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Abstract: In the context of public transit networks, repeated calculation of
accessibility at multiple departure times provides a more robust representa-
tion of local accessibility. However, these calculations can require signifi-
cant amounts of time and/or computing power. One way to reduce these re-
quirements is to calculate accessibility only for a sample of time points over
a time window of interest, rather than every one. To date, many accessibility
evaluation projects have employed temporal sampling strategies, but the ef-
fects of different strategies have not been investigated and their performance
has not been compared. Using detailed block-level accessibility calculated at
one-minute intervals as a reference dataset, four different temporal sampling
strategies are evaluated using aggregate sample error metrics as well as indi-
cators of spatially clustered error. Systematic sampling at a regular interval
performs well on average but is susceptible to spatially-clustered harmonic
error effects which may bias aggregate accessibility results. A constrained
random walk sampling strategy provides slightly worse average sample error,
but eliminates the risk of harmonic error effects.
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1 Introduction

e concept of accessibility has been an active topic of research in fields related to transportation and
land use for many decades (Hansen 1959; Ingram 1971). Early implementations of accessibility eval-
uation were encouraged by rapid advances in computing power in the 1960s and 1970s (McFadden
et al. 1973), but were not able to provide detailed enough results, spatially and/or temporally, for use
in many planning applications. Over the past decade, increased data availability and renewed interest
in accessibility metrics have again encouraged the application of cutting-edge computing approaches
to accessibility evaluation.

In the context of public transit networks, repeated calculationof accessibility atmultiple departure
times provides a more robust representation of local accessibility compared to accessibility metrics
using a single departure time. However, these calculations can require significant amounts of time
and/or computing power. One way to reduce these requirements is to calculate accessibility only for a
sample of timepoints over a timewindowof interest, rather than every one. Many accessibility research
projects already take this approach.

Copyright 2019 Brendan Murphy and Andrew Owen.
doi: 10.5198/jtlu.2019.1379
ISSN: 1938-7849 | Licensed under the Creative Commons Attribution – NonCommercial License 4.0.

e Journal of Transport and Land Use is the official journal of the World Society for Transport and Land Use
(WSTLUR) and is published and sponsored by the University of Minnesota Center for Transportation Studies.

http://jtlu.org
http://dx.doi.org/10.5198/jtlu.{\@jtluyear }.{\@jtluid }
http://creativecommons.org/licenses/by-nc/4.0


       .

Some benefits of temporal sampling are obvious: an accessibility calculation which is performed
for every 5th minute requires only 20 percent of the computation effort as one which is performed
for every minute. In addition to direct time and cost savings, making accessibility evaluation more
tractable may increase its adoption in early-stage transportation or land use planning projects where
planners benefit fromquick feedback. Temporal samplingmay also offer an opportunity to improve an
accessibility evaluation in other dimensions, such as by increasing the spatial resolution or lengthening
the temporal coverage, while maintaining the same overall project cost. However, all of these benefits
come at the cost of decreased accuracy; additionally, this accuracy loss may not be distributed evenly
over space or time. e goal of this analysis is to begin to identify and quantify those costs so that
researchers and practitioners can make informed decisions when selecting parameters for accessibility
evaluation projects.

is study explores four different methods of sampling minute-by-minute accessibility data from
the Minneapolis–St. Paul metropolitan area. Section 2 discusses existing literature and highlights
the specific contributions of this study’s framework. e four sampling methods, which are evalu-
ated against the source accessibility data, are described in detail in section 4. e sampled datasets
are analyzed both statistically and spatially in section 5 to determine viability and appropriateness for
practical implication of accessibility sampling in planning settings, including the assessment of spatial
clustering of sampling errors. Implications and suggestions for implementation of the tested sampling
procedures are discussed in section 6.

2 Background

Accessibility, as definedbyHansen (1959),measures the “opportunity for interaction” betweenpeople
and places. Many specific implementations of accessibility metrics exist; Geurs and van Wee (2004)
provide useful categorizations of approaches to measuring accessibility. All accessibility metrics de-
pend on measuring, calculating, or modeling the cost of travel, oen expressed in terms of time. Most
of the accessibilitymetrics discussed in this analysis are location-basedmetrics: they incorporate (some-
times very detailed) calculations of what opportunities can be reached from a given location at a given
time. As an example, a typical accessibility metric might indicate that if a traveler departs from a spe-
cific intersection at 8:10 AM, they could reach 15,000 jobs within 30 minutes.

Public transit networks, like all schedule-based transportation systems, have two important con-
straints: you can only depart from specific places, and you can only depart at specific times. e latter is
an important consideration when evaluating accessibility of transit systems. Accessibility calculation
relies on travel time calculation, and travel times vary over the course of the day. us, the selection of
a departure time, or departure times, impacts the final accessibility metrics. Until relatively recently,
implementations of accessibility measures for public transit typically focused on single time points,
assigning the accessibility achieved at one departure time to a location or traveler. Some studies ex-
panded this approach to include several time points, typically hourly, over the course of a day. ese
approaches are reviewed by Owen and Levinson (2015).

Since then, Geurs et al. (2015) have identified “temporal dynamics in accessibility” as a rapidly-
expanding field, and this is clearly demonstrated in the literature. Owen and Levinson (2015) explic-
itly compares “continuous accessibility,” calculated for every minute and then averaged over a time
window, to single-departure-time metrics and demonstrates their ability to improve models of com-
mutemode share. Similarly, Legrain et al. (2015) employ accessibility averaged continuously over time
periods for mode share modeling; Farber et al. (2014), Widener et al. (2017), and Widener (2017)
use accessibility calculated at every minute of the day to evaluate access to grocery stores, and com-
pare access from areas with lower or higher transit connectivity. Kujala et al. (2018) demonstrate the
importance of the consideration of departure times, wait times, and number of transfers in evaluating
continuous accessibility via pareto-optimal routes in Helsinki, and propose efficiency metrics which
incorporate the variables of wait times and number of transfers.
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Alternatively, accessibility is evaluated at a sample of time points and then aggregated, typically
by averaging. Karner (2015) demonstrates the application of a “highly resolved temporal metric” for
transit accessibility in equity evaluation for federal grant programs, averaging 9 temporal samples se-
lected from 15-minute bins over a two hour period. (is corresponds to the systematic sampling
strategy evaluated below, with f = 15.) Tasic et al. (2014) and Lei et al. (2012) employ evaluation
at multiple time points, but focus on access to transit facilities rather than accessibility using transit to
reach destinations. Ding et al. (2015) expand the temporal dimension of transit accessibility to cases
where use of transit is limited by capacity, investigating how supply and demand for transit service
fluctuate over the day.

Notably, none of these studies robustly defend the choice of temporal sampling strategy, or com-
pare it against other possibilities—yet each required a decision about what specific time points to use.
In many cases, suitability seems to be implied simply because sample points are spread evenly over
time. However, this explicitly violates the principle of probability sampling and may introduce sam-
pling bias; this risk is higher for time-series datasets that exhibit cyclical patterns (Cryer and Kellet
1986) — which, as discussed below, is certainly the case with transit accessibility data (Figure 1).

In other cases, accessibility is evaluated continuously over time with the implication that more
must be better—but perhaps equally meaningful results could be achieved with less computation ef-
fort. e time and computation resources required to implement detailed accessibility evaluations are
rarely discussed, but they can be a significant barrier to implementation. In the Access Across America:
Transit 2015 project (Owen et al. 2016), the calculation of transit accessibility at 120 time points for
70,759 Census blocks in theMinneapolis-Saint Paul, MN statistical area was executed in parallel over
many powerful computers; if run on a single high-endworkstation, it would have taken approximately
30 hours to complete.

is computational complexity is not unreasonable for research projects or analysis programs un-
dertaken by public agencies. But it is important to recognize that it may limit the impact that ac-
cessibility evaluation can have on transportation and land use planning. It is difficult to incorporate a
calculationwhichmay takemanyhours into sketch planning, scenario building, or alternatives analysis
because any change to themodel network requires an entirely new calculation. Interactive accessibility
evaluation tools which provide a balance of fast enough and precise enough feedback in response to a
network or land use change could dramatically change the way that planners interact with accessibility
concepts. New algorithms for routing on transit networks (such as RAPTOR (Conway et al. 2017;
Delling et al. 2014)) can improve response times; intelligent temporal sampling may also play a role.

3 Data

e accessibility data used in this analysis were calculated by the University of Minnesota’s Accessi-
bility Observatory as part of the Access Across America: Transit 2016 project. For Census blocks in
the Minneapolis-Saint Paul, MN metropolitan area, the data indicate the number of jobs that can be
reached within various time thresholds using a combination of walking and transit. Travel times are
calculated on a combined pedestrian and transit network using transit schedules effective in January
2016, and include walking, waiting, and on-vehicle trip components. Job counts and locations are
based on estimates published by the U.S. Census Bureau’s Longitudinal Employer-Household Dy-
namics (LEHD) program. Additional methodological details are presented in Owen et al. (2016).
is analysis uses the data for the 30-minute travel time threshold, chosen to correspond roughly to
the national average commute time of 25minutes (AmericanAssociation of StateHighway andTrans-
portation Officials 2015).

A critical feature of this dataset is that rather than assuming a single fixed departure time, the
accessibility calculations were repeated for every minute from 7:00 AM to 9:00 AM, for a total of 120
accessibility observations at each origin block location. Figure 1 illustrates the data for a single block
group: the accessibility value for each minute indicates the number of jobs that can be reached within
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30 minutes if a traveler departs at exactly that time. Accessibility increases as transit vehicles approach
nearby stops and stations, then drops aer trips depart due to the wait the before the next trip. is
particular block shows a very pronounced cyclical pattern, with accessibility peaks occurring every 10
minutes. e location is near a station onMinneapolis’ Blue Line LRT route, which provides frequent
service and a fast connection to downtown.

Figure 1: Accessibility plot for a single Census block (270531088002012, near the 38th St. Blue Line
station inMinneapolis, MN). For each departure time between 7:00 and 9:00AM, the acces-
sibility value indicates the number of jobs that can be reached within 30 minutes by walking
and transit. e dashed horizontal line indicates the average accessibility value over the entire
time period.

e data cover the entire Minneapolis–Saint Paul statistical area defined by the U.S. Census Bu-
reau, which includes those core cities plus many surrounding counties in Minnesota and Wisconsin.
However, some of the suburban and most of the rural parts of this area are not served by a fixed-route
transit system. From these locations, transit service has no impact on accessibility—the entire 30-
minute time budget is consumed without ever reaching a stop or station. erefore accessibility to
jobs in these places, as represented in this dataset, is determined entirely by walking.

4 Methodology

Four sampling strategies are evaluated: systematic sampling, simple random sampling, hybrid system-
atic/random sampling, and random walk sampling. Because all of these sampling strategies contain
a random element, each is repeated multiple times in a Monte Carlo approach and the results are av-
eraged to provide an indicator of the overall performance of that strategy. In a single application of
a sampling strategy, a specific sample pattern is generated and used to select, without replacement, a
specified number of data points from the 7:00AM–9:00AMaccessibility data for a block. e sample
average is compared to the data average as an indicator of sample error. is methodology has been
reproduced by Stepniak et al. (2019) in Poland, using the same four sampling strategies. e follow-
ing sections describe each sampling strategy, and the performance evaluation methodology, in more
detail.

4.1 Sampling Frequency

Each of the temporal sampling strategies explored in this analysis involves some variation on the con-
cept of sampling frequency, which is expressed differently in each of the strategies. “Frequency” im-
plies some degree of regularity, but the actual regularity of generated samples varies widely over these
strategies. At the most fundamental level, the sampling frequency indicates the number of samples
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that will be selected from a window of time points: for a sampling frequency f , ⌊T / f ⌋ out of T total
time point will be selected. Each of the sampling strategies described below is evaluated at sampling
frequencies of 2 through 30 minutes.

4.2 Simple Random Sampling

is sampling strategy is well-documented in the literature (Gupta and Shabbir 2008; Kadilar and
Cingi 2005; Levy and Lemeshow 2011), and is the most straightforward: a specified number of sam-
ple times are selected at random, without replacement, from the time window. Because the selec-
tion is completely random, this strategy will oen produce sampling patterns which are very unevenly
distributed—a sample consisting of the first ⌊T / f ⌋ time points is just as likely as ⌊T / f ⌋ points evenly
distributed over the time window.

4.3 Systematic Sampling

is sampling strategy involves selecting samples at a regular interval, defined by f , over the time
window (seeWeiss (1984), Brewer (1973), andMadow andMadow (1944) for discussions of broader
applications and supporting theory). To avoid bias and give each data point an equal chance of being
selected, the first sample in the sequence is selected randomly from the first f time points. us, one
application of this sampling strategy for f = 5 might produce the sequence 7:00, 7:05, 7:10, etc.
while the next produces 7:03, 7:08, 7:13, etc. is strategy has the advantage that it is guaranteed to
produce evenly-distributed samples. A disadvantage is that if the data itself is cyclical on a frequency
which is a multiple of f , this strategy may produce a sample pattern which coincides only with peaks
(or troughs), in which case the sample average could be significantly higher (or lower) than the data
average.

4.4 Hybrid Sampling

is strategy begins with a systematic sample, starting with the first and selecting every f th sample
thereaer. Next, a random offset based on the sampling frequency (a random integer in [1, f ]) is
applied to each sample point. is can also be regarded as a clustered sampling strategy, where sample
candidates are clustered into bins with a width of f and then a single random sample point is chosen
from each cluster.

e motivation behind this strategy is to avoid the temporal clustering of samples that can occur
in simple random sampling while also avoiding the potential harmonic effects of systematic sampling.
While it does avoid clustering on a large scale, it does not enforce any minimum distance between
sequential samples, with the result that the gap between samples varies from 1 to 2 f . In the (unlikely)
worst case, this sampling strategy might produce a sample pattern consisting of 1

2 ⌊T / f ⌋ pairs of
adjacent samples, with a distance of 2 f between each pair. Because adjacent sample points are likely
to have similar values, the sample error in this worst case has the potential to be similar to systematic
sampling at half the frequency.

4.5 Constrained RandomWalk Sampling

is sampling strategy is based on a random walk, where each sample point is a random distance from
the previous (Kac 1947; Spitzer 1964). e first sample point is randomly chosen between 1 and f ,
and then each random “next step” is constrained by a function of the sampling frequency, in order to
achieve a mix of randomness and temporal dispersion. To choose each next sample point, a random
offset between ⌊ f /2⌋ and ⌊ f +( f /2)⌋ is added to the previous sample point, so that on average the
next sample point is f greater than the previous.

One disadvantage to this sampling method is that it produces sample sets of varying size. For
repeated trials, the average number of samples in each set approaches ⌊T / f ⌋. If a predictable number
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of samples is desired (for example tomake computation timesmore predicable), the sample generation
process can be filtered to discard sample patterns which do not contain exactly ⌊T / f ⌋ sample points.

4.6 Comparison of Sampling Strategies

Because the “ground truth” data are available in this analysis, each sampling outcome can be compared
directly against the actual distribution, either by calculating the expected sampling outcome empiri-
cally or by estimating it using a Monte Carlo method. e simple random sampling, hybrid sampling,
and random walk sampling strategies each incorporate a high degree of randomness and can produce
extremely large numbers of specific sampling patterns. For example, simple random sampling of 24
data points from a population of 120 (a 10-minute sampling frequency over a 2-hour period) can pro-
duce over 1025 individual sampling patterns. erefore, these sampling strategies are evaluated using
a Monte Carlo method where the results of repeated samplings are averaged to estimate the expected
outcome. In this analysis, each of these sampling strategies is repeated 1,000 times for each block and
then averaged; this is repeated for each sampling frequency.

e systematic sampling strategy, on theotherhand, produces far fewer specific samplingpatterns—
for example, 10 in the case of a 10-minute sampling frequency. erefore it is feasible to calculate the
result of all possible sampling outcomes at all sampling frequencies, and compare the averages to the
actual distribution.

eperformance of the various sampling strategy and frequency combinations are evaluated based
on how well they estimate the true average accessibility value for each block. A normalized root mean
square error (NRMSE) metric is calculated within the context of each block, where the average ac-
cessibility estimated over repeated trials of each sampling method is compared with the true average.
To compare aggregate performance over many blocks with different accessibility scales, each result
is normalized using the data range for that block. us, the average sampling error is expressed as a
percentage of the range of the true data for that block (Equation 1).

NRMSE=
1
n

q∑n
t=1

�
ŷt − y
�2

ymax − ymi n
(1)

ŷt = the average of sample set t
y = actual average
n = total number of sample sets

As noted above, the study area contains many blocks where transit service has no impact on ac-
cessibility because no stops or stations can be reached within the 30-minute travel time budget. In
these locations, accessibility is constant over time (walking speeds are assumed to not vary by time of
day), and so the average of every sample, regardless of strategy, will be equal to the actual average; the
sampling error will always be zero. To avoid diluting the results from blocks where transit does have an
impact on accessibility, 31,849 “transit-less” blocks are excluded from the analysis of sampling strategy
performance, leaving 34,810 (52.2 percent) remaining blocks in the population.

4.7 Local Moran’s I Clustering Analysis

Certain sampling methodologies or sampling frequencies may produce areas of high NRMSE values
near transit service stations due to sampling at frequencies closely aligned with transit service frequen-
cies, and such anomalies are statistically detectable using spatial autocorrelation analysis. As points of
transit service tend to be fairly localized (i.e., transit service, and thus accessibility measurements and
their associated sampling errors are spatially concentrated), a Local Moran’s I approach is chosen over
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simple Global Moran’s I or Global Geary’s C metrics. Local Moran’s I gives the following local indi-
cator of spatial association (LISA—see Anselin (1995) for a discussion of these measures) statistic for
each area of interest—in this case, Census blocks:

Ii =
Zi N∑

i Z2
i

∑
j

Wi j Z j (2)

where Zi is the deviation of NRMSE at Census block i from the population mean, N is the total
number of Census blocks, and Wi j is the weight associated with blocks i and j (typically 1 if the two
blocks are neighbors, and 0 otherwise).

To test for the presence of clusters of Census blocks with higher (or lower) NRMSE values (areas
of blocks with higher Ii values), the variance and skewness of the distributions of block-level LISA
statistics are reported. A combination of high variance and high right-skewness of the population of
LISA statistics would indicate spatial clustering of blocks with high NRMSE values, indicating that a
particular sampling methodology or frequency may produce biased estimates of accessibility.

5 Results and Discussion

Overall performance data for NRMSE statistics and spatial autocorrelation statistics, for each of the
four methodologies and for all sampling frequencies tested, are reported in Table 1 and Table 3, re-
spectively. Methodologies are evaluated and compared first by NRMSE statistics (subsection 5.1),
and then by spatial autocorrelation statistics (subsection 5.2); computational speedup tradeoffs and
methodology recommendations are outlined in subsection 5.3.

5.1 NRMSE Comparisons

e results for the simple random sampling strategy, presented in Figure 2(e) and Table 1, immedi-
ately demonstrate the role of increased randomness in sample selection. ere are no harmonic error
effects apparent, and standard deviation of NRMSE at the 5 and 10 minute sampling frequencies are
significantly lower than for the systematic sampling strategy, indicating more consistent results. How-
ever, the overall performance of this strategy, as indicated by average NRMSE, is markedly worse. It is
especially poor at shorter sampling frequencies (2–4), where its average sample error is over twice that
of the the systematic sampling strategy.

Figure 3 shows the relative performance of all sampling strategies and frequencies. ese charts
clearly illustrate the variability in sample error at the 5- and 10-minute sampling frequencies when us-
ing the systematic samplingmethod. Overall, the randomwalk sampling strategy provides the best per-
formance, as measured by low average sample error and low standard deviation of sample error, while
also avoiding harmonic error effects. e systematic sampling method oen performs very well, but
appears to be strongly influenced by harmonic error effects that make its performance unpredictable.

reeof the fourmethods (all but systematic) exhibit grouping among certain sampling frequencies—
that is, the effective sampling frequency is the same for some sets of input frequencies (e.g., 11 and 12
minutes, 21–24 minutes, etc.), due to the number of sample points M being a stepwise function of
input sampling frequency: M ( f ) = ⌊(120/ f )⌋. For the systematic method, even though the effective
number of samples may be the same within a given group, the spacings between sample points are dis-
tinct, and thus sampling patterns for adjacent input sampling frequencies are unique for this method.
For this reason, only data for the first input sampling frequency within each such group for the three
affected methods are included in Table 1 and Table 3, and all data for the systematic method are in-
cluded; others within each group are omitted for clarity. e effect in Figure 3(k) where NRMSE
means decrease within each banded group for the hybridmethod is due to increasing the upper bound
of the random offset range of [1,f ] while M remains constant within a group.
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Figures 2(a) to 2(d) show a series of maps for the systematic sampling strategy. e most striking
feature is the clear harmonic error effects, seenmost clearly at the 5- and 10-minute sampling frequen-
cies (Figures 2(a) and 2(c)) and to a lesser degree at the 15-minute sampling frequency (Figure 2(d)).
e corridor of high error near the center of thesemaps corresponds to theBlueLineLRTroute, which
connects the major job centers of downtown Minneapolis, the Minneapolis–Saint Paul airport, and
the Mall of America. During the 7:00–9:00 AM weekday morning window used in this evaluation,
this route operates on a 10-minute frequency, seen clearly in Figure 1. When sampling at a 10-minute
frequency, the samples oen fall on the peaks or troughs of the local accessibility pattern, and there-
fore produce sample averages significantly higher or lower than the data average. When sampling at a
5-minute frequency, every other sample hits these peaks or troughs, producing the same effect but to
a lesser degree. ere are corresponding spikes in the standard deviation of theNRMSE at both the 5-
and 10-minute sampling frequencies visible in Table 1, indicating increased dispersion in the sample
results.

ehybrid sampling strategy (Figure 2(f ) andTable 1) improves on the performance of the simple
random sampling strategy in both average error and standard deviation of error, while also avoiding
harmonic error effects at the 5- and 10-minute sampling frequencies. e randomwalk sampling strat-
egy (Figure 2(g) and Table 1) provides a similar further improvement. However, at non-harmonic
sampling frequencies the systematic sampling strategy provides a lower average sample error (but a
greater standard deviation) than either the hybrid or the random walk strategy.

It is interesting to note the performance of the 7-minute sampling frequency with the system-
atic strategy. It produces a slightly better mean NRMSE (2.49 percent vs 2.56 percent) and a lower
standard deviation (1.01 vs 1.32) than the 6-minute sampling frequency, despite having fewer sample
points. is suggests that the 7-minute sampling frequency is not harmonic with the typical service
frequency of transit routes in the area, and therefore provides a more accurate estimate of average ac-
cessibility.
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((a)) ((b)) ((c))

((d)) ((e)) ((f))

((g)) ((h))

Figure 2: Series of maps showing block-level performance of the four sampling strategies implemented.
((a))–((d)) show the mean NRMSE values for sampling frequencies of 5, 7, 10, and 15 min-
utes for the systematicmethod—of these, all but ((b)), for a sampling frequency of 7minutes,
exhibit pronounced harmonic error effects at some locations associated with transit service
stops. ((e)), ((f )), and ((g)) show the mean NRMSE values for the simple, hybrid, and ran-
domwalk samplingmethods, respectively, each at a sampling frequency of 5minutes. Darker
colors indicate greater average sample error, as shown in ((h)).
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Figure 3: Box plots showing NRMSE performance for the four sampling strategies tested, over all
blocks at each sampling frequency. Boxes show inter-quartile range (25th–75th percentile)
with horizontalmedial line; whiskers extend 1.5×IQR above and below. Outliers are plotted
individually. Mean is indicated by a dot.
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5.2 Spatial Autocorrelation Comparisons

To further illustrate that the systematic methodology suffers from unpredictable performance, Fig-
ures 4 and 5 show the variance and skewness, respectively, of block-population LISA statistics; the un-
derlying data are reported in Table 3. Higher population variance suggests that a particular sampling
method and frequency yields clusters of autocorrelation among block-level NRMSE values, since the
presence of LISA outliers could suggest positive or negative autocorrelation; higher skewness values
(right-skewness) suggest that LISA outliers lay on the right tail of the distribution of Local Moran’s I
values. Clearly visible in Figure 4, the systematic sampling strategy yields very high relative variance
and unpredictability in NRMSE across the geographic region, with peaks at sampling frequencies of
2, 5, 10, 15, and 20 minutes, corresponding directly to harmonic sampling errors. Figure 5 shows
the systematic method yielding the highest right-skewness across the entire sampling frequency range,
and also shows local peaks at sampling frequencies of 5, 10, 15, and 20 minutes, indicating the pres-
ence of clusters of blocks with high NRMSE values. e darker-colored areas in Figures 2(a), 2(c)
and 2(d) correspond directly to the higher variance and right-skewness of LISA statistics for system-
atic sampling at frequencies of 5, 10, and 15 minutes. For example, with a sampling frequency of
5 minutes, the systematic method yields a LISA variance of 6.77 and skewness of 10.42, both local
peaks; with a sampling frequency of 7 minutes, lower LISA variance and skewness values of 0.80 and
5.06, respectively, are obtained. All othermethodologies show lowvariance and skewness amongLISA
statistics throughout the sampling frequency range, with the exception of constrained randomwalk at
f = 2. At sampling frequency 2, the constrained random walk methodology collapses to the system-
atic methodology (since at f = 2, the random walk offset range of ⌊ f /2⌋ to ⌊ f +( f /2)⌋ becomes
[1,3] with an expected value of 2).
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Table 3: Spatial Autocorrelation Comparison of Sampling Strategies - LISA Statistics

Sampling Strategy
Simple Systematic Hybrid Random Walk

Sampling
Frequency

Variance Skewness Variance Skewness Variance Skewness Variance Skewness

2 0.28 1.64 7.36 13.53 0.45 2.35 7.36 13.53
3 0.28 1.64 2.11 13.85 0.41 2.00 0.31 1.72
4 0.28 1.63 2.32 9.04 0.38 1.91 0.32 1.69
5 0.28 1.66 6.77 10.42 0.37 1.91 0.37 2.43
6 0.28 1.64 1.57 9.84 0.36 1.80 0.31 1.50
7 0.28 1.66 0.80 5.06 0.35 1.78 0.33 1.73
8 0.28 1.65 1.04 6.04 0.34 1.66 0.37 2.45
9 0.28 1.63 0.87 5.74 0.32 1.52 0.43 3.28
10 0.28 1.63 7.11 9.69 0.33 1.81 0.39 2.70
11 0.28 1.63 1.09 6.24 0.30 1.57 0.36 1.93
12 - - 0.96 6.20 - - - -
13 0.28 1.65 1.04 5.03 0.31 1.62 0.35 2.01
14 0.28 1.62 1.48 6.32 0.30 1.41 0.39 2.33
15 0.28 1.62 2.41 7.10 0.30 1.40 0.35 1.98
16 0.28 1.64 1.09 4.21 0.31 2.10 0.32 1.58
17 - - 1.03 4.09 - - - -
18 0.28 1.63 0.80 5.42 0.29 1.68 0.32 1.82
19 - - 1.05 5.10 - - - -
20 - - 2.61 6.38 - - - -
21 0.28 1.68 1.08 5.95 0.30 1.92 0.33 1.85
22 - - 0.83 4.91 - - - -
23 - - 0.99 5.50 - - - -
24 - - 0.95 5.17 - - - -
25 0.28 1.65 0.66 4.21 0.31 2.09 0.46 3.37
26 - - 0.73 5.43 - - - -
27 - - 0.91 5.37 - - - -
28 - - 1.06 4.78 - - - -
29 - - 1.14 4.50 - - - -
30 - - 1.16 3.91 - - - -
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Figure 4: Series of plots showing population variance of LocalMoran’s Ii statistics for the four different
sampling methodologies, across the range of sampling widths.
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Figure 5: Series of plots showing distribution skewness of Local Moran’s Ii statistics for the four differ-
ent sampling methodologies, across the range of sampling widths.
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5.3 Computation Time Reduction andMethodology Recommendations

Recommendations for sampling strategy and sampling frequency canbe set baseduponchosenNRMSE
tolerances; e.g., to guarantee, on average, <= 2.5% error, the simple methodology only allows a fre-
quency of 2 minutes. e systematic and hybrid methods allow frequencies of 2, 3, and 4 minutes
under this error tolerance, while the random walk method allows frequencies of 2–5 minutes. For an
NRMSE tolerance of<= 5%, the simple method allows frequencies of 2–6 minutes; the systematic
method allows frequencies 2–9; and the hybrid andwalkmethods allow frequencies of 2–10minutes.

However,methods and frequencies yieldinghigh variation inNRMSEvalues should alsobe avoided.
Requiring that the Coefficient of Variation σ/µ <= 0.5 is a reasonable tolerance; under this con-
straint, no viable sampling frequency is le for the systematic strategy with average error tolerance
<= 2.5%, while only frequencies of 6–9minutes remain for the systematic strategy with average error
tolerance<= 5%. No other strategy-frequency combinations are eliminated by this constraint. Sim-
ilarly, a constraint of avoiding spatial autocorrelation in NRMSE values could be imposed; choosing
a framework which does not yield high variance and right-skewness in the block-level LISA statistics
for NRMSE values would also result in eliminating many sampling frequencies under the systematic
method, particularly those prone to eliciting harmonic effects. Table 5 gives an overview of which
methodologies have low or high performance predictability (consistency throughout the sampling
frequency range), and NRMSE and spatial autocorrelation statistics, based on the information in Ta-
ble 3.

Table 5: NRMSE and LISA Summary Comparison of Sampling Strategies

Sampling Strategy
Simple Systematic Hybrid Random Walk

Predictability high low high high
Mean of NRMSE high low low low
S.D. of NRMSE high high low low
Variance of LISA low high low low
Skewness of LISA low high low low

Another considerationwhen choosing an appropriate samplingmethod and frequency is the over-
all computation time reduction obtained within the chosen framework. Figure 6 shows the tradeoff
curves between mean NRMSE and computation speedup factor obtained, for each of the four sam-
plingmethods. e ratio ofNRMSE to speedup factor is plotted across the range of sampling frequen-
cies; diminishing returns are apparent. For example, moving from a sampling width of 5 to a sampling
width of 10 for the simple method yields a 20.2 percent reduction in the NRMSE to speedup factor
ratio, while moving from a sampling width of 10 to a sampling width of 15 only yields a 16.3 percent
reduction in the NRMSE to speedup factor ratio. e systematic method once again shows spikes at
sampling frequencies of 5, 10, and 15 minutes, clearly showing the error costs relative to speedup ben-
efits associated with sampling at those frequencies. e diminishing returns for the three non-simple
methods are lower than those for the simple method, indicating the reliability and consistency of the
hybrid and constrained random walk methods in particular.



Temporal sampling in transit accessibility evaluation 

●

●
●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

0 5 10 15 20 25 30

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Sampling Method: Simple

Sampling Frequency

E
rr

or
/S

pe
ed

up
 F

ac
to

r

●

●
● ●

●

●

● ● ●

●

● ●

●

● ●

●
●

0 5 10 15 20 25 30

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Sampling Method: Systematic

Sampling Frequency

E
rr

or
/S

pe
ed

up
 F

ac
to

r

●

●

● ● ● ● ●
● ●

●
● ●

●
●

●
●

●

0 5 10 15 20 25 30

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Sampling Method: Hybrid

Sampling Frequency

E
rr

or
/S

pe
ed

up
 F

ac
to

r

●

●

●
● ● ● ● ● ●

●
● ●

●
●

●
●

●

0 5 10 15 20 25 30

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Sampling Method: Constrained Random Walk

Sampling Frequency

E
rr

or
/S

pe
ed

up
 F

ac
to

r

Figure 6: Series of plots showing the tradeoff between NRMSE and computational speedup, repre-
sented by the ratio of NRMSE to speedup factor (e.g., 2x, 3x, etc.), obtained via the four
different sampling methodologies, across the range of sampling widths.

Computational speedup and NRMSE tolerances can be implemented in tandem to determine
appropriate sampling methods. If for example a 5x speedup factor is desired (corresponding to a sam-
pling frequency of 5 minutes) in tandem with a maximum NRMSE value of 2.5 percent, then only
the constrained random walk method delivers the appropriate conditions. If a 10x speedup factor is
desired with a maximum NRMSE of 5 percent, then both the hybrid and constrained random walk
methodologies provide appropriate frameworks. However, it is important to note that while the ratios
of NRMSE to speedup factor do decrease through the sampling frequency range for all methods, the
NRMSE values themselves increase (Figure 3). It is this fundamental tradeoff between computation
time speedups (and computer hardware limitations), and sampling error tolerances which informs the
choice of sampling frequency and methodology.
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6 Conclusion

It is clear that the selection of a temporal sampling strategy can have a significant impact on the results
of accessibility evaluation, particularly if the chosen strategy does not avoid harmonic error interac-
tions with the local transit network. Of the strategies compared in this analysis, a constrained random
walk approach provided the best performance, as measured by sample error and variance, while avoid-
ing harmonic error effects. However, it is important to note that this comparison relied on sample
strategy performance in the context of a single transit network. It is possible that each strategy could
perform better or worse if applied to the transit network in a different city, and additional research
may be useful in finding a strategy that is generalizable.

It is also clear that a systematic sampling strategy can produce very erratic results compared to
other methods, and that it is susceptible to harmonic error effects due to interactions with the local
transit network. It may be wise to avoid this sampling strategy, particularly in applications with a
goal of analyzing the spatial variation of accessibility. Because harmonic error effects are associated
with nearby transit service, they are inherently clustered spatially and would bias any spatial analysis
efforts. Sampling frequencies which are not simple divisors of 10- and 15-minute headway transit
service (e.g., 3, 7, 9) may reduce the risk of harmonic error effects when a systematic sampling strategy
is used. However, systematic sampling strategies yielded significantly higher population variances than
those of the hybrid and random walk strategies, so the more robust frameworks may be more suitable
for most transportation networks.

It may be interesting to explore sampling approaches which select different strategies and/or fre-
quencies based on an analysis of the local transit service context. e systematic strategy gives the best
performance in areas where harmonic error effects are not a concern; with minimal pre-processing of
transit schedule data it may be possible to identify areas which are better suited to a particular sam-
pling strategy or which would benefit from higher sampling rates. Transit networks can vary in terms
of frequencies implemented, geographic layouts, service levels at different times of the day, and other
characteristics, so application of this analysis framework to a different set of transit accessibility data
may yield different results.

Temporal sampling strategies provide an attractive trade-off: an accessibility evaluation sampled
at a 5-minute frequency using the constrained random walk strategy requires only 20 percent of the
computing effort as one sampled at every minute, with an average sample error of only 2.5 percent.
Perhaps this level of error tradeoff is acceptable to planning agencies looking to perform a large number
of scenario evaluations, e.g., in designing a network of new bus rapid transit lines. However, sampling
strategy and sampling frequency should be selected with an understanding of how they may influence
the spatial patterns of accessibility results.
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