
Abstract: A precise and stable microsimulation space development module is 
fundamental for supporting various policy decision-making exercises related to 
land development. This paper studies the dynamics or uncertainty of outputs 
of the parcel-based space development module of an integrated land-use and 
transport forecasting model—the Baltimore PECAS Demo Model. It is tested 
with two sub-studies: (1) running the model three times over the entire plan-
ning window from 2000 to 2030; and (2) running the model 30 times just one 
year ahead from 2000 to 2001. The outputs obtained are used to analyze such 
dynamics or uncertainty. Study results from the first sub-study show that, in 
general, the system is stable and consistent over runs and time, as supported by 
a set of paired t-tests. However, the coefficient of variation (COV) measuring 
the variation of estimated space quantity by category over four cross-section 
years indicates that the differences among runs are increasing over time through 
the planning window. The COV test over the second sub-study indicates the 
estimated space quantity is stable for most of the zones, except for a small por-
tion of zones with a small space quantity.
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1 Introduction

Integrated land-use transport models (ILUTMs) are used to forecast future land-use and transport con-
ditions based on a large amount of input data, thus providing a comprehensive representation regarding 
how the two interact with each other and their impacts on the society in general. Recently, there is a 
trend that the land-use transport modelling is moving away from the traditional aggregate, equilib-
rium and mathematical-equation-based approach to a more detailed, disaggregate, non-equilibrium and 
microsimulation-based one. The growth of information technology has offered unprecedented amount 
of data that are required for sustaining this trend, which encourages the development of ILUTMs with 
higher spatial, temporal and socioeconomic resolutions. 

In particular, as the parcel database is readily available in the cities of some countries, an increasing 
number of ILUTMs with a better spatial resolution, e.g., using cells or parcels rather than medium-
size land-use zones, have been developed, such as the UrbanSim and PECAS (the Production, Ex-
change and Consumption Allocation System) (Waddell, 2002; Hunt & Abraham, 2003). In general, 
the parcel-based ILUTMs are developed over many iterations to achieve a better representation of space 
development in the modelling area. For example, the PECAS model, which is drawn largely from the 
MEPLAN and TRANUS model, has been further enhanced in its space development module through 
microsimulation to represent the space with parcels and to reduce forecasting errors due to spatial ag-
gregation used in the previous models. However, many issues could arise during the model development 
process, including data availability, computing capacity, model calibration and microsimulation errors. 
Meanwhile, if the outputs of the ILUTMs are misleading or inaccurate, it will result in uninformed 
decision-makings.  Literature has suggested that microsimulation could impede the convergence of a 
model or result in a large oscillation in simulated results (Hunt et al., 2008).  

Although existing studies (Clay & Johnston, 2005; Clay & Johnston, 2006; Pradhan & Kockel-
man, 2002; Krishnamurthy & Kockelman, 2003) have looked into the uncertainties in the forecasts 
of ILUTMs, none of them has investigated the impact of uncertainty related to microsimulation on 
the forecasting accuracy of these models over time and space, in particular, that related to their space 
development (SD) components. The purpose of this paper is to study the outputs dynamics or uncer-
tainty of the space development microsimulation of an ILUTM—the Baltimore PECAS Demo model. 
In order to produce a rich output dataset for further investigating the forecasting uncertainty of its SD 
module, two sub-studies are carried out with the Baltimore PECAS Demo model: (1) running the full 
PECAS model three times over the entire planning window from Year 2000 to 2030; and (2) running 
the model 30 times just one year ahead from Year 2000 to 2001. A set of methods, including paired t-
tests and COV (coefficient of variation), is used to measure the uncertainties of the SD module. Study 
results clearly suggest that, except for those zones with the space of a small quantity, the SD module of 
the Baltimore PECAS Demo model offers highly consistent forecasts over time and the model scenarios. 

This paper is structured as follows: Section 2 provides related literature review; then an overview 
of the framework of Baltimore PECAS Demo model is presented in Section 3; in Section 4, the study 
methods, including the experimental setup, used to analyze the stability of Baltimore PECAS Demo 
model are described; the test results are reported in Section 5; finally, Section 6 summarizes the main 
conclusions and outlines our future research.

2 Literature review

The microsimulation method was first introduced in social science applications by Orcutt (1961), fol-
lowed by a wide range of uses in the land use and transport field. For example, Hagerstrand (1968) used 
the microsimulation method to develop a spatial diffusion model; Chapin and Weiss (1968), Kreibich 
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(1979), Clarke and Holm (1987), Kain and Apgar (1985) also applied such method to simulate urban 
development, transport behavior, demographic and household dynamics, and housing choice, respec-
tively. Clarke (1996) introduced an analytical framework to simulate the flexibility of individuals’ behav-
ior, which uses data from various sources (including income, health, education and welfare) to develop a 
more specific model. Nakamura, Hayashi and Miyamoto (1983) developed a land-use transport model 
(CALUTAS) for the Tokyo Metropolitan Area based on grids of 1 square kilometers. Later, Miyamoto, 
Vichiensan, Sugiki, and Kitazume (2007) integrated a land-use model—the RURBAN model with 
an existing transport model for Sapporo. In the study, the size of zone ranges from 10,000 square me-
ters in the center of the city (8,025 zones) to 1,000,000 in the suburbs. With its land-use component 
based on the land-use parts of the existing IRPUD model, the ILUMASS model (the Integrated Land-
Use Modelling and Transportation System Simulation) was developed completely by microsimulation 
(Moeckel, Spiekermann, & Schurmann, 2003). All the land-use changes and traffic flows are modelled 
at the level of individuals.  Among the widely known ILUTMs such as the 20 urban models listed up 
in (Wegener, 2004), when considering space development, the UrbanSim, ILUTE (the Integrated Land 
Use, Transportation, Environment modelling system), MUSSA and PECAS tend to apply microsimula-
tion at a smaller spatial unit (e.g., parcels) than other ILUTMs that use aggregated space development 
sub-models at the zonal level. Waddell (1998) firstly presented the structure of the UrbanSim model, 
which includes the interactions between urban development over time and space with individual choices 
and actions. The author also indicated the priorities for future research are increasing the resolution of 
location based on the grid measurement of spatial context and developing the microsimulation imple-
mentation of the location. Miller and Salvini (2001) presented the architecture of the Integrated Land 
Use, Transportation, Environment (ILUTE) system, exploring the possibility of a fully microsimulation 
modelling framework. Hunt and Abraham (2003) designed the PECAS framework to simulate the 
spatial economic systems with the land development at the parcel level, which is seen as a step forward 
for an improved land-use transport interaction model with a high spatial resolution. Zhong, Hunt, and 
Abraham (2007) developed a province-wide PECAS model for Alberta, Canada for the provincial gov-
ernment to make more informed economic, land use and transportation infrastructure decisions. Hunt 
et al. (2008) developed a PECAS Demo model to simulate the evolution of Baltimore. The Baltimore 
PECAS Demo model can simulate space development and land-use evolution at a very fine spatial scale 
(e.g., parcel). Their results showed that the “microsimulation error” of the space development module 
could be large, resulted from the relatively small number of occurrences of certain transitions at the level 
of individual parcels. In order to reduce the microsimulation error, a process called “pseudo parceling” 
was used to create smaller parcels and a smaller “dampening factor” of 0.25 was applied, which is found 
to significantly influence the convergence of the progress for transition.  Miller (2018) argued that 
though integrated urban microsimulation models are not yet commonplace, they are needed in order to 
model successfully the complexities of the urban systems and their behavior.

Waddell (2009) agreed with Wegener (2009) in that integrated microsimulation models are likely 
to be unstable and suffer from excessive stochasticity. He also stated that uncertainty in models should 
be taken seriously. Rodier and Johnston (2002) conducted a sensitivity analysis of population, employ-
ment, fuel price and income projections using a travel demand and emissions models of Sacramento, 
USA. The results of their study showed that compared to the household income and fuel prices, popu-
lation and employment projections are significant sources of uncertainty to the region’s travel demand 
model. Zhao and Kockelman (2002) investigated the stability of transport demand model outputs by 
quantifying the variability in model inputs, such as zonal socioeconomic data and trip generation rates. 
They found that uncertainty is likely to compound itself over a series of models. Rasouli and Timmer-
mans (2012, 2013) studied and reviewed the uncertainty in forecasts of origin–destination (OD) ma-
trices using advanced activity-based demand. In order to reduce the uncertainty of the origin–destina-
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tion matrices estimated using historical OD demand and observed traffic counts, Talebian and Shafahi 
(2015) applied fuzzy rules and the fuzzy C-mean clustering approach which shows a robust performance 
for a real transportation network. Petrik, Moura, and Silva (2014) showed that the variation of road 
capacity has a larger impact on the uncertainty related to assigned link volumes of the four-step model 
than the parameters of volume–delay function.

Studies have also been conducted on error propagation in land-use transport models, such as in the 
UrbanSim model presented by Pradhan and Kockelman (2002), and DRAM-EMPAL by Krishnamur-
thy and Kockelman (2003). The two studies found that model structure is significant in determining 
how the error propagates across model years. Pradhan and Kockelman (2002) concluded that the four 
most important sources of uncertainty are “natural uncertainty, uncertainty in model design and struc-
ture, data uncertainty and calibration error, and uncertainty in socioeconomic projections and other 
model inputs.” Clay and Johnston (2005, 2006) tested the impact of uncertainty on model’s outputs 
by varying three inputs (exogenous production, commercial trip generation rates, and perceived out-of-
pocket cost of driving a Single Occupant Vehicle) and one parameter (the concentration parameter) in 
the MEPLAN model. Their studies concluded that the uncertainty from the commercial trip generation 
rates has the largest impact on model outputs, rather than the growth rate of population and employ-
ment found in previous studies. It is obvious that the above-mentioned previous work demonstrated 
that the outputs of different modelling frameworks are differently affected by variations in inputs and 
parameters. 

Duthie, Voruganti, Kockelman, and Waller (2010) studied how decision making would change 
based on recognition of the uncertainty. They found that the ranking of improvement projects may in-
deed be different if uncertainty is considered relative to treating all parameters and data as deterministic. 
Wang and Kockelman (2018) compared the strengths and weaknesses of three methods for uncertainty 
propagation in transportation and land-use models: Local Sensitivity Analysis with Interaction (LSAI), 
Monte Carlo (MC) methods, and Bayesian Melding (BM) method.  

In sum, the uncertainty within the inputs and outputs of integrated land-use and transport models 
are inevitable, because it is a natural component of the decision-making process and the behavior of 
socioeconomic activities. However, none of the studies to date has investigated the impact of uncer-
tainty resulting from the microsimulation of their space development components on the forecasting 
accuracy over time and space. Therefore, the purpose of this study is to analyze such an impact using 
a fully integrated microsimulation land-use and transport forecasting model—the Baltimore PECAS 
Demo model.

3 Study model and data

3.1 An introduction to the PECAS framework

The PECAS, one of the popular ILUTMs, is used in this study. It stands for Production, Exchange, 
and Consumption Allocation System (PECAS). The PECAS model relies on random utility and dis-
crete choice theory to simulate a large spatial economic system. Drawn from the previous MEPLAN 
and TRANUS model, the PECAS model reduces data-dependency and provides several theoretical 
enhancements compared to previous models (Hunt & Abraham, 2003).

The PECAS includes two basic modules that are linked together by the Transport Model and 
the Economic Demographic Aggregate Forecasting Model. The first module is the Activity Allocation 
module (AA module), which represents how activities locate within the space provided by developers 
and how these activities interact with each other at a given point in time. The AA module allocates the 
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flows of commodities from the production location zone to the exchange location zone and from the 
exchange location zone to the consumption location zone and finds the corresponding set of prices at 
the exchange location zone that clears all markets. The other module is the Space Development module 
(SD module), which represents the actions of developers in the provision of space where activities can 
locate. This developed space is typically floor space of various types and is called “space” in the PECAS 
framework.

The PECAS Activity Allocation module is an aggregate representation based on spatially disag-
gregated forms of extended make and use input–output table. Based on random utility theory, it uses a 
“utility function” to describe the attractiveness of each option. The PECAS Space Development module, 
based on a set of logit allocation models, gives the quantities of space (including land and floor space) in 
each category in each land-use zone or parcel developed in the period from one point in time to the next. 

The Transport Model represents the transport system connecting locations, including at a mini-
mum a transport network, the transport demands that load onto this network (as a result of the eco-
nomic interactions represented in the AA module) and the congested times and costs for interactions 
between locations arising with the loading of these demands. 

The Economic Demographic Aggregate Forecasting Model is used to develop aggregate economic 
forecasts for the study area being modelled. 

The four modules listed above are linked together as a system working through time in a series of 
discrete, fixed steps from one point in time to the next. AA module and SD module run at a one-year 
step, while the Transport Model runs less often considering the transportation conditions change rela-
tively slowly and saving computation time. The study area is usually organized into a set of traffic analy-
sis zones (TAZs). The land in each TAZ is further partitioned into parcels corresponding to cadastral 
legal parcels or portions of legal parcels (Abraham, Gordon, & Hunt, 2005). 

See Hunt and Abraham (2003) and Abraham et al. (2005) for more detailed descriptions of the 
theoretical formulation and calibration methods of the PECAS model.

3.2 Baltimore PECAS Demo model—the model tested

The uncertainty of estimated space quantities from the SD module over time and space is analyzed based 
on the forecasting results of the Baltimore PECAS Demo model. It is acknowledged that the Baltimore 
Council generously allowed their model to be used for demonstration purposes without official endorse-
ment. This model considers more than 20 activities, 30+ commodities and 10 transport modes. Its space 
demand module is developed based on the smallest land development unit —the legal parcel. The study 
area of the Baltimore PECAS Demo model covers the Baltimore Metropolitan Council area. The area 
has been divided into 185 land-use zones (LUZ) and 1,151 traffic analysis zones (TAZs), as shown in 
Fig.1(a). Fig.1(b) demonstrates the road network and built up areas of the City of Baltimore in Decem-
ber 2000 (see top left corner for the time stamp). In this paper, the TAZ is used as the spatial unit for 
analyzing the stability of the space development (SD) module of the Baltimore PECAS Demo model.
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Figure 1. The city of Baltimore
(a) The city of Baltimore with TAZs
(b) The city of Baltimore from Google Earth in 2000

The SD module of the Baltimore PECAS Demo model is developed based on parcel-by-parcel 
microsimulation, which covers 2.17 million parcels in the base year of 2000. Fig. 2 shows the popula-
tion density and population (a), and employment density and employments (b) of the City of Baltimore 
with 1,151 transport analysis zones used in the PECAS Demo model. The height of the zones repre-
sents the magnitude of population or employment in each zone, the higher the height, the larger the 
corresponding population or employment. Besides, the zones with red color located in the central area 
represents a higher density than the green ones, meaning that there is less land for the population and 
employment in the downtown of Baltimore, compared to suburban areas. The PECAS Demo model 
uses a road network consisting of 30,745 links, 10,978 nodes and 1,151 centroids. The average values 
of road capacity, speed, volume–delay functions and other attributes are provided by the Baltimore 
Metropolitan Council for 21 road types included in the network.

Figure 2. Population and employments of the 1,151 zones in 2000
(a) Population density and population of the 1,151 zones for the base year 2000 (b) Employment density and employments of 
the 1,151 zones for the base year 2000 
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After the integration of 2.17 million parcels, input–output tables, population and employment 
data, transportation network and other data into PECAS run scripts, the Demo model was fine-tuned 
and fully calibrated. The Space Development module of the PECAS Demo model gives the aggregate 
quantities of space in each category in each TAZ for each year, including six space types: commercial 
space, industrial space, low-density residential space, medium-density residential space, high-density 
residential space and other developed space. Commercial space includes retail and wholesale services 
areas, while industrial space includes the manufacturing and industrial parks. The three levels of residen-
tial space are distinguished by their density: low, medium or high (e.g., the dwelling units per unit area). 
Table 1 shows the summary statistics including the total quantity and percentage of the base year data 
for each type across the 1,151 TAZs used in the PECAS Demo model. It is obvious that the low-density 
residential space developed prevails all the other categories, followed by the commercial and industrial 
space. The amounts of the medium and high-density residential space in the region are fairly low (both 
less than 5% of the total). The other developed space takes about 10% of the total.

Table 1. Summary statistics of the base year space quantity (by category)

Space category Quantities of 1,151 zones
(km2)

Percentage of quantities

Commercial space 34.59 11.93%

Industrial space 33.06 11.41%

Low-density residential space 176.10 60.76%

Medium-density residential space 12.74 4.40%

High-density residential space 6.17 2.13%

Other developed space 27.18 9.38%

Fig. 3 describes the prevailed low-density residential space proportional to the total quantity of each 
TAZ in the Baltimore region of the year 2000. As we can see, low-density residential space takes more 
than 50% of the total developed space (all built space except for “Agricultural”) in most TAZs of the 
City of Baltimore, especially in the peripheral zones. Low-density residential space takes a quite lower 
proportion in those TAZs near the downtown of Baltimore, which is in the middle of Baltimore close to 
the harbor (inside the green box shown). This can be observed in most cities in North America.

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The percentage of low-density residential space over TAZs in the Baltimore region in 2000
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4 Methodologies

Two sub-studies are conducted to study the forecast uncertainty of the SD module of the PECAS Demo 
model. Regarding the first sub-study, the Baltimore PECAS Demo model is run three times from the 
base year 2000 to 2030 with the same input datasets and model parameters. Each run is, in turn, defined 
as Scenario A (SA), Scenario B (SB), and Scenario C (SC). The second sub-study is running the Demo 
model thirty times from 2000 to 2001. 

Paired t-tests and the coefficient of variation (COV) are used to evaluate the stability of the space 
quantity (by category) estimated by the Baltimore PECAS Demo model. Paired t-tests are a form of 
blocking with respect to the independence of membership in the two groups being compared (Stu-
dent, 1908). Considering the space development activity within each TAZ is independent to each other 
among different runs, paired t-tests are used to analyze the difference between the space quantity (by 
category) estimated from the first sub-study in scenarios A, B and C, where the model is repeatedly run 
for three times with the same base-year input data. 

The COV (coefficient of variation), which is also known as relative standard deviation, is defined 
as the ratio of the standard deviation to the mean (Everitt & Skrondal, 1998). It is used in the first sub-
study to study the variation distribution for estimated space quantity over four cross-section years (2005, 
2010, 2020 and 2030) across the scenarios A, B, and C, and in the second sub-study the uncertainty 
of the estimated space quantity (again by category) for running the model 30 times with only one-year 
step from Year 2000 to 2001. The detailed procedure related to the two sub-studies are presented below.

4.1 Sub-study 1: Analysis on scenarios A, B and C

4.1.1  T-tests between scenarios A, B, and C

Due to the fact that the estimated space quantity of each of 1,151 TAZ is independent to each other 
across the scenarios A, B and C, paired t-tests are used to test the hypothesis that there is no significant 
difference between the space quantity estimated from each scenario. The hypothesis of paired t-test is 
that the difference between two statistics variables is zero based on a two-sample location test method. 
As a form of blocking, the paired t-test has a great power to reduce the effects of confounding factors, 
when noise factors are independent of membership in the two groups being compared (Student, 1908). 
In this study, the paired t-test is applied to the following three matched pairs: SA vs. SB, SA vs. SC and 
SB vs. SC, for each of the six space types. The estimated space quantities from the scenarios A, B and C 
are paired based on TAZ ID and then subtract from each other to develop the three test data sets.  Eq. 
(1) is used to test whether the difference between a pair is zero:
           (1)

Where and represent the unbiased estimators of the variance of each paired group, 
represent the average of the paired scenarios for the estimated space quantity (for a given category) 
respectively. When the difference between the estimated space quantities from a given pair of model 
scenarios is close to 0, we can infer that there is no significant difference between the two scenarios and 
therefore, the model’s forecasts are quite consistent. The numerator of the Eq. (1) stands for the standard 
error of the difference between the two means. The variable n in the denominator is the number of 
samples in each group, representing 1,151 TAZs for all t-tests carried out in this study. Therefore, the 
degree of freedom for all of the t-tests is 1,150.
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Once the t-tests are finished, the related statistics, t value and p value, are presented. If the calcu-
lated p value is below the threshold (0.05 is chosen in this paper) of statistical significance, the hypothesis 
that there is no significant difference between the estimated space quantity from the paired scenarios 
should be rejected.

4.1.2  COV analysis for the scenarios A, B and C
The coefficient of variation (COV), which shows the variability in relation to the mean of the sample, 
is defined as the ratio of the standard deviation  to the mean  (Everitt & Skrondal, 1998) as shown 
in Eq. (2):
          (2)

The COV method is used to evaluate the stability of the forecasts from the three 30-year runs (sce-
narios A, B and C). The estimated space quantity (by category) for each zone and each year from each 
of the three scenarios is used to calculate a COV. An advantage of the COV method used in this study 
is that the actual value of the COV is independent of the zone size or space quantity for the comparison 
between different samples.

4.2 Sub-study 2: COV Analysis on 30-time one-year runs

In this study, the COV method is also used to evaluate the stability of the forecasts from the 30 times 
of one-year run from Year 2000 to 2001. The estimated space quantity (by category) from the 30-time 
one-year runs are used to calculate the COVs. As the COVs can only take the measurements on non-
negative values, it can be very efficient to test the stability of the forecasted space quantity from 30 runs 
for each zone.

5 Study results and discussion

5.1 Results from sub-study 1: Analysis on scenarios A, B and C

5.1.1  Summary statistics of the outputs of scenarios A, B and C

The space development module of the PECAS Baltimore Demo model shows a fully forecasted spatial 
allocation of the space developed. After three runs of the Baltimore PECAS Demo model from the base 
year 2000 to 2030 (Scenario A, Scenario B, and Scenario C), all forecasted quantities of the six space 
categories for all zones are provided. In this study, all of six space categories are analyzed, including 
commercial, industrial, low-density residential, medium-density residential, high-density residential and 
other developed space. Table 2 describes the estimated spatial allocation of the year 2030 in quantity by 
six categories under the SA, SB and SC, and the percentage of corresponding increase compared with 
the base year 2000. A very similar percentage of increase can be found in the estimated space quanti-
ties of the year 2030 in SA, SB, and SC, when compared to the base year 2000, which indicates a high 
stability of the forecasts of the parcel-based PECAS Demo model. Under certain government policies 
which may limit the development of high-density residential space, Table 2 shows the least increase of 
this category with a rate of about 0.5% over the 30-year period. However, with the gradual growth of 
population and household, more residential space is necessary, resulting in a maximum increase of about 
26.7% under the SA, SB and SC for the medium-density residential space, compared to the base year 
2000.
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Table 2. Space quantity of 1,151 zones in 2030 in SA, SB, and SC compared to base year 2000, and the percentage of 
increase

Space 
category 

(km2)

Quantities 
in Base year 

Quantities 
in 2030  
Under  

Scenario SA

Percentage 
of increase

Quantities 
in 2030  
Under  

Scenario SB

Percentage 
of increase

Quantities 
in 2030 
Under  

Scenario SC

Percentage 
of increase

Commercial 
space

34.59 41.30 19.39% 41.21 19.14% 41.37 19.60%

Industrial 
space

33.06 40.13 21.39% 40.08 21.23% 40.10 21.28%

Low-density 
residential 
space

176.10 198.30 12.61% 198.26 12.59% 198.45 12.69%

Medium-
density 
residential 
space

12.74 16.15 26.79% 16.14 26.66% 16.15 26.73%

High-density 
residential 
space

6.17 6.21 0.65% 6.20 0.53% 6.20 0.41%

Other devel-
oped space

27.18 28.27 3.99% 28.28 4.04% 28.24 3.88%

It can be seen from Table 2 that none of the floor space types listed has a compound growth rate ex-
ceeding 1% over the study period and most of them are much slower. The reason for such a slow growth 
rate was tracked through the modelling process by looking into the growth rate of socioeconomic activi-
ties considered within the Baltimore PECAS Demo model (shown in Fig. 4). It can be seen from the fig-
ure below that these activities show quite flat curves (Fig. 4(a)) and low growth rates (around or less than 
1% over 30-year period, Fig. 4(b)), which clearly explains why corresponding space development is slow.
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Figure 4. The forecasted activity totals and growth rates over 2000 – 2030 from the Baltimore PECAS Demo
(a) The forecasted totals of the socioeconomic activities over 2000 – 2030 from the Baltimore PECAS Demo
(b) The growth rates of the socioeconomic activities over 2000 – 2030 from the Baltimore PECAS Demo
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The descriptive statistics of the total space quantities of the 1,151 TAZs by six categories in each 
year from the year 2000 to 2030 for Scenario A is shown in Fig. 5, where the x-axis represents the years 
considered, the y-axis the space quantities in square kilometers. It is obvious that the quantities of the 
low-density residential space are much larger than the others, which takes 60.76 percent of the total 
quantities of the six space categories in the base year 2000. The low-density residential space also shows 
the steepest slope, indicating the highest increase in quantity among all of the six categories, whereas 
the slope of the curves for the other five categories are flat and thus implying a relatively low increase 
rate. On the other hand, the “tiny” increase rate of the high-density residential space over 30-year period 
is very interesting, as this may indicate the local culture and space consumption behavior prefers low-
density to high-density residential space. For most categories, the total space quantity keeps increasing 
over time, except for the commercial space. The sharp increase of commercial space in the year 2001, is 
found to result from several large development over the zones surrounding the downtown, such as zone 
655, 654 and 656. Possible reasons for the decreasing trend after the year 2001 could be that (1) the 
metropolitan zoning or other policies may restrict such development or (2) the attractiveness of com-
mercial space is decreasing due to certain reasons, when compared to the other categories. It should be 
noted that zoning regulations basically just tell what type of space is allowed or not allowed to develop in 
a parcel or a zoning unit. Developers still have the “freedom” to choose to develop a given type of space, 
which is allowed by the zoning, on a given parcel or a set of parcels, in order to maximize their profit 
gains. In this kind of “game playing,” the resulting space development pattern is largely driven by the 
other policies or environmental variables (e.g., subsidy/stimulus plan or crime/pollution level).
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Figure 5. Total space quantities of six categories in Baltimore over 2000 to 2030 for Scenario A

5.1.2  Paired t-tests between the outputs of scenarios A, B and C

In order to test the stability of model’s estimates of space quantity over 30-year between different runs, 
paired t-tests are applied to the estimated space quantity (by category) for 1,151 TAZs in the year 2030 
to check if the estimated quantities by the PECAS Demo model across the Baltimore region over the 
three model scenarios (SA, SB and SC) are statistically different. The test results are shown in Table 3. 
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According to the assumption made in the paired t-tests, there is a significant difference between the 
paired space quantities with a P-value less than 0.05, which is calculated by subtracting estimated space 
quantity from a given pair of model scenarios (for the same space category and same zone). As shown in 
Table 3, the paired t-test results of SA vs. SB, SA vs. SC, SB vs. SC are not significantly different regard-
ing the commercial space, industrial space, medium-density residential space, high-density residential 
space and other developed space. However, for the low-density residential space category, there is sig-
nificant difference between SA and SC and between SB and SC. A detailed analysis indicates that only 
2.9% zones show a large APD (absolute percentage difference, higher than 10%), which consistently 
have a zero or a very small quantity of the low-density residential space under one of the three scenarios 
(SA, SB or SC). Due to this, the APDs calculated tend to be consistently large. Therefore, it can be con-
cluded that, except for the mentioned reason, in general, the PECAS simulation results are very much 
similar to each other, and the system is fairly stable and consistent over runs and times.

Table 3. Paired-samples t-tests for each space category in 2030

Space category 
(m2) 

Mean Std. D. Std. E. t df P-value

Commercial Space

SA vs. SB 75.19 4948.42 1455.79 0.516 1150 0.606

SA vs. SC -63.89 4172.88 123.00 -0.519 1150 0.604

SB vs. SC -139.08 5242.17 154.52 -0.9 1150 0.368

Industrial Space

SA vs. SB 46.84 1865.99 55.00 0.852 1150 0.395

SA vs. SC 30.50 1768.37 52.12 0.585 1150 0.559

SB vs. SC -16.34 1525.28 44.96 -0.363 1150 0.716

Low-density Residential Space

SA vs. SB 29.63 2176.89 64.17 0.462 1150 0.644

SA vs. SC -133.02 2148.67 63.33 -2.100 1150 0.036

SB vs. SC -162.65 2311.21 68.12 -2.388 1150 0.017

Medium-density Residential Space

SA vs. SB 14.78 915.71 26.99 0.548 1150 0.584

SA vs. SC 6.69 925.87 27.29 0.245 1150 0.806

SB vs. SC -8.09 864.93 25.49 -0.317 1150 0.751

High-density Residential Space

SA vs. SB 5.99 332.84 9.81 0.611 1150 0.541

SA vs. SC 13.09 567.38 16.72 0.783 1150 0.434

SB vs. SC 7.10 513.48 15.13 0.469 1150 0.639

Other Developed Space

SA vs. SB -10.73 2675.40 78.86 -0.136 1150 0.892

SA vs. SC 26.65 2335.58 68.84 0.387 1150 0.699

SB vs. SC 37.38 2126.03 62.67 0.596 1150 0.551
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5.1.3  The COV distribution between the scenarios A, B and C

In this section, the stability of the PECAS Demo model across the years in the planning window is tested 
with the COV method. With the outputs from the spatial development module over the three scenarios 
(SA, SB, and SC), the summary statistics of the COVs based on the estimated quantity of the six space 
categories over 1,151 TAZs are calculated. However, due to limited space, only the COVs of commer-
cial space is shown in Fig. 6, and only the description of COVs of commercial space and low-density 
residential space is presented in Table 4. It is clear that there is an increasing trend in mean, median and 
interquartile range of the COV values of commercial space from 1,151 TAZs over the planning window 
(only the results for Year 2005, 2010, 2020, and 2030 are presented) as shown in Fig. 6, which indi-
cates that larger COV values tend to be more frequent and therefore the uncertainty of the estimation 
increases. Table 4 shows the summary statistics of the COVs for 1,151 zones for both the commercial 
and the low-density residential space. It can be seen that the COV values increase over the planning 
window, supported by the increasing mean, median and interquartile range over time, which in turn 
indicates that larger COV values tend to be more frequent and therefore the uncertainty of the estima-
tion increases. In addition, a decreasing trend in the Skewness and Kurtosis values is found. Skewness 
is the indicator of the probability distribution of the COVs around its mean (skew to the right or left), 
while Kurtosis describes the shape (peaking) of a probability distribution of COVs. The decreasing trend 
of the Skewness indicates that the distribution of COV values tend to be less skewed over the planning 
window. On the other hand, the Kurtosis values implies that the distribution of COV values becomes 
more flat over time. The opposite trend of the standard deviation value of the COV values for the com-
mercial and low-density residential space is interesting, as the one for the former is increasing over time, 
but that for the latter is decreasing. These values indicate that, as the time goes, the development of the 
commercial space is getting less homogeneously distributed over the region, whereas the development of 
the low-density residential space is getting more homogeneous. Although there is an increasing trend of 
COVs across the three scenarios, the PECAS SD module is, in general, stable based on the small COV 
values over the years.

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. COVs of the 1,151 zones for commercial space and commercial space without outliers over the years
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Table 4. Summary statistics of the COVs for 1,151 zones for commercial space and low-density residential space over the 
years

Commercial space Low-density residential space

2005 2010 2020 2030 2005 2010 2020 2030

Mean 0.027 0.031 0.039 0.043 0.018 0.018 0.019 0.021

Median 0.002 0.004 0.006 0.007 0.003 0.004 0.005 0.005

SDV 0.108 0.108 0.133 0.122 0.128 0.109 0.105 0.092

Minimum 0 0 0 0 0 0 0 0

Maximum 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732

Interquar-
tile range

0.017 0.021 0.029 0.034 0. 008 0.015 0.023 0. 024

Skewness 10.312 9.566 9.892 7.453 13.389 12.931 12.496 10.946

Kurtosis 132.494 117.776 95.658 77.428 206.335 185.851 175.050 130.994

Extremes 124
(≥0.044)

149
(≥0.053)

128
(≥0.074)

138
(≥0.086)

122
(≥0.047)

105
(≥0.056)

88
(≥0.07)

79
(≥0.077

 
5.2 Results from sub-study 2: The COV Analysis on 30-time one-year runs

In this study, the Baltimore PECAS Demo is run thirty times from the year 2000 to 2001 to test the 
simulation stability of its SD module across runs. For each space category, the COVs in the 1,151 TAZs 
are analyzed independently (due to the limited space here, only the COVs of commercial space and in-
dustrial space are presented in Fig. 7). Study results show that, for most zones, the COV values are very 
close to 0 for most space categories. The largest COVs are found for the industrial space and medium-
density residential space, about 3.45 and 3.94 respectively. A close examination indicates that, because 
the size of several zones is large and only a small quantity of the two space categories exist in the base 
year, any incremental changes result in large COV values. It can be seen from Fig. 7(a) that those zones 
surrounding the downtown of the City of Baltimore show higher COV values for the commercial space, 
meaning that there is a higher uncertainty in the decision-making process of development of the com-
mercial space in those areas than the others. On the other hand, the analysis related to the industry space 
shows the opposite trend, where the outer zones tend to have higher COV values, as shown in Fig. 7(b).
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Summary statistics for all the space categories available in Zone 659 across 30 one-year (2000-
2001) runs is given in Table 5. There is no high-density residential space in this zone because of zoning 
regulations. According to Table 5, low-density residential space and industrial space show the highest 
quantities in 2001, followed by the other developed space, commercial space, and medium-density 
residential space. The same pattern can also be seen in the range and standard deviation of the space 
categories, except for the medium-density residential space. The COV value for the medium-density 
residential space is as high as 58%, while that for the other space categories are all less than 2%. Table 5 
clearly shows that the quantity of the medium-density residential space is very small, on average is only 
around 100 square meters over 30 runs. In all the 30 runs from the year 2000 to 2001, the SD module 
estimated that no medium-density space would be developed in 15 runs, but with some estimated 
quantities for the rest 15 runs. Within the estimated quantities from the 15 runs, most of them are very 
small, only the corresponding quantity from the 27th run shows a great deviation. Except for this reason, 
the parcel-based Baltimore PECAS Demo model shows a high-degree of stability across runs in general.

   

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. COV values distribution for estimated quantity of Commercial Space and Industrial Space over 30 one-year runs
(a) Commercial Space
(b) Industrial Space
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Table 5. Summary statistics for the year 2001 for Zone 659 (by category)

 
Commercial 

Space
Industrial 

Space
Low-density 
Residential 

Space

Medium-
density  

Residential 
Space

Other  
Developed 

Space

Grand Total

Mean (m2) 1769.87 29644.10 270600.61 96.44 3570.76 3260050.29

Range(m2) 88.39 2282.26 3073.56 195.33 112.79 4667.21

Range as the 
percentage of 
Average

4.99% 7.70% 1.14% 202.54% 3.16% 0.02%

Std. D. (m2) 19.81 589.62 745.46 55.75 25.55 1024.61

COV 1.12% 1.99% 0.27% 57.81% 0.72% 0.03%

6 Conclusions and recommendations

This paper studies the stability of the microsimulation-based space development module, using a simpli-
fied fully integrated land-use and transport forecasting model—the Baltimore PECAS Demo model. 
Testing the stability or uncertainty of its space/land microsimulation component is important for evalu-
ating the accuracy or “effectiveness” of the microsimulation approach and further enhancements of 
other components. The parcel-based Baltimore PECAS Demo is run many times in the two sub-studies 
to provide a rich output dataset from its space development module. 

According to the results of the first sub-study, in general, the Baltimore PECAS Demo results in 
very stable, micro-simulated space quantities, except for a small number of TAZs with very low quantity 
of a certain type of space. However, the differences among runs are increasing over the planning window 
for all the space categories considered. In the second sub-study, our results show a very low percentage 
of the difference between each runs for the commercial space, industrial space, low-density residential 
space, medium-density residential space, and other developed space, except for a small proportion of 
industrial space and medium-density residential space of a few zones. In addition, it appears that the 
spatial distributions of those zones with a high COV value are largely correlated with their correspond-
ing activities. Higher uncertainty is accompanied by more complex economic behavior. And in some 
zones, higher uncertainty is also found due to the small quantity of certain type of space in the base year. 

In summary, the stability test of the parcel-based Baltimore PECAS Demo model generally shows a 
high forecasting reliability. As we can see, even though the zoning can constrain the space development 
on parcels, developers still have the “freedom” to develop, e.g., what type (e.g., commercial vs. residen-
tial) to develop, on which parcels (e.g., where to develop, among all those parcels allowed to develop 
the type of space that developers would like to develop) and develop how much (in what density). It 
is found that, except for a small number of cases, the forecasts are highly consistent and stable over 
time and space, which means that the simulated developers’ decisions, behavior (what type of space to 
develop, where to develop and in what density) and space patterns show a very small variation over dif-
ferent model runs. This fact indicates that, even though the developers do have the “freedom” to develop 
in a “free” real estate market similar to that of the City of Baltimore, their behavior and resulting space 
development patterns are pretty much consistent to each other over different simulation runs. Therefore, 
it can be concluded that the developers simulated are very likely to be “reasonable decision makers,” 
under the assumption that their space development behavior has been well modelled with the observed 
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data and a high goodness-of-the-fit (Hunt et al., 2008). The study results of this paper provide insights 
about the uncertainty introduced by the micro-simulated space development module used in the Balti-
more PECAS Demo model, which is shown to be very small and statistical insignificant in most cases, 
with only a few exceptions at those TAZs with a very small amount of existing space. Future work could 
investigate those exceptional cases by either reducing the simulation size (by time step or spatial unit) or 
changing the parameters (e.g., dampening factors) of microsimulation.
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