
Abstract: Public transit is highly promoted worldwide to reduce traffic 
congestion. An evidence-based planning of stop locations and routes 
with regard to residential and workplace locations can reduce walking 
distances to transit and the number of transfers, which can improve 
service quality of public transport and thus increase  ridership. This 
paper proposes a novel method of identifying residential and workplace 
locations from smart card data. The proposed method identifies relevant 
stops first and then refines their catchments to narrow down residential 
and workplace locations in three steps: defining constraints from the 
design of the public transport network, movement logic, and land use. 
In 2017, we tested the method using Beijing smart card data. The results 
show close to 69% residential locations inference rates and more than 
72% workplace locations inference rates. The mean value of inferred 
areas is approximately 20% of the areas derived by traditional methods. 
Available data on alighting stops verify the inferred results at least for 
flat fare systems.
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1	 Introduction

The development and improvement of public transport is seen as an important approach to reduce traf-
fic congestion and car dominated environmental pollution. Evidence-based planning of stop locations 
and routes with regard to residential and workplace locations can improve service quality of transit and 
thus lead to an increase in its ridership (Ceder, Butcher, & Wang, 2015). However, to know the travel 
demand of transit riders is a premise for this planning. Currently transit demand is obtained through 
transit surveys, automatic passenger counter (APC) system or through smart card data. Both methods 
get origin-destination (OD) data of stop-level granularity. The locations where transit riders start their 
travels, i.e., the places they are living or working, remain unknown. State-of-the-art methods assume 
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that these places are within walking range of the OD stops, which is a granularity similar to transit stop 
distances, and thus too coarse for transit stop planning. This paper, however, will suggest a novel method 
of reasoning that will refine the granularity substantially. 

By overlapping the identified individual passengers’ residential and workplace areas, the density of 
travel demand of the whole city can be obtained. The distances between identified travel demand areas 
and adjacent transit stops enable to identify redundancy and gaps at the transit route and transit network 
levels, thus providing the evidence to adjust the location of certain transit stops. Such inference could 
give transit planners a more accurate perspective on transport demand, thus improving transit planning 
and transit service levels.

The method is based on considering various constraints implied by the transit network. In detail, 
the approach suggests four steps: (a) identifying residential and workplace stops of an individual, (b) 
intersection of all residential and workplace stops of an individual, (c) considering not only the boarding 
stops, but also their contrast sets – the other stops nearby that have not been used for boarding, and (d) 
adding fine tuning from parcel-level land-use maps. This paper is going to prove the hypothesis that the 
transit stops from passengers’ travel records enable to reconstruct possible residential and workplace lo-
cations with significantly finer granularity than traditional methods of walking ranges around residential 
and workplace stops. 

In order to investigate the hypothesis, two weeks of 250,000 transit riders’ smart card data from 
Beijing will be used for experimental verification. This dataset contains both boarding and alighting stop 
records. The experiment is designed in two parts. In the first part only, the boarding stops will be used 
to infer residential and workplace locations, and the alighting stops will be used for the verification of 
inferred locations. This part provides realistic evidence for those smart card systems where only board-
ing stops are recorded, i.e., flat fare systems (such as London’s or Melbourne’s). In the second part, both 
boarding and alighting stops are used in the reasoning process. The second part provides realistic evi-
dence for those smart card systems where both boarding and alighting stops are recorded, i.e., distance-
based fare systems (such as Beijing’s or Singapore’s). The experimental outcomes prove the validity of 
the reasoning method.

The remainder of this article is organized as follows. In the next section research background and 
related methods are reviewed. Then Section 3 introduces the methodology of residential and workplace 
locations identification. Section 4 uses the dataset from Beijing as case study for methodology verifica-
tion. Section 5 is the results and discussion. Section 6 provides the conclusions drawn in this study and 
suggests future research directions.

2	 Background

Traditional transit demand modelling starts with trip-generation and mode split steps. It obtains zone 
level transit demand from transit travel surveys (or, more recently, smart card systems), and then dis-
tributes demand at zone centroids or uniformly across a zone. However, both distributions accept an 
aggregation error. Furth, Mekuria, and SanClemente (2007) proposed a parcel-level modelling method 
that could improve the distribution. Parcel-level demand estimation begins with surveyed on-off counts 
at transit stops, and then allocates the counts to each individual parcel by measuring trip generation 
rates (considering land-use type, size and location factors). However, the parcel-level demand modelling 
involves some practical issues. First, some jurisdictions do not maintain or provide access to parcel-level 
population data, and where it is available it may be out-of-date or inaccurate. Secondly, travel survey 
data, which can obtain riders’ residential or workplace locations, typically represents only a small sample 
of the population, introducing another inaccuracy of population demand modelling. And thirdly, on-
off travel surveys cannot represent a continuous and dynamic transit demand. 
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Smart card automatic fare collection (AFC) is a popular fare-management tool that has been imple-
mented in many cities around the world in recent years. Utilizing the detailed spatial-temporal travel 
information of smart card data is a new way to obtain transit demand. It is population-wide data rather 
than a sampled subset, collected continuously over time rather than at sampled points in time, and sub-
stantially more accurate about travel times and stops. It represents a large volume of revealed preference 
data that allows travelers’ behavior to be modelled with higher accuracy than by using traditional survey 
data (Jánošíková, Slavík, & Koháni, 2014). However, even smart cards are either anonymous or not 
linking an address (parcel) to a particular usage, for the same reasons. Some cities use a distance-based 
fare implemented in their AFC systems such as Singapore (Zhong, Arisona, Huang, Batty, & Schmitt, 
2014) and Brisbane (Tao, Rohde, & Corcoran, 2014). For the distance-based fare systems, passengers 
have to touch their smart cards on card readers both when checking in and checking out. Boarding in-
formation and alighting information are both recorded. This way, accurate stop-level OD matrices can 
be obtained. An alternative AFC system applies flat fares. In this case, transit riders just need to touch 
on their cards when boarding vehicles, and information about their alighting is not collected. Since the 
location of the boarding stop, and the travelled distance do not matter, only some flat fare AFC systems 
are integrated with AVL (Automatic Vehicle Location) systems, and only then can record transaction 
location when boarding. In order to obtain complete OD data from flat fare systems, some destination 
estimation algorithm are proposed (Chu & Chapleau, 2008; Nunes, Galvao Dias, & Falcao e Cunha, 
2015; Trépanier, Tranchant, & Chapleau, 2007). In some cities AFC systems and AVL systems were de-
signed separately, for example in San Diego (Munizaga & Palma, 2012) and London (Wang, Attanucci, 
& Wilson, 2011). Here, only the boarding time is recorded directly but without the boarding location. 
Only after integration with the existing AVL such flat fare AFC systems provide stop-level OD matrices 
with accurate origin location but with inferred alighting destinations.

However, for planning the location of transit stops, or for adjusting transit routes, the transit plan-
ners need OD data in form of residential and workplace locations of transit riders rather than their OD 
stops. Axhausen, Schonfelder, Wolf, Oliveria, and Samaga (2004) proposed for car drivers a method 
that could identify their location and purpose of trips’ origins and destinations, by using GPS traces of 
vehicles. However, for transit riders, their walking traces from origin to boarding stop and from alighting 
stop to destination remain unknown as long as they do not voluntarily track themselves while walking, 
e.g., by mobile travel surveys (Cottrill et al., 2013). So generally the location of travel origin or destina-
tion cannot be obtained directly. Long, Zhang, and Cui (2012) proposed a residential and workplace 
stop inference method that uses smart card data, travel survey data and a land-use map. By using their 
method, individual transit riders’ residential and workplace stops could be inferred, but where the pas-
sengers live or work remained unknown.

3	 Methodology

This section develops the methodology of deriving residential and workplace locations from transit 
smart card data as a four-step-process: the identification of residential or workplace stops and their 
catchment areas (3.1), and the refinement of these areas in three steps (3.2-3.4).

 
3.1	 Identifying transit riders’ travel stops of residential and workplace

3.1.1	 Trip chain construction

A trip chain is defined as a series of trips made by a traveler on a daily basis and is considered a useful 
way to demonstrate travelers’ behaviors (McGuckin & Nakamoto, 2004). Ma, Wu, Wang, Chen, and 
Liu (2013) generated passengers’ trip chains using Beijing smart card data. Based on the constructed 
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trip chains, they applied a series of data mining approaches to extract the passengers’ travel patterns and 
travel regularities.

Before identifying trip chains, original smart card records need to be converted into a format of 
individual daily trip chains. For flat fare smart card systems, only boarding information is recorded, so 
the format of the daily trip chain is:

Card ID, 
Date, 
Boarding time sequence (1st, 2nd… nth), 
Boarding stop sequence (1st, 2nd… nth), 
Route sequence (1st, 2nd… nth).
For distance-based smart card systems and subway smart card systems, both boarding and alighting 

information are recorded, so the format of daily trip chain is:
Card ID, 
Date, 
Boarding time sequence (1st, 2nd… nth), 
Alighting time sequence (1st, 2nd… nth), 
Boarding stop sequence (1st, 2nd… nth), 
Alighting stop sequence (1st, 2nd… nth), 
Route sequence (1st, 2nd… nth)

3.1.2	 Residential and workplace transit stops identification of flat fare smart card systems

To infer residential or workplace locations by using smart card data, an individual’s travel stops close 
to these locations need to be identified first. They will be called residential stops and workplace stops, 
respectively. For the average individual, the first boarding stop of each day has a high likelihood to be a 
transit stop near the rider’s residential place. From 2005 Beijing household travel survey results, 99.5% 
of the boarding stops of the first trips are close to passengers’ residential place (Long et al., 2012). As with 
other transport demand research, the presented model starts a day at 4am, given that many activities of 
a day can reach beyond midnight (Munizaga, Devillaine, Navarrete, & Silva, 2014). Some people have 
work patterns, such as night shifts, that lead to different travel patterns. This may result in reciprocal 
errors of identifying residence and workplace. As this section of the population is a small proportion, it 
will not have much impact on the overall travel demand analysis, and some of these misclassifications 
will be possible to be picked up in land-use analysis (3.4).

The presented method, but also other current methods accept that there can be more than one used 
transit stop around residence or workplace in general. These stops typically belong to different transit 
routes leading to different places. From the point of view of access to land and activities, other stops in 
the immediate vicinity, serving other directions and other routes, may also provide access to the same 
land uses and activities (Lee, Hickman, & Tong, 2013). For example, commuters often board at a fixed 
transit stop on weekday mornings to commute to work but may board other transit routes at weekends 
to go shopping or a restaurant. The collected different transit stops can be utilized for residential or 
workplace location inference. 

Figure 1 illustrates the method of identifying residential and workplace stops from smart card data. 
First, the first boarding stops from each daily trip chain of the individual smart card are extracted. If 
more than one first boarding stop is identified, also their frequency is captured. The stop with highest 
ratio will be chosen as frequent residential boarding stop. Similarly, (Ma, Liu, Wen, Wang, & Wu, 2017) 
assumed that only the first trip and last trip of an individual transit rider for each day contribute to their 
commuting behavior. They counted the number of occurrences of each first trip’s origin stop, the stop 
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with the largest number of occurrences is considered the most frequent stop of residence. Similarly, the 
largest number of occurrences of each last trip’s destination stop is considered the most frequent stop 
of workplace. The next step will utilize the identified frequent residential stop – which is the one most 
trusted – to filter out other residential stops from the first boarding stops. This step eliminates those 
(infrequent) occurrences of starting the day from somewhere else than usual. As residential stops should 
be within a walkable distance from riders’ residence locations, the residence should be within the overlap 
area of the walkable distance ranges of these stops. All first boarding stops that overlap in their range with 
the frequent residential stop are classified as residential stops.

Figure 1. Residential and workplace transit stops identification method of flat fare smart card systems
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Walk access distance to transit stops is generally used for determining transit service areas. Service 
areas are used to help understand transit demand and identify gaps and redundancies in the exist-
ing transit network (El-Geneidy, Grimsrud, Wasfi, Tétreault, & Surprenant-Legault, 2014). Buffers at 
400m around bus stops and 800m around rail stations are commonly used in the public transit research 
and industry to determine service areas that transit riders could access by foot (Biba, Curtin, & Manca, 
2010; El-Geneidy, Tetreault, & Surprenant-Legault, 2010; Hess, 2009; Zhao, Chow, Li, Ubaka, & 
Gan, 2003). These ranges are supported by Daniels and Mulley (2013), who found the mean walk-
ing distance to bus stops is 461m, with a 75th percentile at 566m, and the mean walking distance to 
rail stations is 805m, with a 75th percentile at 1018m. Similarly, El-Geneidy et al. (2014) found the 
85th percentile walking distance to bus services at 524m, and to rail stations 1259m by using detailed 
OD survey information of Montreal, Canada. Hoback, Anderson and Dutta (2008) performed Monte 
Carlo simulation in geographic information system with random addresses, the calculated walking dis-
tance from home to bus stop follows the street pattern is 0.36 miles (0.58 km) and average total walking 
distance is 0.8 miles (1.27 km) per round trip. However, the distances to transit stops are longer in Teh-
ran, because in addition of walking, people often use local taxis with low fares to access transit services. 
Research found access distances to bus stops and subway stations of 1.5 km and 1.9 km respectively 
(Shirzadi Babakan & Alimohammadi, 2016). These results indicate that the walk access distance to tran-
sit service varies according to the different regions, the service being offered and the stop locations in the 
region. This paper will take 600m as bus stop walkable distance and 1000m as subway station walkable 
distance based on the specific circumstances of Beijing and in order to ensure that the buffers include all 
possible transit riders’ origin and destination locations. Though this bigger buffer may overestimate the 
transit service areas at the first step of the method, the latter two steps will narrow down the initial areas.

Identifying workplace stops follows a similar process. This paper will identify workplace stops based 
on time difference between two consecutive travel records. Full time jobs typically cover a stationary 
period of about eight hours, although other work patterns and part time jobs may come with shorter 
periods of stationarity. For the particular area in the experiment, however, the 2005 Beijing household 
travel survey results show that 96% of the 27,550 respondents work over six hours. A threshold of six 
hours is also supported by literature (Long et al., 2012): If two consecutive boarding stops have a six-
hour time interval, the latter one is identified as potential workplace stop. Identifying a frequent work-
place stop first, then this one is utilized to identify other workplace stops with the process of residential 
stop identification.

3.1.3	 Residential and workplace transit stops identification of distance-based smart card systems

For distance-based systems and subway smart card systems, both boarding and alighting stops can be 
recorded, so alighting stops can be used for further identification of residential and workplace locations. 
For residential stops identification, both the first boarding stop of a day and the previous day’s last alight-
ing stop can be identified from daily trip-chains. As Figure 2 illustrates, the first step is to judge whether 
these two stops are close to each other. By constructing walking access buffers for first boarding stop 
and last alighting stop, the buffers with overlap will be identified as residential transit stop pair. Then, 
calculating the frequency of identified stop pairs, the highest pair will be identified as frequent residen-
tial stops. Based on identified frequent residential stop pair, other residential stops could be identified. 
Constructing buffers for all of the stop pairs (the first boarding stop of a day and the previous day’s last 
alighting stop) in the dataset, those intersecting with frequent residential stops are identified as potential 
residential stops. The last step will validate the other identified residential stops by using trip-chains. 
Only if an intersecting alighting stop is connected to the frequent residential stop by the same travel 
record, the alighting stop is discarded from the inference of residential locations.
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For workplace stops identification, the process is similar with residential stops identification meth-
od, but now using the time difference between alighting stop and next boarding stop in trip-chains. 
Identifying the frequent transit stop pair supports then to find other workplace stops through walking 
access range overlaps. 

Figure 2. Residential and workplace transit stops identification method of distance-based smart card systems
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3.2	 Initial residential and workplace location determination method by using identified 	
	 multi-transit stops

The following process will consider a flat fare smart card system; a distance-based fare system has similar 
process. After the individual rider’s residential (workplace) stops are identified from historical smart card 
data, the overlapping area intersected by walking access buffers of identified stops will be identified as 
residential (workplace) area.

In Figure 3, the red and blue points represent identified residential stops that are not adjacent stops 
in the daily trip-chains (red: a frequent residential boarding stop; blue: identified infrequent residential 
boarding stop from other first boarding stops). The overlapping buffer area (in yellow) is the initially 
inferred residential area.

Figure 3. Residential (workplace) locations determination by using identified residential (workplace) stops

3.3	 Further residential and workplace location determination by using adjacent stops of 	
	 the same transit route

The previous step utilizes only the used transit stops to infer residential or workplace locations. In the 
next step, also the contrast set, i.e., the transit stops that riders do not use, are utilized for further infer-
ence. Transit riders board on one particular transit stop but not the previous or next stop of the same bus 
route because their residence or workplace is closer to this boarding stop. Thus, the previous stop and 
next stop of the residential or workplace stop can be a further constraint.
The constraint is realized by establishing the perpendicular bisectors between the identified residential 
(workplace) transit stops and their adjacent stops of the same route. From the perpendicular bisector to 
residential (workplace) stop and its adjacent stop of the same route have same distance. As the distance 
of segmentation, the areas from perpendicular bisector towards the residential (workplace) stop could 
contain the residence (workplace). The residential (workplace) location should be between the two per-
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pendicular bisectors, thus the initially inferred residential (workplace) location will be narrowed down. 
Figure 4 illustrates how the initially inferred location (shown in Figure 3) is narrowed down; the yellow 
part is the updated residential location.

Figure 4. Narrowing down residential (workplace) locations by using adjacent stops as constraints

However, if the identified frequent residential (workplace) boarding stop and infrequent residential 
(workplace) boarding stop are belong to same route, and the stops are not adjacent in daily trip-chains, 
this situation will be seen that the transit riders live (work) close to both stops. For this situation, the 
algorithm will skip this step and go straight to section 3.4.

3.4	 Final residential and workplace location determination by combining parcel-level land-	
	 use map

Parcel-level databases are built for taxation and land-use planning (Furth et al., 2007). Parcel-level land-
use maps contain detailed information of land-use types, which can be utilized for further residential 
or workplace locations inference. Thus, the last step of the presented method combines the previous 
results with a parcel-level land-use map. The assumption is that residential locations should be within 
the parcels that show residential land use, such as residential or educational (to cater for students living 
in dormitories), and workplace locations should be within parcels that show work-related land use, such 
as industrial, commercial or government use.

4	 Case study

4.1	 Data description

The data available for case study comes from Beijing. The dataset consists of both bus data and subway 
data. Beijing, the capital city of China, had 22 subway lines and over 1000 bus routes by the end of 
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2017. Beijing Transit introduced a smart card system in May 2006. Since December 2014, all buses in 
Beijing accept the unified distance-based AFC system: transit riders need to touch on their smart card 
to contactless card reader devices when entering the bus and touch off when exiting. The bus drivers 
operate the electronic bus stop reporter system manually, such that when passengers touch on or touch 
off their smart cards, the boarding and alighting locations could be identified by combining the smart 
card system readings and the bus stop reporter system readings. The information recorded includes card 
ID, card type, transaction date, bus line, boarding stop, boarding time, alighting stop and alighting time. 
Similarly, subway AFC system store transit riders’ full trip information. 

The sample dataset consists of 250,000 different passengers’ 7,283,866 records of two typical travel 
weeks from Monday October 9, 2017 to Sunday October 22, 2017. All the transit riders in this dataset 
have at least 16 total records and at least one bus travel record.

In addition, a parcel-level land-use map has been used, which was from Nov 2013. The map data 
consists of seven types of land use, as Figure 5 shows: residential land, green space, commercial establish-
ments, transport facilities, education, government, and firms. 

Figure 5. An illustration of Beijing parcel-level land-use map

4.2	 Residential and workplace transit stop identification

To identify frequent transit travel stops of individual riders, multi-day data is required. Therefore, only 
the transit riders who have seven days or more recorded travels are used for analysis. Of these transit 
riders, only those with five boarding records of same bus stop are chosen (minimum value for frequent 
travel stop judgement). This leaves 159,356 transit riders for residential and workplace location infer-
ence. The method is applicable for the other riders as well if longer time spans are observed.

For flat fare smart card systems, only boarding records are used for inference, thus alighting stops 
are ignored in the first experiment. Identifying the first boarding stops in daily trip-chains and calculat-
ing the frequency of first boarding stops, the stop with highest frequency will be identified as frequent 
residential stop. 146,501 transit riders were identified that they have frequent residential stop. For work-
place stop identification, the boarding stops that have 6h intervals with their previous boarding records 
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in the daily trip-chains will be identified as potential workplace stops. The potential workplace stop with 
highest frequency of one transit rider in this dataset will be identified as frequent workplace stop. 89,529 
transit riders were identified that have frequent workplace stop.

For the experiment on distance-based smart card systems, both boarding and alighting records will 
be used for inference. As Figure 2 shows, if buffers of a stop pair (the first boarding stop and the previous 
day’s last alighting stop) have overlapping areas, the stop pair will be identified as residential stops. The 
most frequent residential stop pair will be selected as frequent residential stop pair. For workplace stops 
identification, the stop pairs (alighting stop, next boarding stop) that have overlapping buffer areas and 
a time interval between them of at least six hours will be identified as potential workplace stop pair, and 
those with the highest frequency will be selected as frequent workplace stop pair. 

The identification of infrequent residential (workplace) stops is completed according to the pro-
cesses of Figure 1 (flat fare systems) and Figure 2 (distance-based systems).

The identification results of residential stops and workplace stops of flat fare systems are shown in 
Table 1.

Table 1. The residential and workplace stops identification results of flat fare systems

4.3	 Residential and workplace location determination

The experiment is executed using ArcGIS 10.1, geographic coordinate system is WGS 1984 and a 
projection to UTM Zone 52N according to the geographic location of Beijing. Figure 6 shows some 
of the inferred residential locations after the first step: The points are identified transit riders’ frequent 
residential stops and corresponded other residential stops. The bigger circles are buffers with a radius 
of 1000m walk access distance to subway station, and the smaller circles are buffers of 600m bus stop 
walk access distance. Each overlapping area of intersecting buffers contains one transit rider’s possible 
residential location.

Residential stop identified results Workplace stop identified results

No. of total transit riders who have frequent stop 146,501 89,529

No. of transit riders who have one identified fre-
quent stop and no infrequent stop

52,597 40,375

No. of transit riders who have one frequent stop and 
one infrequent stop

66,007 38,650

No. of transit riders who have one frequent stop and 
two infrequent stops

20,863 9,230

No. of transit riders who have one frequent stop and 
at least three infrequent stops

7,034 1,274
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Figure 6. An illustration of the inferred residential locations by using identified residential stops

The previous stop and next stop of the same boarding route are utilized to narrow down the ini-
tial inferred areas. To establish perpendicular bisectors between stops, functionality in ArcGIS is used 
(Thiessen polygons): The identified residential (workplace) stop with its previous stop and its next stop 
are the three to be divided points, such that the Thiessen polygons consist primarily of two perpendicu-
lar bisectors derived by the three points. The area between two perpendicular bisectors contains the 
inferred residential (workplace) location. 

Some transit riders are boarding or alighting at bus terminus, which means there is no previous stop 
or next stop of the identified bus stop. In these cases, only one perpendicular bisector can be established 
to narrow down the identified residential (workplace) stops. Figure 7 shows some results of inferred 
residential locations after the first two steps. 
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Figure 7. Parts of the inferred residential locations after two steps

At last, the parcel-level land-use map is used to intersect with previously inferred results. As some 
parcels’ land-use property are missing values. When intersecting with residential (workplace) areas, the 
missing values were filled with residential(workplace) property values in order not to lose the final re-
sults. However, this missing value imputation method would also lead to a higher inferred results than 
the real situation. Figure 8 shows some of the finally inferred residential locations by only using the 
boarding records.
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Figure 8. An illustration of the residential locations inference results

5	 Results and discussion

5.1	 Residential and workplace locations inference resul

Table 2 shows the identified results for flat fare systems. 159,356 transit riders had been filtered out for 
analysis. Of these, 146,501 transit riders have frequent residential stops, and 89,529 transit riders have 
identified frequent workplace stop.

For transit riders, whose frequent residential (workplace) stop can be identified from smart card re-
cords, 70.67% of 146,501 transit riders have inferred residential locations and 78.17% of 89529 transit 
riders have inferred workplace locations after the whole inference process.
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Table 2. Residential and workplace location identification results of flat fare systems

Table 3 shows the inferred results of distance-based systems, for which both boarding and alighting 
records are used for inference. The same 159,356 transit riders are used for analysis. 104,165 transit rid-
ers can be identified meeting the conditions of having at least four counts of same residential stop pair 
(first boarding stop of the day and previous day’s last alighting stop). And 62,704 transit riders have at 
least four counts of same workplace stop pair (alighting stop and the next boarding stop which have at 
least 6h interval in daily trip-chain).

Table 3. Residential and workplace location identification results of distance-based systems

For transit riders, whose frequent residential (workplace) stops can be identified from smart card 
records, 68.86% of the 104,165 transit riders have inferred residential locations after the inference pro-
cess, and 72.29% of the 62,704 transit riders have inferred workplace locations.

If just inferring from smart card data records by current best practice, the residential or workplace 
location of a transit rider is estimated to be within a 600m bus stop buffer area (1.13 km2) or 1km 
subway station buffer area (3.14 km2) around their boarding (alighting) stop. By using the inference 
method proposed in this paper, the inferred area is greatly narrowed down. 

Figure 9 shows the inferred results of residential and workplace locations. The blue columns repre-
sent the inferred results of the residential locations, and the red ones are the workplace locations. For flat 
fare system inference results, the mean value of inferred residential area is 0.3356 km2, only accounts for 
a proportion of 29.70% of initial 1.13 km2(600m bus stop buffer area), and a proportion of 10.68% 
of initial 3.14km2(1km subway station buffer area). The mean value of inferred workplace location is 
0.3959 km2, a little bigger than the inferred residential location. It accounts for 35.04% of initial bus 
stop buffer area and 12.60% of initial subway station buffer area.

Identification steps description No. of transit riders whose residential 
location is identified

No. of transit riders whose workplace 
location is identified

Transit riders used for analysis 159,356 159,356

Residential (workplace) stops can be 
identified

146,501 89,529

After first step 146,501 89,529

After second step 130,047 77,926

After third step 103,535 (RES, EDU) 69,989 (COM, EDU, GOV, FIR)

Steps description No. of transit riders whose residential 
location is identified

No. of transit riders whose workplace 
location is identified

Transit riders used for analysis 159,356 159,356

Residential (workplace) stops can be 
identified

104,165 62,704

After first step 104,165 62,704

After second step 92,830 59,372

After third step 71,727 (RES, EDU) 45,326(COM, EDU, GOV, FIR)
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For distance-based system, the inference results are smaller than flat fare system overall. The mean 
value of inferred residential area is 0.2674 km2, only accounts for a proportion of 23.66% of initial 1.13 
km2 bus stop buffer area, and a proportion of 8.52% of initial 3.14 km2 subway station buffer area. The 
mean value of inferred workplace location is 0.3565 km2, accounts for 31.55% of initial bus stop buffer 
area and 11.35% of initial subway station buffer area.

Figure 9. Inferred results of residential and workplace areas

5.2	 Validation of inference results

To make the reasoning method persuasive, the inferred location results need to be validated. There is no 
detailed residential or workplace address for validation provided in the data set (for privacy reasons), so a 
validation method that is using the data itself is applied. For flat fare systems only, boarding records were 
used for location inference. Thus, alighting records can be used for validation. For this purpose, the resi-
dential and workplace stops were identified from alighting records for the 103,535 transit riders whose 
residential locations were identified and the 69,989 riders whose workplace locations were identified. 
The previous alighting stop of identified residential (workplace) boarding stop in trip-chains could be 
potential corresponding stop. Verifying the distance between identified residential (workplace) boarding 
stop and corresponding previous alighting stop with the distance value of 1200m if both are bus stops 
(twice of walk access distance). If both are subway stations the value is 2000m, and if one is bus stop and 
one is subway station the value will be 1600m. If distance between two corresponding stops more than 
the threshold values, a missing trip by other transport modes (such as taxi) will be identified. 

After distance verification, some of the verified corresponding alighting stops are the same as the 
residential (workplace) boarding stops and some are different ones. Using the same stops to verify results 
will be meaningless, so only new appeared stops will be selected for verification. Constructing buffers 
with 600-meter radius for new bus stops and 1000-meter radius for subway stations. If the constructed 
buffer has an overlap with the corresponding inferred residential (workplace) locations, the inferred 
results will be seen verified. 

Figure 10 shows parts of the verification results. The yellow circles are buffers constructed by new 
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bus stops, the blue circles are buffers constructed by new subway stations and the red areas represent the 
overlapping areas that overlapped by constructed buffers and the inferred locations, which indicate that 
the results have been verified.

Figure 10. An illustration of the validation results obtained by using new appeared alighting stops

Table 4 shows the statistical results of validation. For transit riders, whose residential location is 
identified, 72,033 of them have different alighting stops corresponding to their identified residential 
boarding stops. By using these alighting stops for validation, 59,786 transit riders’ inferred residential 
locations have been verified. For the 26,786 transit riders who have different alighting stops correspond-
ing to their identified workplace boarding stops, 23,955 workplace locations have been verified.

Table 4. Verification of results

5.3	 Discussion

This paper proposed a novel reasoning method that can infer the residential and workplace locations of 
individual transit riders with significantly finer granularity than current best practice. Compared with 
transit demand surveys, which can obtain individual residential and workplace addresses but are gener-
ally limited by high costs and small sample sizes, the method proposed in this paper enables to obtain 
transit demand data from the total number of smart card users, including its variability over time and 
more comprehensive information with regard to travel times and locations. Compared to current best 
practice using smart card data, the method proposed in this paper infers residential and workplace loca-
tions instead of just stop-level OD or their areas of influence. 

Steps description No. of transit riders whose residential 
location is identified

No. of transit riders whose work-
place location is identified

Transit riders who have new alighting stops 72,033 26,786

The inferred results be verified 59,786 23,955
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However, it should be noted that the initial experimental dataset is composed by 250,000 transit 
riders, but for only less than 42% of their final residential locations could be inferred, and for less than 
28% the workplace locations could be inferred. These low proportions indicate that the experimental 
dataset of two weeks of data may not sufficient with regard to detecting regularity in travel patterns. 
Transit agencies, however, have years of smart card datasets, such that in practice the method should 
lead to significantly increased success rates. The experiment also used a parcel-level land-use map from 
November of 2013, but smart card data from October 2017. During the four years, some land use can 
be expected to have changed, impacting on the results. 

The reasoning method applied Euclidean distances (circular buffers), however, Euclidean buffers 
may overestimate the service area of a stop compared to network buffers (El-Geneidy et al., 2014). 
Though network buffers are better approximations of the actual service areas, their accuracy is also lim-
ited by the level of map detail, especially for pedestrians. Off-street shortcuts and path inside parcels are 
often missing and may lead to underestimate service areas. While overestimated areas can be narrowed 
down by subsequent inference steps, underestimated survey areas may miss overlaps, and thus classifica-
tions as potential residential or workplace stops from the beginning. Since the used road map of Beijing 
was not detailed enough for pedestrian movement, we did not compare the impact of applying network 
buffers or Euclidean buffers. 

6	 Conclusions

This paper contributes a novel method of reasoning to identify where a transit rider lives or works by 
using public transit smart card data, aiming to refine the results of current methods significantly. The 
mean value of inferred areas is approximately 20% of the areas defined by current best practice methods.
The new method, as much as the current best practice, requires data sets over longer periods of time in 
order to detect regular travel behavior. The inferred results, however, at least for flat fare systems could 
be validated by available data of alighting stops. 

The reasoning method proposed in this paper can provide transit managers and planners a way to 
infer residential and workplace locations of transit riders. By further overlapping the population-wide 
coverage of these residential and workplace locations, some analysis such as travel demand hotspots 
analysis can be achieved, which will be a strong guidance to adjust transit network and relocate stops.

Future work will apply the reasoning method to datasets covering a longer period. With such data 
hotspots of residential or workplace travel demand can be identified and combined with actual transit 
network to do research related to transit adjustment, to identify redundancy and gaps at the route and 
transit network levels, to determine optimal stop spacing, and to improve transit service quality after 
analyzing passengers’ travel behavior.
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