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Abstract: Integrated land use and transportationmodels have evolved along
a spectrum from simple sketch planning models to complex microsimula-
tion models. While each has its niche, they are largely unable to balance the
flexibility and realism of microsimulation and the speed and interactivity of
simple models. e Regional Strategic Planning Model (RSPM) aims to fill
this gap by taking a microsimulation approach while making other simplifi-
cations in order to model first-order effects quickly. It enables planners to
consider the robustness of prospective policies in the face of future uncer-
tainties by accepting a broad range of inputs and allowing rapid simulations
of many scenarios. is paper introduces the RSPM and shows how new
land use andmultimodal transportation sensitivities have been incorporated
through the conversion to thenewVisionEval open-source framework. Land
use and transportation interactions in the RSPM are reviewed, and the de-
velopment of a new multimodal travel demand module with improved land
use sensitivities is highlighted. e use of a unique nationwide dataset com-
bining the 2009 NHTS, EPA’s Smart Location Database, and metropolitan
transit and roadway data is explained. e paper concludes with the results
of validation and sensitivity tests, and a discussion of future work.
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1 Introduction

Integrated land use and transportationmodels of urban areas have evolved along a spectrumwith sim-
ple sketch planning models on one end, to complex dynamic microsimulation models on the other.
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Simple sketch planning tools, such as Cotheoretical consistency through sophisticated modeling
of individual behavior andmultimodal network details (Hunt et al. 2005). In amore recent review ar-
ticle, Acheampong and Silva (2015) summarize the theoretical foundations and the status of 28 opera-
tional land-use-transportation interaction (LUTI) models In particular, they discuss the challenges of
microsimulation LUTImodels including long execution time and uncertainties with respect tomodel
outputs resulting “from model misspecification, imperfect input information, and innate randomness
in events andbehaviors that are beingmodeled.” Aer discussing the topology and evolution of various
LUTI models, Kii, Nakanishi, Nakamura, and Doi conclude that directions for future LUTI include
“a simplified and essential model for national, regional and global assessment of urban land use” (Kii
et al. 2016, p. 153). While the landscape of LUTI models is crowded, these reviews agree that there
is a gap in this landscape that balances the flexibility and realism of microsimulation models with the
speed and interactiveness of simpler models.

e Regional Strategic Planning Model (RSPM) aims to fill the gap between more aggregated
sketch planning tools and more complex LUTI models. Sketch planning tools are primarily driven by
correlation or univariate elasticities, but they are unable to reflect the interconnectedness between
different urban phenomena, while full-fledged disaggregate models integrated with travel demand
models aim at capturing the interdependence in the urban system at the cost of model complexity,
detail, and run time. Advanced activity-based models capture interacting policies by microsimulation
of each individual’s daily trips by purpose using a detailed multimodal network. Traditional travel de-
mand models incorporate the network, but policies and their interactions are limited by an aggregate
treatment of the average behavior of “groups” of individuals.

RSPM uses microsimulation and interacting model components to enable better accounting of
policy interactions and the social and spatial heterogeneity of effects than is possible with sketch plan-
ning tools. e advantage of amicrosimulation approach is in the interpretability ofmodel results and
the flexibility in introducing additional disaggregate variables and utilizing alternative model struc-
tures (Donnelly et al. 2010;Waddell 2011). At the same time, RSPM simplifies the disaggregatemod-
eling approach from that of more complex LUTI models. RSPM forecasts only overall travel based
on urbanized area travel conditions and household attributes, avoiding network detail that leads to
long run times. It thereby strikes a balance between rapid computation and accurate representation of
how different types of households will change travel behavior in response to policies and investments.
ese simplifications enable more comprehensive analysis consistent with the uncertainties inherent
in long-range planning, and by allowing a larger set of factors and many more scenarios to be evalu-
ated in a timely manner. is enables the planning decision space and potential policy tradeoffs to be
broadly explored. It also enables the development of web-based interactive decision-support tools to
give planners and decision-makers the ability to better understand prospects and tradeoffs, as well as
resilience to alternative futures (Gregor 2016).

e RSPM is an offshoot of the GreenSTEP model, a microsimulation modeling package origi-
nally developed to assist theOregonDepartment ofTransportation (ODOT) and other state agencies
to develop statewide transportation strategies and policies for reducing greenhouse gas (GHG) emis-
sions to meet state goals (Oregon State Legislature 2010). e RSPM was developed from Green-
STEP to model metropolitan areas at a finer level of geographic detail to assist with the development
of scenario plans covering policy actions relevant at the regional level, and reporting for regional goals,
including Oregon’s adopted metropolitan GHG targets (Oregon State Legislature 2010). e model
was also rebranded to reflect the fact that it provides analytical support for much more than GHG
mitigation planning since it models a large number of transportation factors and produces a rich set
of performancemetrics. e RSPM andGreenSTEPmodels are both operational and have been used
for a number of studies to support the metropolitan area planning, as well as state plans, rules, and
legislation inOregon (OregonDepartment of Transportation, Planning Section 2012; Pietz andGre-
gor 2014) and also for long-range visioning in the Atlanta region. Other operational models that have
branched off the original GreenSTEP model code base include the Energy and Emissions Reduction
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Policy Analysis Tool (EERPAT) (FHWAOffice of Planning, Policy, and Realty 2016), and the Rapid
Policy Analysis Tool (RPAT), which was developed as part of the SHRP2 C16 project for evaluating
the effects of smart growth policies on travel demand (Outwater et al. 2014).

Current efforts aremerging theGreenSTEP family of tools into an open source common soware
platform, VisionEval, to support multi-agency collaboration in the development of strategic planning
models (Gregor et al. 2016). In conjunction with migrating the RSPM to the VisionEval platform,
ODOT commissioned research and development to expand and improve the land use model com-
ponents of the RSPM, increase the sensitivity of travel forecasting to land use variables, and improve
multimodal travel modeling capabilities. is paper has focused on the results of that work. e re-
mainder of the paper provides an overview of land use and transportation model components of the
RSPM as implemented in the VisionEval platform, then it documents the specification, validation,
and sensitivity testing of the newmultimodal travel demandmodule, before concluding with a discus-
sion of the new module’s integration with the RSPM and directions for future research.

2 Overview of the RSPM andModeled Land Use and Transportation Interactions

Estimation of the GreenSTEP and RSPM vehicle ownership, daily vehicle miles traveled (VMT, 1
mile = 1.61 kilometers), and several other submodels relied heavily on the national sample of the 2001
National Household Travel Survey (NHTS). e use of the 2001 NHTS in the development of these
models is documented in GreenSTEP and RSPM technical documents (Gregor 2015) and an earlier
paper (Clion and Gregor 2012). A benefit of using the nationwide data was that it opened up pos-
sibilities for transferring the model to other states and metropolitan areas in the U.S. Unfortunately,
few land use variables are included in the 2001 NHTS datasets (i.e., population density and general
location with respect to the metropolitan core). Although land use attributes are important variables
in a number of the GreenSTEP and RSPM submodels, the small number of variables limits the land
use and policy sensitivity of those models.

It has been a goal of this paper to improve the land use interaction of the RSPM and the ability
of the model to predict consequences for non-auto mode travel (i.e., walk, bike, public transit) that
are highly dependent on built form as well as automobile travel. To that end, we conducted research
and development to accomplish this goal in concert with the conversion of the RSPM to the new
VisionEval framework. is open-source framework, implemented in the R statistical programming
language (RCore Team 2017), is being built to facilitate collaboration in the development of strategic
planning models. Submodels are modules that can be written to interact with other submodels in a
plug-and-playmanner. Details on the framework design are available in the project repository (Gregor
2017). e objectives of the research described herein were to create new modules and revise existing
modules in the VisionEval framework to increase the land use and transportation interaction of the
RSPM and enable multimodal transportation analysis.

e development of improved land use and transportation modules for the RSPM was made pos-
sible by a unique dataset that was created by joining three nationwide datasets: the 2009 NHTS, the
Smart LocationDatabase, and transportation supply information from theNational Transit Database
and the Texas Transportation Institute (TTI). is dataset enabled travel models to be estimated
which are sensitive to a number of land use attributes characterizing the density, diversity, design,
destination accessibility, and distance to transit (5Ds) of places. Modules have been created to model
land use attributes and enable them to influence the interacting transportation modules. Following
are highlights of RSPM model components and the land use and transportation modules included
within them as context for understanding the enhancements gained from the models described in the
remainder of the paper. Figure 1 provides a summary overview of the sequence of model steps; All
RSPM steps are shown for completeness but those not directly related to this paper are not discussed.

Household Synthesis: Households are synthesized having persons in each of 6 age brackets from a
regional projectionof populationby age cohort using an iterative proportional fittingprocess. Workers



       .

* 

  

  

 

 

4 

Synthesize households that represent  
demographic & income characteristics. 

Land use Characteristics 

1 

2 

3 

 
demographic & income characteristics. 

 

1 

2 

3 

4 

5 

6 

5 

6 

Calculate household travel costs. 

Adjust household VMT to reflect  
travel costs & reallocate to vehicles. 

Calculate effect of metropolitan area  
congestion & congestion pricing on  
fuel economy & travel cost. 12 

11 

10 
Calculate household travel costs. 

Adjust 
travel costs & reallocate to vehicles. 

Calculate effect of metropolitan area  
congestion & congestion pricing on  
fuel economy & travel cost. 12 

11 

10 

Identify vehicles by powertrain (ICE,  
HEV, PHEV, EV) and optimize travel  
between vehicles. 

Calculate vehicle types & ages, and  
assign VMT to vehicles. 

7 

8 

Identify vehicles by powertrain (ICE,  

between vehicles. 

Calculate vehicle types & ages, and  

Calculate household vehicle fuel &  
power consumption & GHG  
emissions. 

Calculate household vehicle fuel &  
power consumption & GHG  
emissions. 

7 

8 
HEV, PHEV, EV) and optimize travel  

9 

Calculate additional VMT taxes  
needed to fully fund light duty vehicle  
portion of assumed road system. 

Calculate fuel & power consumption &  
GHG emissions from commercial  
service vehicles. 

Adjust fuel economy account for eco - 
driving. 

15 

14 

13 

Calculate heavy vehicle fuel and  
power consumption and GHG  
emissions. 

16 

Calculate additional VMT taxes  
needed to fully fund light duty vehicle  
portion of assumed road system.. 

Calculate fuel & power consumption &  
GHG emissions from commercial  
service vehicles. 

- 
driving. 

15 

14 

13 

Calculate heavy vehicle fuel and  
power consumption and GHG  
emissions.. 

16 

Adjust fuel economy account for eco Repeat  
to  

Balance 

Repeat  
to  

Balance 

 

Transportation Supply 

Household Vehicles: calculate vehicle 

ownership and adjust for carsharing 

Calculate Annual Average Daily VMT 

Non-motorized travel: Trip Frequency 

and Length of bike, walk, and transit 

trips 

T
R

A
V

EL
 D

EM
A

N
D

 

C
H

A
R

A
C

TE
R

IZ
E 

V
EH

IC
LE

S 

H
O

U
SE

H
O

LD
 V

EH
IC

LE
 T

R
A

V
EL

 B
U

D
G

ET
S 

       Statewide Only Steps 
       Heavy Duty Vehicle Step 
 

Figure 1: Overview of RSPM Steps

by age bracket are similarly synthesized. e age and worker attributes are used to assign a household
life cycle category. Household income is modeled as a function of the number of household workers
and their ages and the average per capita income of households in the region.

LandUseCharacteristics: Land use scenarios are created by specifying the numbers of single fam-
ily and multi-family dwelling units and the numbers of jobs in 3 sectors by model zone (e.g., census
block group). In addition, the income distribution of households in each zone is specified as the pro-
portion of households by regional income quartile. A logit model assigns each household to a housing
type and an iterative proportional fitting process assigns households to zones based on dwelling unit
and income characteristics of each zone. Several density and diversitymeasures are calculated from the
zonal allocations of population, employment, and zonal areas. Destination accessibility is also calcu-
lated based on those data as well as an interzonal distance matrix. Zonal network design and distance
to transit attributes are inputs to the model.

TransportationSupply: e transportation supply (i.e., congestion)model is a networkless aggre-
gate equilibrium model. It allocates daily VMT among roadway functional classes (freeway, arterial,
other) and congestion levels using relationships derived from urban mobility information collected
by the Texas A&M Transportation Institute (Texas A&M Transportation Institute, 2015). Each con-
gestion level for each functional class is associated with an average trip speed. Daily VMT is allocated
between freeways and arterials as a function of the ratio of average trip speeds. e effect of pricing
is modeled by converting prices into time equivalents. e effects of operations programs (e.g., ramp
metering) on average speeds are addressed usingmethods developed by Bigazzi andClion (2011) us-
ing data developed by the Texas A&MTransportation Institute for theUrbanMobility Report (Texas
A&M Transportation Institute 2015). Inputs to the model are the numbers of lane-miles of free-
ways and of arterials, the deployment of operations programs, prices (per vehicle mile) for traveling
in severely and extremely congested conditions. Outputs from the model include VMT and VHT
(vehicle-hours traveled) by roadway functional class, vehicle type, and congestion level.
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Travel Demand: Modules calculate household travel by light-duty vehicles and by walking, bi-
cycling, and public transit. e light-duty vehicle travel model calculates daily vehicle miles traveled
by the household as a function of the characteristics of the household (e.g., size, age, income, vehicle
availability, distance to transit), the land use characteristics of the zone where the household resides
(e.g., density, diversity, design, destination accessibility), and urbanized area transportation supply lev-
els (e.g. freeway lane-miles, transit-revenue miles, transit accessibility). Details about the estimation,
validation, and sensitivity testing of thismodel are described below. ewalking, bicycling, and public
transit models likewise are functions of household, land use, and transportation supply characteristics.
e alternative mode travel models are also sensitive to the amount of household vehicle travel. is
enables the effects of travel demand management programs and household travel budgets (explained
below) to be translated into changes in travel by mode.

Household Vehicles: e RSPM includes several household vehicle models because of the strong
relationships between vehicle characteristics, vehicle emissions, and the cost of vehicle travel. In ad-
dition to modeling the number of vehicles each household owns, the RSPM models the types (auto
vs. light truck), ages, and powertrains (ICE, HEV, PHEV, EV) of vehicles, along with statewide fuel
mix and associated fuel and electricity carbon intensities. e models also allocate travel between ve-
hicles, and for plug-in hybrid electric vehicles, the proportions of travel powered by electricity and
gasoline. In addition, the RSPM models the potential for households to use carsharing services and
the services of shared autonomous vehicles (SAV) to substitute for some or all of their vehicles. is is
accomplished by modeling the ownership cost per mile of travel and comparing that with the cost of
using a carshare service, to determine a household’s autos owned. Land use characteristics are included
in several of these models and indirectly affect several others through effects on household vehicle
travel.

Household Vehicle Travel Budgets: e RSPM models the effects of prices on household vehi-
cle travel (fuel prices, parking prices, VMT taxes, etc.) using a household budgeting approach. is
addresses the ‘rebound effect’ where improved vehicle fuel economy increases the amount of vehicle
travel. e budget model is based on Consumer Expenditure Survey data which show that household
spending on transportation has historically been fairly stable and that households shi expenses be-
tween transportation budget categories when gasoline prices fluctuate. e budget model establishes
a maximum household budget for variable transportation costs and adjusts household vehicle travel
to remain within the budget. ewalk/bike/transit models are run aer the budget model to account
for the effect of vehicle travel costs on those travel modes. Finally, the model includes an optional
feedback loop which calculates supplemental VMT taxes needed to cover deficits between roadway
costs and fuel taxes—as vehicles consume less fuel per mile of travel—and adjusts travel in response.

e RSPM framework utilizes a modular design. Outcomes of policy scenarios are usually mod-
eled in coordination with multiple modules. For example, the modeling of VMT and Vehicle Hours
Traveled (VHT) is done in coordination with four separate modules: along with the AADVMT
model in the Travel Demand module described in detail later in this paper, the Household Vehicles
module predicts types, ages, and powertrains of vehicles; the Household Vehicle Travel Budgets mod-
ule assigns the household VMT to vehicles (and modes) for each household in response to monetary
costs of travel; and finally the Transportation Supply module takes regional inputs of transportation
supply, demand management scenarios, and travel pricing and predicts VMT and VHT by roadway
functional class, vehicle type, and congestion level. is modular design reduces model complexity
and better captures potential effects of various policies that affect household vehicle fleet composi-
tion, transportation supply, household travel budget, and regional congestion level.

e functionality described above has evolved with the development of the multimodal model
described in this paper. is includes the inclusion of built form variables in the Land Use Character-
istics model step and their use in predicting travel demand by mode, and opportunities for their use in
other modules to improve their sensitivity to land use.
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us, the main aspect of full LUTI models that is missing from the RSPM is the feedback from
transportation systemperformance to landuse. Future landuses are specified through inputs regarding
the numbers of housing units (by type), and jobs (by sector), and relative attractiveness (by household
income quartile) for each zone. In other words, housing supplies are fixed inputs with respect to type
and location. ey are not derived from either household demand or accessibility. ere are several
reasons for this approach. First, the original development focus of GreenSTEP and the RSPMwas on
incorporatingpolicy levers andother exogenous influences that are likely tohave the greatest influences
on future GHG emissions. Although the development of the freeway system in the U.S. has greatly
affected land use and travel patterns in the past, the system is for all practical purposes built out, and
there is little public appetite for considering more than incremental expansions (in most regions of
the U.S. at least). It was determined at the time that adding feedback would substantially increase
the model complexity while providing relatively little information gain to planners given the types
of scenarios of interest to them. Second, the RSPM was developed to support a scenario planning
approach, where users specify what-if scenarios in terms of land use and transportation inputs and the
model estimates travel and environmental outcomes of those scenarios. is is not to say that the effects
of transportation on land use are viewed as being insignificant, only that accounting for those effects
in models that were initially created to support long-range planning for reducing GHG emissions
remains a secondary consideration. As theRSPMand statewideGreenSTEPmodels expand, the value
of and prospects for incorporating feedback from and consistency between transportation to land use
will increase, which will be implemented in a more elaborated land use model in a future version of
RSPM.

e travel demand module has been improved to better capture the built environment - travel in-
teraction for regional strategic planning and is themain focus of the remainder of this paper. Details of
VisionEval and other RSPM modules can be found on the Github project repository for VisionEval
(Gregor 2017) and technical documents for RSPM (Gregor 2015). In addition to previous appli-
cations of GreenSTEP family of models, applications of the new RSPM/VisionEval framework are
emerging. For example, recently, Weidner et al. (2018) applied VisionEval to model Autonomous
Vehicle (AV) Scenarios.

3 Travel DemandModule

As described above, the travel demand module captures the effects of household characteristics, built
environment, and urbanized area transportation supply levels on multimodal household travel out-
comes.

Multimodal travel and its relationship to household characteristics, built environment, and trans-
portation supply is a well-documented topic in the literature. Not only are there hundreds of original
research papers on the topic, but there are now multiple reviews and syntheses of previous research
(e.g., Ewing and Cervero 2001, 2010; Stevens 2017). VMT, trip frequency, and trip length are the
most common travel outcomes modeled (Ewing and Cervero 2001). For our multimodal travel mod-
ule, we model VMT, trip frequencies, and trip length for transit, bike, and walk travel. ere are more
than a dozen model types used in the literature; the most common model structures are linear re-
gression model, logistic regression model and count model (Poisson regression and negative binomial
regression) (Ewing and Cervero 2010). Due to the length limitations of this paper, we focus on the
VMT model in the remainder of this paper. Results for the non-driving models are available in our
project report (Wang 2017).

In operational modeling systems, there are numerous approaches to model VMT ranging from
full-fledged four-step travel demand models and activity-based models to simplistic elasticity-based
sketch planning models. Consistent with the design goal of RSPM, our travel demand module aims
to balance flexibility, realism, speed, and interactiveness. To achieve this end, we directly model long-
term VMT as a function of household characteristics, built environment, and transportation supply
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for individual households in our data. For strategic planning tools like RSPM, annual average daily
VMT (AADVMT) is more useful than modeling VMT on the day of the survey and approximating
average or annual VMT, which is commonly done in practice due to data availability or limitations.
For example, GreenSTEP and the RSPM currently synthesize AADVMT for each household because
the 2001 NHTS estimates of annual VMT are incomplete (available for less than half of the records)
with questionable data quality (Clion and Gregor 2012).

3.1 Structure of AADVMTmodel

To estimate and validate our AADVMTmodel, we first calculate AADVMT for a household from an
estimate of annual miles driven for each vehicle in the household (AVMT):

AADVMTh =

∑Vh
vh=0 AVMTvh

365
, (1)

where
• AADVMTh is the annual average daily VMT for household h ,
• vh ∈ {0, . . . ,Vh} indexes vehicles in household h ,
• Vh is number of vehicles in the household h , and
• AVMTvh

is the annual VMT driven for vehicle vh .
In the model estimation, AADVMTh computed with Equation (1) for each household is then

regressed on independent variables including household characteristics, built environment, and trans-
portation supply:

AADVMTh = f (SDh ,BEh ,TSRh
), (2)

where
• AADVMTh is the annual average daily VMT for household h ,
• SDh represents the social-demographic characteristics of household h ,
• BEh is the built environment variables (of various geographical resolution) of household h , and
• TSRh

is the transportation supply of the region where household h resides.
In terms of model structure options for the household AADVMT model ( f (.) in Equation (2)),

we consider three of the most commonly used structures in the literature (Ewing and Cervero 2010):
linear and transformed linear regression models, and a hurdle model, as well as the model structure
used in the current version of the travel demand module of RSPM: 2-step models of binomial logit
and linear/non-linear regression model.

3.1.1 Linear regression model

In a linear regression model of AADVMT, the dependent variable is modeled as a linear function of
the independent variables:

AADVMTh =Xhβ
l m + εh , (3)

where
• Xh is the independent variables that are composed of SDh , BEh , and TSRh

,
• βl m is the linear regression coefficients to be estimated,
• εh is the error term of the model, assumed to be indpendent, identically and Normally dis-

tributed (iid).
is is the simplest model form used for modeling VMT and is widely used in the literature (see,

for example, Frank and Engelke 2005; Kockelman 1997; Sun et al. 1998). However, the iid Normal
assumptionof the error term may be violated due to the nature of VMT measure.
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3.1.2 Transformed linear regression models

Wetested twodifferent transformed linear regressionmodels: a semi-logmodel and apower-transformed
linear model, in which the dependent variable is log- and power-transformed, respectively. e right-
hand side of the regression is otherwise similar to the linear regression model in Equation (3). ese
transformations are commonly used to address the violation of the iid Normal assumption in a linear
regression model.

3.1.3 2-step models

e current travel demand module of RSPM uses a 2-step approach to model survey day VMT: a
binomial logistic regression model on whether a household has non-zero VMT and, for households
with non-zero VMT, a power-transformed regressionmodel of VMT (Clion andGregor 2012). For
the new travel demand module, we tested the same 2-step model structure with AADVMT in the
place of survey day VMT:

Pr(AADVMTh = 0) =
exp(Xhβ

2S1)

1+ exp(Xhβ
2S1)

, and

AADVMTδh =Xhβ
2S2, if AADVMTh > 0,

(4)

where
• Pr(AADVMTh = 0) is the probability of AADV M T for household h equal 0, which is mod-

eled by a logistic regression model;
• Xh is the independent variables that are composed of SDh , BEh , and TSRh

;
• β2S1 and β2S2 are the coefficients to be estimated for the first and second step of the 2-Step

models, respectively; and
• δ is the power parameter for the power-transformed regression, which is determined via the

Box-Cox transformation (Box and Cox 1964).

3.1.4 Hurdle model

Since VMT can only take values equal to or greater than 0 and households with zero VMT may be
qualitatively different from those with positive VMT, there are applications of hurdle models to mod-
eling of VMT (e.g., Ewing et al. 2015). Similar to 2-step models described in Equation (4), a hurdle
model has two regimes, one generating the zeros and one generating the positive values (Greene 2011,
p. 821–826). e difference is that in a hurdlemodel, the estimation processmaximizes the likelihood
of these two regimes jointly, instead of doing it independently like in the 2-step models.

Pr(AADVMTh = 0) =
exp(Xhβ

h1)

1+ exp(Xhβ
h1)

, and

Pr(AADVMTh = j ) = (1−Pr(AADVMTh = 0))·
exp(−λh)λ

j
h

j ![1− exp(−λh)]
, j = 1,2, ..., with

λh = exp(Xhβ
h2),

(5)

where
• Pr(AADVMTh = 0) and Pr(AADVMTh = j ) are the probability of AADV M T for house-

hold h equal 0 and j respectively;
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• Xh is the independent variables that are composed of SDh , BEh , and TSRh
;

• βh1 andβh2 are the coefficients to be estimated for the two regimes of the hurdle model, re-
spectively; and
• λh is the mean VMT for household h and is modeled as exp(Xhβ

h2).

3.2 Variable andModel Selection

We relied on previous research on travel behavior to ensure behavior validity of our models and aim
to select at least one variable from each group of household characteristics, built environment, and
transportation supply variables with moderate correlations. For each model structure, we loosely used
a forward step-wise variable selection process to enter these variables into the specification to achieve
highest prediction accuracy (measured by rmse - root mean square errors) while monitoring coeffi-
cients’ statistical significance: we first control for household’s socio-demographic characteristics, and
gradually add built environment and transportation supply variables. Among the built environment
variables, we aim to include at least one variable from each of the 5D categories of built environment
measures. When no variable in a category is statistically significant at 5 percent significance level, we
still include one that is marginally significant but provides the best improvement in prediction accu-
racy.

Aerfinding thebestmodel specification for eachmodel structure, weuse the5-fold cross-validation
to select the best model structure with highest prediction accuracy among the 4 possible options. A
k-fold cross-validation randomly partitions a sample evenly into k subsamples. In k iterations, each
one of the k subsamples is reserved for cross-validation (testing) in turn, while the remaining k − 1
subsamples are combined and used for estimation (training). k-fold validation is an efficient approach
for cross-validation with low variance. 5- or 10-fold cross-validation is commonly used (Hastie et al.
2016).

3.3 Data

We combined three nationwide datasets to create a unique dataset for model estimation and testing.

3.3.1 NHTS

e 2009 NHTS (U.S. Department of Transportation, Federal Highway Administration 2009) col-
lected trips taken by all members of a surveyed household in a 24-hour period, as well as their socio-
demographic characteristics. e 2009 NHTS included 150,145 households, 308,901 household
members, and 1,079,763 trips.

e 2009 NHTS also includes odometer readings, as well as other attributes, of all vehicles in
a household. Oak Ridge National Laboratory (ORNL) creates estimates of annual miles driven for
each vehicle utilizing the odometer readings, self-reported annual miles driven, vehicle attributes, and
household socio-demographic characteristics. ORNL validates the imputed annual VMT against
highway statistics and 2001 NHTS and concludes the imputation “improves upon available data …
[and provides] better estimates for a given vehicle” (Oak Ridge National Laboratory 2011, p. 48).
Figure 2 shows histograms for AADVMT.

We were able to access the confidential residence Census Block Group (2010 geography) for all
households in the 2009NHTS.is information allows us to join household characteristics and travel
outcomes inNHTSwith the Smart LocationDatabase to create a unique nationwide dataset with rich
household characteristics, travel outcomes, and built environment information. is unique dataset
allows us to overcome a limitation that plagues similar research utilizing the NHTS data: it has a very
limited set of built environment variables and previous studies resort to using urbanized areas as their
unit of analysis (Cervero and Murakami 2010; Glaeser and Kahn 2008).
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Figure 2: Histogram of household annual average daily VMT in the 2009 NHTS data

3.3.2 Smart Location Database

e Smart Location Database (SLD) is a US nationwide database with extensive built environment
variables organized around the 5D categorization - Density, Diversity, Design, Destination, and Dis-
tance to transit. It includes more than 90 attributes summarizing characteristics such as housing den-
sity, diversity of land use, neighborhood design, destination accessibility, transit service, employment,
and demographics. Most attributes are available for every census block group in the United States
(Ramsey and Bell 2014).

3.3.3 Transportation Supply Data

Even though the SLDcontains somemeasures of the transportation supply, such as transportationnet-
work density and access to transit stops and services, they are local measures at theCensus block group
level. ere is likely a network effect of transportation supply—the more complete a transportation
network, the higher its utility to travelers—that cannot be captured by the local measures (Levinson
and Krizek 2008). To address this, we use the urbanized area level transportation supply measures in-
cluding freeway lane-kilometers (converted from original lane-miles), annual transit vehicle revenue
kilometer (converted from original revenue miles), etc. from Texas A&M Transportation Institute’s
Urban Mobility Report (Texas A&M Transportation Institute 2015).

Since this data is only available for urbanized areas (UZA), we segment the NHTS data similar
to what Gregor did (2015): a UZA segment with complete information of household characteristics,
built environment and transportation supply and a non-UZA segment for which regional transporta-
tion supply information is missing.

Aer joining these three datasets, we have a household-level dataset with about 200 variables. Ta-
ble 1 presents a select subset of these variables with descriptions, source, and summary statistics. Note
this is an incomplete list of variables that appear in at least one of the models we present in this paper.
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Table 1: Variables, their source, description, and summary statistics

Name Source Description Mean std dev

AADVMT NHTS Annual average daily VMT 60.01 48.87
ntrips.Transit NHTS Transit trips during the day of

survey
0.17 0.76

ntrips.Bike NHTS Biking trips during the day of
survey

0.07 0.49

ntrips.Walk NHTS Walking trips during the day of
survey

0.70 1.60

Age0to14 NHTS Number of household members
younger than 14

0.20 0.58

Age65Plus NHTS Number of household members
older than 65

0.57 0.75

CENSUS_D NHTS Census division classification for
home address: New England,
Middle Atlantic, East North
Central, West North Central,
South Atlantic, East South
Central, West South Central,
Mountain, or Pacific

DRVRCNT NHTS Number of drivers in household 1.80 0.78
HHSIZE NHTS Count of household members 2.34 1.24
LIF_CYC NHTS Household life cycle classification:

Single, Couple w/o children,
Couple w/ children, or Empty
Nester

LogIncome NHTS log total household income 10.72 0.87
VehPerDriver NHTS Number of vehicles per licensed

driver
1.12 0.57

WRKCOUNT NHTS Number of workers in household 0.93 0.89
D1B SLD Gross population density

(people/acre) on unprotected land
6.15 16.02

D2A_EPHHM SLD Employment and household
entropy

0.47 0.23

D2A_WRKEMP SLD Household Workers per Job, as
compared to the region

10.05 31.81

D3bpo4sqkm SLD Intersection density in terms of
pedestrian-oriented intersections
having four or more legs per square
kilometer

33.95 59.53

D4c SLD Aggregate frequency of transit
service within 400 meters of block
group boundary per hour during
evening peak period

25.70 65.44

D5ar SLD Jobs within 45 minutes auto travel
time, time- decay (network travel
time) weighted

85004.28 123761.90
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Name Source Description Mean std dev

D5cr SLD Employment accessibility
expressed as a ratio of total MSA
accessibility

0.00 0.01

TRPOPDEN SLD Census tract population density 5.53 15.04
EMPTOT_5 SLD Total employment within 8

kilometers buffer of block group
31773.32 95420.00

FwyLanekmP1k TTI
UMR

Urbanized area freeway
lane-kilometers per 1,000 person

1.12 0.62

TranRevKmP1k TTI
UMR

Urbanized area transit annual
vehicle revenue kilometers per
1,000 person

26.95 19.13
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4 Results

To eliminate potential outliers, we exclude observations whose AADVMT value is above the 99 per-
centile. With this cutoff, we exclude 1403 observations (out of 150145) with AADVMT values rang-
ing from221.588 to 800.462. Observationswithmissing values in dependent or independent variables
are also excluded. We use the variance inflation factor (VIF) to filter independent variables with seri-
ous multi-collinearity (VIF > 10) (Menard 2001, p. 76).

Table 2 shows the model goodness-of-fit (R2 for linear regression models or pseudo-R2 for non-
linear models) and root mean squared error (rmse) for each of 5-fold cross-validation. As shown in
Table 2, the power-transformed model and the 2-step models have the best accuracy (lowest rmse) in
cross-validation. We chose the power-transformed model for its simplicity, ease of use, and compu-
tational performance. e power parameter is determined via the Box-Cox transformation (Box and
Cox 1964): δ = 0.38.
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Table 2: k-fold cross-validation for model structure selection

Model Type Segment kt h -fold rmse R2 pseudo-R2

2 step models UZA 1 29.27 0.46 0.59
hurdle model UZA 1 30.54 0.33
power-transformed linear
regression model

UZA 1 29.31 0.45

semi-log regression model UZA 1 32.51 0.41
2 step models UZA 2 28.91 0.46 0.61
hurdle model UZA 2 29.69 0.33
power-transformed linear
regression model

UZA 2 28.89 0.46

semi-log regression model UZA 2 31.43 0.42
2 step models UZA 3 29.24 0.46 0.60
hurdle model UZA 3 29.91 0.33
power-transformed linear
regression model

UZA 3 29.29 0.46

semi-log regression model UZA 3 31.63 0.42
2 step models UZA 4 29.48 0.46 0.58
hurdle model UZA 4 31.35 0.34
power-transformed linear
regression model

UZA 4 29.46 0.46

semi-log regression model UZA 4 33.79 0.42
2 step models UZA 5 28.98 0.46 0.57
hurdle model UZA 5 29.84 0.34
power-transformed linear
regression model

UZA 5 28.94 0.45

semi-log regression model UZA 5 31.67 0.41
2 step models non-

UZA
1 32.78 0.47 0.41

hurdle model non-
UZA

1 34.04 0.12

power-transformed linear
regression model

non-
UZA

1 32.79 0.47

semi-log regression model non-
UZA

1 36.00 0.43

2 step models non-
UZA

2 32.77 0.47 0.41

hurdle model non-
UZA

2 33.67 0.12

power-transformed linear
regression model

non-
UZA

2 32.75 0.47

semi-log regression model non-
UZA

2 35.46 0.43

2 step models non-
UZA

3 32.77 0.47 0.39

hurdle model non-
UZA

3 33.74 0.12

power-transformed linear
regression model

non-
UZA

3 32.74 0.47
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Model Type Segment kt h -fold rmse R2 pseudo-R2

semi-log regression model non-
UZA

3 35.50 0.43

2 step models non-
UZA

4 32.97 0.47 0.39

hurdle model non-
UZA

4 34.70 0.12

power-transformed linear
regression model

non-
UZA

4 32.96 0.47

semi-log regression model non-
UZA

4 37.30 0.43

2 step models non-
UZA

5 33.38 0.47 0.41

hurdle model non-
UZA

5 34.95 0.12

power-transformed linear
regression model

non-
UZA

5 33.35 0.47

semi-log regression model non-
UZA

5 37.37 0.43



       .

25

50

75

100

−100 −50 0 50 100 150 200−100 −50 0 50 100 150 200

% change to  VehPerDriver

A
ve

ra
ge

 A
A

D
V

M
T

Segment

non−UZA

UZA

Figure 3: AADVMT elasticity to VehPerDriver. e elasticity is non-linear and non-UZA households
have higher elasticities to VehPerDriver than UZA households

Table 3 presents the final estimation results for the power-transformed model. All the household
characteristics covariates have expected signs. For the VehPerDriver variable (number of vehicles per
driver in ahousehold), weuse a cubic spline on log(VehPerDriver+1) to capture thenon-linear effect of
households’ vehicle ownership on driving. e k-fold cross-validation helps ensure that specifications
with such non-linear transformations do not overfit the sample.

Figure 3 shows thenon-linear elasticity ofAADVMTtoVehPerDriver: the x-axis is thepercentage
change to current vehicle per driver level inNHTShouseholds and the y-axis is the averageAADVMT
over all UZA or non-UZA households. It is clear that the elasticity is non-linear. In theNHTS, UZA
households have AADVMT = 48.291 (where the UZA elasticity curve intersects with x = 0). As
VehPerDriver reduces by 100 percent (in this case, all households own0 vehicles), AADVMTdrops to
5.555, a 88.498 percent drop. However, if VehPerDrive increases by 100 percent, AADVMT increases
to 66.675, a 38.068 percent increase. e next 100 percent increase in VehPerDriver brings even less
increase in AADVMT. It also shows that households in non-UZA have higher elasticities than UZA
households.

Most coefficients for the 5D variables have expected signs and relatively small magnitude as doc-
umented in the literature (Ewing and Cervero 2010; Stevens 2017), except for D1B (population den-
sity) andD2A_EPHHM(land use diversity) variable for the non-UZA segment. Aer controlling for
TRPOPDEN (tract population density) and employment within 8-kilometer buffer (TOTEMP_5),
coefficients for D1B and D2A_EPHHM are positive. In addition to each 5D variables by themselves,
we also test interaction terms across different 5D categories. e significant and positive coefficient
for the interaction term of UZA transit revenue kilometers per 1,000-people (TranRevKmP1k) with
a localized measure of the frequency of transit service (D4c) indicates that good local access to transit
services in a UZA with extensive transit network have an extra effect on reducing driving. Similarly,
the interaction term of D1B and D2A_EPHHM for the non-UZA model has an expected negative
sign, which may indicate that density or diversity alone in non-UZA areas is not effective in reducing
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driving, but the twoworking together is. Excluding the interaction termofD1B:D2A_EPHHMdoes
not change the sign or significance of the coefficients for D1B or D2A_EPHHM.

5 Conclusion and Discussion

In this paper, we introduce the RSPM suite of tools: its origin and niche of focusing on long-term
effects and enabling rapid scenario simulations with a flexible microsimulation approach, its evolu-
tion, and current development. We then focus on the recently improved multimodal travel demand
module for the RSPM that better captures the land use-travel interaction. We document the process
and techniques we utilize to do model selection, validation, and sensitivity testing with the household
AADVMT model. We aim for the simplest model with the best predicting power and behavior valid-
ity. We ended up choosing the power-transformed method among four model structure options with
a k-fold cross-validation process. e cross-validation process also ensures we don’t overfit the sample
data as we consider transformations to capture non-linear effects and interaction effects. We believe
this paper is the first that benchmarks alternative model structures for modeling AADVMT using a
rigorous cross-validation process.
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Table 3: Estimation results for the power-transformed non-linear model

AADV M T 0.38

UZA Non-UZA

DRVRCNT 0.719∗∗∗ (0.011) 0.755∗∗∗ (0.011)
HHSIZE 0.004 (0.008) 0.018∗∗ (0.009)
WRKCOUNT 0.178∗∗∗ (0.008) 0.167∗∗∗ (0.007)
LogIncome 0.250∗∗∗ (0.007) 0.299∗∗∗ (0.006)
Age0to14 0.095∗∗∗ (0.011) 0.097∗∗∗ (0.011)
Age65Plus −0.066∗∗∗ (0.008) −0.073∗∗∗ (0.007)
ns(log1p(VehPerDriver), 3)1 2.770∗∗∗ (0.047) 2.730∗∗∗ (0.043)
ns(log1p(VehPerDriver), 3)2 5.870∗∗∗ (0.192) 5.600∗∗∗ (0.171)
ns(log1p(VehPerDriver), 3)3 2.950∗∗∗ (0.208) 3.530∗∗∗ (0.173)
LIF_CYCEmpty Nester −0.227∗∗∗ (0.016) −0.188∗∗∗ (0.015)
LIF_CYCParents w/ children 0.034∗ (0.017) 0.019 (0.017)
LIF_CYCSingle −0.186∗∗∗ (0.020) −0.176∗∗∗ (0.020)
log1p(TRPOPDEN) −0.028∗∗∗ (0.010) −0.039∗∗∗ (0.013)
log1p(EMPTOT_5) −0.057∗∗∗ (0.005) −0.037∗∗∗ (0.003)
CENSUS_DEast South Central 0.079 (0.054) 0.087∗∗∗ (0.030)
CENSUS_DMiddle Atlantic −0.108∗∗∗ (0.027) −0.168∗∗∗ (0.022)
CENSUS_DMountain −0.084∗∗∗ (0.026) −0.111∗∗∗ (0.029)
CENSUS_DNew England −0.130∗∗∗ (0.045) −0.025 (0.030)
CENSUS_DPacific −0.077∗∗∗ (0.023) −0.202∗∗∗ (0.024)
CENSUS_DSouth Atlantic 0.018 (0.023) 0.030 (0.019)
CENSUS_DWest North Central −0.030 (0.058) −0.057∗∗ (0.025)
CENSUS_DWest South Central 0.073∗∗∗ (0.024) 0.084∗∗∗ (0.021)
FwyLanekmP1k 0.040∗∗∗ (0.015)
TranRevKmP1k −0.0004 (0.0003)
D1B −0.001∗∗∗ (0.0004) 0.010∗∗∗ (0.004)
D2A_WRKEMP −0.0003∗∗ (0.0001)
D3bpo4sqkm −0.0002∗∗ (0.0001)
D5cr −12.000∗∗∗ (2.930)
TranRevKmP1k:D4c −0.00000∗∗∗ (0.00000)
D2A_EPHHM 0.044∗ (0.026)
I(D5ar/1000) −0.00002 (0.0002)
D1B:D2A_EPHHM −0.026∗∗∗ (0.007)
Constant −1.900∗∗∗ (0.112) −2.220∗∗∗ (0.094)
Observations 47,288 55,103
R2 0.456 0.464
Adjusted R2 0.456 0.464
Residual Std. Error 0.979 (df = 47258) 1.000 (df = 55076)
F Statistic 1,366.000∗∗∗ (df = 29; 47258) 1,834.000∗∗∗ (df = 26; 55076)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Std error in parentheses.
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We utilize a unique dataset by joining three US nationwide datasets: the 2009 NHTS, the Smart
Location Database, and transportation supply information from National Transit Database and TTI.
We believe the household AADVMT model presented in this paper is the first model utilizing such a
nationwide dataset with high resolution built environment variables while controlling for households’
socio-demographic characteristics. Previous nationwide research in the US is either limited to using
only the coarse measures of built environment (for example, Gregor, 2015) or aggregate household
travel to a larger geography like UZA (e.g., Cervero and Murakami 2010; Glaeser and Kahn 2008)
while discardingmost other household characteristics. Ourmodel results largely corroborate previous
findings of small effect sizes of density, diversity, and design variables onVMTand a relatively stronger
effect of destination accessibility (access to employment in our case) (Ewing andCervero 2010; Stevens
2017).

However, using a large sample with many variables is not without challenges, including the curse
of dimensionality and spurious correlation. With the number of variables we have, it was almost at the
limit of what is possible with a manual model selection process, especially since we want to consider
non-linear effects and interactions between variables. Model selection techniques such as stepwise
regression and Bayesian model averaging are helpful only to an extent in this case. Machine learning
techniquesmay be a potential solution and are a direction wewill explore in our future research. With
the large sample size of more than 150,000 in the 2009 NHTS, it is very easy to find a statistically
significant correlation between an independent variable and the dependent variables. However, not
all significant correlations are meaningful. In this paper, we rely on prediction accuracies in cross-
validations in addition to model goodness-of-fit to guide the model selection and avoid overfitting,
but the process is very onerous with a large number of independent variables.

Although not included in this paper, the models for non-auto travel, along with the AADVMT
model, made up the multimodal travel demand module that are implemented for the open source
VisionEval soware framework. We hope that its modular structure, openly available source code,
and documentation will enable modifications and extensions of this work by the research community.
e VisionEval and RSPM project is currently under active development (Gregor 2017). As the new
modules are merged into the VisionEval VE-RSPM version, the final implementation adopted may
incorporate other considerations and evolve slightly from what is described in this paper.

Finally, the new travel demand module is applied to the Rogue Valley MPO (the MPO area in-
cluding Medford in southern Oregon with more than 70,000 households) for a performance check,
sensitivity tests, and external validation. e module takes seconds on a modern PC of moderate
configuration with the RVMPO data. e new travel demand module has better sensitivity to built
environment than the current RSPM module. We also compare the predictions of VMT and non-
motorized travel from the new module against the information in the Oregon Household Activity
Survey. e new module produces good predictions in aggregation (predicted VMT of 41.8 vs ob-
served VMT of 36.7) and by market segments. Overall, the new module has demonstrated improve-
ment in all aspects compared. Details of the module testing are available in a separate project report
(Wang, 2017). A comparisonwith full-fledged travel demandmodels is le for future research, as they
are not readily available for RVMPO.
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