of the parameter values are presented. ăe parameter estimates do not vary
dramatically among themodels (exceptions are CARACC,AIRNOISE, andVIEW_ALL, for
which the GWR model indicates a large spatial variation of those variables indicated by mul-
tiple standard deviation values compared to the mean of the estimates). For model evaluation
purposes, both the sumof squares of the errors (SSE) and theAIChave been calculated. In both
measures, smaller values indicate better model đt. In this case, both measures identify the best
model đt for the GWR estimates; second best, the SARmix model. However, four explanatory
variables (PTACC, AIRNOISE, TAXLEVEL, and SOLAR_EVE) are not signiđcant in the
SARmix (as indicated by the values marked with a * in Table 4), whereas AIRNOISE even has
a counter-intuitive sign. Particularly with regard to the envisaged application of the hedonic
model in UrbanSim, the insigniđcance of the public transport accessibility coefficient creates a
major limitation of the model.

In order to further assess and compare the predictive accuracy of spatial autoregressive ap-
proaches and the GWR model, the predicted rents were compared with the observed values.
ăe results of this analysis (presented in Table 5), show that the OLS approach has the low-
est accuracy. Less than 66 percent of the predictions were within the range of ±2 percent of
the actual rent price and it showed the lowest accuracy within ±5 percent and ±10 percent as
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Table 4: Comparison of coefficients from various modeling approaches.

Y = Ln(RENT) GWR

Explanatory variable OLS
Estimate

SARerr
Estimate

SARmix
Estimate

Estimate
mean Std.dev.Ʋ

(Constant) 3.638 3.611 1.329 3.954
Ln(SQM) 0.776 0.773 0.773 0.772 0.055
LIFT 0.024 0.026 0.025 0.022 0.017
FIREPLACE 0.118 0.085 0.088 0.096 0.038
BALCONY 0.033 0.030 0.030 0.031 0.011
GTERRACE 0.107 0.094 0.097 0.098 0.073
ISHOUSE 0.125 0.137 0.141 0.138 0.047
BUILTBEF21 0.109 0.082 0.075 0.091 0.026
BUILT21TO30 0.094 0.075 0.070 0.084 0.042
BUILT81TO90 0.018 0.019 0.020 0.026 0.024
BUILT91TO05 0.067 0.080 0.085 0.078 0.023
CARACC 0.119 0.113 0.068 0.011 0.098
PTACC 0.011 0.006 0.002* 0.039 0.034
Ln(RAILSTATION) −0.012 −0.013 −0.016 −0.009 0.016
AUTOBAHN −0.067 −0.076 −0.079 −0.071 0.066
AIRNOISE −0.096 −0.083 0.032* −0.014 0.032
Ln(HOTREST_JOBS) 0.032 0.029 0.014 0.025 0.017
Ln(POP_DENS) −0.026 −0.028 −0.028 −0.029 0.014
FOREIGNERS (logit) −0.023 −0.014 −0.013 −0.018 0.007
Ln(TAXLEVEL) −0.223 −0.201 −0.002* −0.160 0.268
SLOPE (logit) 0.026 0.016 0.007 0.010 0.009
Ln(VIEW_LAKE) 0.012 0.010 0.003 0.008 0.007
Ln(VIEW_ALL) −0.001* 0.008* 0.017 0.006 0.024
Ln(SOLAR_EVE) 0.018 0.012 0.006* 0.024 0.027
1Q_04 0.079 0.078 0.079 0.072 0.034
2Q_04 0.032 0.046 0.044 0.040 0.036
3Q_04 0.057 0.067 0.066 0.060 0.021
4Q_05 0.033 0.038 0.036 0.032 0.020
1Q_05 0.044 0.050 0.049 0.048 0.020
2Q_05 0.024 0.027 0.026 0.024 0.018
3Q_05 0.034 0.040 0.039 0.037 0.022

Lambda 0.637
Rho 0.599
SSE 239.781 182.655 179.700 174.202
AIC −6302.522 −8169.980 −8319.190 −8392.987

* Not signiđcant at 0.05 level
Ʋ Standard deviation of coefficient values across study area
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well. ăe other three models performed considerably better, whereas around 73 percent are
in the ±2 percent range and slightly above 98 percent are in the ±5 percent range. ăe GWR
approach had the best predictive accuracy in the two tighter ranges but its performance was
slightly inferior in the ±8 percent range, although the differences were only marginal among
the models. ăe SARerr model is more accurate in the ±2 percent range than the SARmix
model, but slightly lower in the ±5 percent and ±8 percent range. Finally, the residuals of all
four models were tested for autocorrelation, measured by the Moran’s I test. Besides the OLS,
the GWR approach seems not to solve the autocorrelation, while there is essentially no auto-
correlation observable anymore in the residuals of the SARerr and the SARmix model.

Table 5: Predictive accuracy of models: Percentage of predicted rents within speciđed range of actual
asking rents (Ln(RENT)) and Moran’s I of the residuals.

2% range 5% range 8% range Moran’s I

OLS 65.77 96.81 99.91 0.287
SARerr 72.65 98.02 99.93 −0.018
SARmix 72.59 98.14 99.94 −0.016
GWR 73.79 98.46 99.92 0.119

ăe fact that the GWR approach does not solve the autocorrelation in the residuals is
alarming. Wheeler and Tiefelsdorf (2005, 186) emphasize that spatially auto-correlated resid-
uals can produce severely correlated local regression coefficients. ăis is proven by a further
investigation of the correlation matrix of the regression coefficients. In the correlation matrix,
signiđcant values beyond ±0.5 can be found in almost 8 percent of the cases and values beyond
±0.6 in 4 percent. ăerefore, the issue of multicollinearity among the coefficients clearly exists
in the GWR results. ăis raised strong doubts as to whether the GWR method is the most
suitable and reliable approach here despite its good model đt. ăe SARmix model has some
limitations as well, namely that four explanatory variables, including public transport accessi-
bility, are insigniđcant. Given that the SARerrmodel accuracy is almost as good as the SARmix
model, it is preferred here and suggested for the next update of the UrbanSim application for
Zürich.

6 Conclusions

Setting up an UrbanSim application for a metropolitan area is a major task and includes, in
particular, a signiđcant data collection effort. ăis article focused on hedonic residential rent
modeling in order to establish a housing price surface for the UrbanSim application in Zürich.
ăe task was particularly difficult since there was no tax assessor data or data from commer-
cial sources available for the study area at the required spatial resolution. Eventually, publicly
available residential asking rents from a web-based portal were used. ăe variable selection
was found by considering signiđcant explanatory variables while strictly controlling for mul-
ticollinearity. Spatial autocorrelation later proved to be a problem and several spatial simul-
taneous autoregressive models and the GWR approach were therefore tested. Although all
goodness-of-đt measures indicated slightly better performance for the GWR model compared
to the spatial simultaneous autoregressive models, its residuals were still auto-correlated. Ad-
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ditionally, the resulting GWR coefficients were correlated, which severely reduced conđdence
in the method in this study. ăe SARerr model has been preferred against the SARmix model
because the latter had several insigniđcant variables, including public transport accessibility,
which is a crucial measure in land use and transportmodeling. Additionally, the SARerrmodel
showed good accuracy of the predicted values compared to observed values.

Overall, the analysis highlighted the complex spatial structure of housing markets. ăe
need to explicitly address spatial effects is obvious since a failure to do so may result in loss of
explanatory power and erroneous estimates. ăe GWR method may not always be the best
choice, although an additional beneđt of GWR is to provide a means to visualize the spatial
structure of housing markets which was also emphasized in earlier studies. In this study, suf-
đcient spatial explanatory variables were available but other studies have highlighted that the
GWR method is also helpful in situations where locational information is difficult to obtain
or when knowledge of local submarkets is unavailable (Bitter et al. 2007, 24). However, lo-
cally correlated GWR coefficient estimates are a remaining problem which was present in this
study as well. Methodological improvements of the GWR approach have been suggested in
the literature, but are subject to an ongoing debate among econometricians. Spatial simultane-
ous autoregressive approaches proved to be a reasonable alternative in the analysis, which can
be implemented in UrbanSim more easily because of its structure of a single set of resulting
parameters.

Technically, UrbanSim is somewhat Ĕexible concerning variable selection for the various
needed models, as long as the variables are available and constantly updated. ăerefore, the re-
sults of this article open discussion about further development of themodel system, particularly
with regard to real estate price data used in the hedonic modeling. It is of particular concern
since real estate prices are also a major determinant of location choice. ăe hedonic modeling
efforts for theZürich application ofUrbanSimare based on residential rents due to the predom-
inant role of renting in Switzerland. Moreover, UrbanSim may not become sensitive for some
explanatory variables which have been used in the models for this article. But it can be stated
that besides using spatial variables, more information about the building stock, such as size, type
and age (presuming data availability), would greatly improve the hedonic estimations in addi-
tion to advancing the household location choice models, perhaps even the developer model.
Moreover, local rent and buying prices are not perfectly correlated. ăerefore, combining rent
modelswith transaction pricemodelswould additionally incorporate the rent/purchasing deci-
sion of households. With regard to model methodology, it again became obvious that hedonic
housingmodels considering spatial effects are more reliable and are therefore suggested for fur-
ther exploration in future applications of UrbanSim.
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Appendix: Additional variable data

Table 6: Estimated OLS parameters for models with spatial explanatory variables only.

Model 3 Model 4

Measure Value Sig. Value Sig.

(Constant) 9.515 *** 8.366 ***
Ln(CARTT_CBD) −0.258 ***
CARACC05 0.064 ***
PTACC05 −0.012 *** −0.004
Ln(RAILSTATION) −0.019 *** −0.015 **
AUTOBAHN −0.061 ** −0.064 **
AIRNOISE −0.009 −0.053 ***
Ln(HOTREST_JOBS) 0.000 0.020 ***
Ln(POP_DENS) −0.093 *** −0.091 ***
FOREIGNERS (logit) −0.087 *** −0.091 ***
Ln(TAXLEVEL) −0.289 *** −0.368 ***
SLOPE (logit) 0.018 *** 0.027 ***
Ln(VIEW_LAKE) 0.015 *** 0.018 ***
Ln(VIEW_ALL) 0.007 0.005
Ln(SOLAR_EVE) 0.071 *** 0.056 ***

Adjusted R-square 0.235 0.215
F -test 208.800 *** 182.200 ***
Moran’s I 0.165 *** 0.185 ***
Probability of rejecting H0: *** p < 0.01; ** p < 0.05; * p < 0.1
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