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Abstract: In this paper we assess the accuracy with which General Transit
Feed Specification (GTFS) schedule data canbeused tomeasure accessibility
by public transit as it varies over space and time. We use archived Automatic
Vehicle Location (AVL) data from four North American transit agencies to
produce a detailed reconstruction of actual transit vehicle movements over
the course of five days in a format that allows for travel time estimation di-
rectly comparable to schedule-based GTFS. With travel times estimated on
both schedule-based and retrospective networks, we compute and compare a
variety of accessibility measures. We find that origin-based accessibility even
when averaged over one-hour periods can vary widely between locations.
Origins with lower scheduled access tend to produce less reliable estimates
with more variability from hour to hour in real accessibility, while higher
access zones seem to converge on an estimate 5-15 percent lower than the
schedule predicts. Such over- and under-predictions exhibit strong spatial
patterns which should be of concern to those using accessibility metrics in
statistical models. Momentary measures of accessibility are briefly discussed
and found to be weakly related to momentary changes in real access. ese
findings bring into question the validity of some recent applications ofGTFS
data and point the way toward more robust methods for calculating accessi-
bility.
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1 Introduction

Over the last decade, theGeneral Transit Feed Specification (GTFS) has been established as a standard
format for exchanging information on scheduled transit operations. GTFS was designed to enable
point-to-point routing applications for transit users, and around a thousand (Zervaas 2018) transit
agencies around the world are now engaged in creating and updating GTFS datasets, primarily for the
role these play in enabling popular applications such as Google Transit (Antrim et al. 2013).
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Transport researchers however have been quick to see other applications for this rich new source
of data; the same format that allows efficient point-to-point route-finding in user-facing applications,
also allows for the efficient estimation of transit travel times between many points all across a city or
even a country (Owen and Levinson 2016). e large travel time datasets thus derived have been used
as the basis for studies of accessibility by transit in a number of different contexts. ese applications
range from a concern with an equitable distribution of access (e.g., Pereira et al. 2018; Widener et al.
2015) to accessibility as an input to mode-share models (e.g., Boisjoly and El-Geneidy 2016; Owen
and Levinson 2015) to accessibility as ametric for use in transport planning decisions (e.g., Farber and
Fu 2017; Farber and Grandez 2016; Stewart 2017b).

It is important to remember however that GTFS data is only a schedule, an expectation for fu-
ture transit service, and not necessarily a realistic description of service as it actually happens. Transit
vehicles oen run late, get stuck in traffic, depart the station early, and require detours around ob-
stacles. us there is potentially a large gap between the accessibility we would expect based only on
a schedule and the accessibility that people actually experience in the real world. If this is so then
our measures of accessibility may have substantial error, or more likely, are systematically biased. is
brings into question the validity and accuracy of numerous studies thatmake use ofGTFS-based travel
time calculations and accessibility scores, and may suggest the need either to explicitly acknowledge
the limitations of schedule-based analyses or find amore realistic way ofmeasuring accessibility. While
there have been numerous studies assessing schedule adherence as a general performance metric (e.g.,
Bertini and El-Geneidy 2003; El-Geneidy et al. 2011), very few have yet considered the network ef-
fects of schedule non-adherence on door-to-door travel time estimates and the aggregate accessibility
measures derived from them.

is study takes four North American transit agencies as case studies:
• the Toronto Transit Commission (TTC)
• the Jacksonville Transportation Authority ( JTA)
• the Massachusetts Bay Transportation Authority (MBTA)
• the San Francisco Municipal Transportation Agency (SF Muni)

For each agency, we use archived Automatic Vehicle Location (AVL) data to construct a routable
ground-truth dataset to which the schedule-based GTFS data can be compared directly. Our assump-
tion is that observations of the transit fleet based on AVL systems, while imperfect, are likely much
more accurate representations of what happens on the ground than schedules produced before the
events actually take place. ese paired datasets, which we refer to as schedule-based and retrospective,
are then each used to estimate travel times and accessibility scores across the four agencies at every
minute of the morning and evening peak periods over the course of five weekdays. Our analytic strat-
egy is to calculate identical accessibility scores with the schedule-based and retrospective datasets and
compare these to understand the nature of any systematic and/or random differences between them.

e first goal of this paper is to uncover any systematic bias present in schedule data. Schedule-
based accessibility measures that are systematically too high or too low could bias a comparison of
transit accessibility with other modes or between agencies and regions. A second goal is to find out
how much observed levels of accessibility vary around these typical values, and whether that variation
exhibits strong spatial patterns. is should give researchers some idea how confident they should be
when using schedule data to estimate accessibility levels at any particular time or place.

2 Background

2.1 Review of GTFS Accessibility Studies

Travel time estimates have long been used as a way of understanding transport accessibility. With
the rise of GTFS data, detailed time-based accessibility studies for public transit were made possible
at a large scale and there has been a great deal of recent work making use of schedule-based transit
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accessibility measures. At their core these studies use the cost of travel, usually measured only in total
travel time¹, as the basis for assessing the comparative utility of transit from different places and times.
It would be impossible to mention every application, but our purpose in this section is to review some
of the more common themes and to survey the methods employed.

One of the most common applications of GTFS in the literature is to assess urban accessibility
in terms of environmental justice. For example, Farber et al. (2014) use GTFS to look at small-scale
temporal variability in transit access to supermarkets in Cincinnati, finding that few of the city’s low
income residents have adequate access to healthy food. Pereira et al. (2018) look at the social distribu-
tion of change in access to schools and jobs in Rio de Janiero aer a major restructuring of the transit
system. Fransen et al. (2015) combine socio-demographic data and a GTFS accessibility metric to
look for gaps in service provision in Belgium where households without cars are not collocated with
high levels of transit access. And El-Geneidy et al. (2016a) compare the spatial distribution of transit
access to the relative social advantage of neighborhoods in Toronto.

Another common theme is the use of GTFS to project changes in accessibility from the current
state to a future planned state. Researchers can do this by taking a published GTFS package as the
status quo and then simply add in some proposed transit line while holding other service more or
less constant. For example, Ma and Jan-Knaap (2014) make use of this technique to demonstrate
an expected change in access to jobs that would result from the development of a proposed light rail
project in Maryland. Farber and Grandez (2016) explore competing transit development schemes in
theGreater Toronto area. And Lee andMiller (2018) compare accessibility outcomes before and aer
a proposed bus rapid transit project in Columbus, Ohio. Conway et al. (2018) discuss some of the
practical problems with fabricating GTFS schedule data before a project is built and suggest strategies
for estimating accessibility with a variety of alternative schedules for proposed services.

Other applications of GTFS accessibility analysis include assessing historical levels of access over
time within a single city (Farber and Fu 2017), estimation of block-group level transit mode share at
a metropolitan scale (Owen and Levinson 2015), and measuring students access to campus as related
to activity participation (Allen and Farber 2018b).

Such applications make use of a wide range of techniques for calculating accessibility. As transit
vehicles arrive and depart at discrete times, transit travel times can vary widely from moment to mo-
ment (Anderson et al. 2012) and there has been some disagreement on how large a temporal sample is
necessary to generate a representative travel time and thus accessibility metric. Estimating travel times
fromGTFS can be a computationally expensive process andmany are reluctant to take a larger sample
than they feel is necessary for their purposes (Stępniak et al. 2019). At one extreme, researchers have
picked just one time as representative (e.g., 8 a.m. for the morning commute) and estimated travel
times from that moment only (e.g., Ma and Jan-Knaap 2014; Widener et al. 2015). Boisjoly and El-
Geneidy (2016) conducted a comparative analysis of time-sensitive transit accessibilitymeasures, find-
ing them to be generally correlated and appropriate at least for a mode share regression model. ey
suggest that a single representative timemay be enough for such applications. Others have used regular
sampling at hourly intervals over a single day (e.g., El-Geneidy et al. 2016a), though Owen and Mur-
phy (2018b) point out the dangers of sampling error and of regular sampling in particular which may
interact in undesirable ways with repeating service patterns in the schedule data. At another extreme,
some have exhaustively calculated travel times at every minute of an entire day to look at fine-grained
variability in access over time (e.g., Anderson et al. 2012; Farber and Fu 2017). ough Stępniak et al.
(2019) suggest that this last approach may require more intensive calculation than is necessary for
many applications, it seems at present to be the most common and defensible method of estimating
travel times.

Whenminutely times are calculated, the typical method of estimating transit access is to compute
momentary accessibilitymeasures which are averaged together into a single score. is is the approach

¹ For examples of other metrics applied to accessibility, see Cui and Levinson (2018); El-Geneidy et al. (2016b).
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taken in a series of reports produced by Owen and Murphy (2018a) providing detailed statistics on
average levels of transit access to jobs in 49major USmetropolitan areas over the course of three years.
Conway et al. (2018) call this approach average instantaneous accessibility as it is the arithmetic average
of a series of moment to moment accessibility measures. Many others have used the same approach
with minutely averages over time windows of one (e.g., Allen and Farber 2018b; Widener et al. 2017)
or two (Allen and Farber 2018a; Farber and Fu 2017; Owen and Levinson 2015) hours.

All of the studies of transit accessibility mentioned so far have however used only schedule-based
GTFS data provided by transit agencies, some with minor modifications, while only two publications
to date have attempted to measure the accuracy of schedule data for estimating accessibility. Both use
an archived AVL dataset to construct a ground-truth measure of accessibility and compare this to a
schedule-based alternative. Wessel et al. (2017) describe the technique and put forward a soware
application to enable the construction of a retrospective GTFS package, applying their method only
to a small case study in Toronto. Stewart (2017a) however uses essentially the same method more
extensively, calculating measures of accessibility to jobs for low skill workers in London England and
to health care centers in Boston, MA. is paper develops on this work by using the same methods
on a broader sample of agencies, allowing the generalization of findings to the general suitability of
schedule-based GTFS data for accessibility analysis in a variety of contexts.

2.2 Reasons to be critical of schedule-based GTFS data

In order tomodel urban processes at ametropolitan scale, it is oennecessary to rely onmany simplify-
ing assumptions. In any kind of statistical analysis, the hope must be that such assumptions introduce
only statistical noise and fail to cause any systematic bias in the results of the study.

All of the studies mentioned in the previous section implicitly assume that transit systems operate
precisely according to their schedule, as defined in an agency’s published GTFS package. No transit
agency however can really come close to achieving this, and numerous studies have been done assessing
the degree to which certain agencies do or do not adhere to their own published schedules (e.g., Lee
et al. 2001; Mandelzys and Hellinga 2010). Indeed, the widespread provision of real-time transit data
is itself tacit acknowledgement that schedules are not enough by themselves for transit users to rely on.
For the study of transit accessibility, we might hope that schedule non-adherence is random in such a
way that the results of the kind of studies described above are essentially unbiased. ere is however
substantial reason to doubt this.

e ability of a GTFS schedule to accurately describe transit operations is not only a matter of
schedule adherence. While on-time performance issues alone might warrant a look into the accuracy
of GTFS schedules for certain applications, there are bigger problems with the format and the way it
has been implemented by transit agencies. GTFSprovides amodel of transit operations but thatmodel
may be missing key structures that would make it behave like the actual transit system it represents.
GTFS has several optional fields designed to allow the standard to better reflect operational practices,
though these are not implemented bymany agencies that actually use those practices. For example, the
Toronto Transit Commission attempts to operate some high-frequency lines at a consistent headway,
yet their GTFS data give a discrete list of trips with fixed departure times at every stop rather than
using the optional frequencies table allowed for in the specification (Google 2018).

Most transit agencies schedule routes by way of “timepoints”, a subset of stops along the route at
which they try to be precisely on-schedule. Between timepoints, departure times are undefined in
practice yet are typically given to the second in the GTFS schedule, presumably through some kind of
interpolation. e standard allows stops which serve as timepoints to be optionally indicated in the
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data (Google 2018), but it can be observed that agencies using timepoints oen fail to include this
data in their public GTFS data².

Many agencies do not model dwell time at all, though this is implicit in the GTFS format, which
uses separate fields for arrival and departure times at every stop. In almost every case, the arrival and
departure times are identical. is implies that agencies may be applying schedule padding or recovery
time arbitrarily along a route rather than at layover points (Wessel and Widener 2016). e TTC for
example gives little or no scheduled layover time at stations, at least according to its GTFS schedule,
but does use stations as layover points in reality. Such a practice might significantly effect estimated
travel times from schedule-based GTFS as most vehicles may actually arrive at their terminal station
earlier than scheduled.

Another issue is that agencies may not even be including major service changes in their GTFS
schedules. Again, the TTC, for example, has been observed to not include planned subway closures in
its published schedule, though the bridging of these segments by buses predictably causes major delays
for travellers.

Still, the biggest theoretical problem is just that agencies do not and cannot adhere precisely to
their schedules. Bunching for example is a major problem on frequent routes and the perfectly even
vehicle spacing typically shown in the schedule is rarely observed in reality, as much as operators may
try for it. In-vehicle travel times too can vary widely due to traffic, passenger crowding issues, traffic
light timing and so on (Wessel 2015). is inherent variability is acknowledged everywhere but in
the schedule which typically repeats like clockwork. Indeed, how to appropriately incorporate tem-
poral variability into the GTFS standard would be an interesting study in its own right. At present,
variability is unaccounted for by the GTFS standard.

Accessibility researchers may hope that these and other issues with the accuracy of GTFS data will
cancel each other out or have only minor impacts on aggregate travel time and accessibility measures.
However it seems just as likely that these issues could compound one on another to produce large net
differences; without some empirical measurement, we are le to speculate.

2.3 Implications for Research

ere would be substantial implications for research on transit accessibility if it were determined that
schedule-basedmeasureswere generally not adequately representative of the degree of accessibility that
people actually experience. For example, any systematic global bias toward higher access scores would
problematize the comparison of accessibility between transit and other transport modes (e.g., walking
or cycling), making transit appear relatively more useful than it actually is. is could be an issue in
studies looking at regionalmode share, or attempting to use estimated travel costs in a trip distribution
model. is would be a concern especially for planning applications forecasting net changes in access
that would result from policy decisions.

Any consistent pattern in the location of over- or under-estimated accessibility would have im-
plications for the study of accessibility as a spatial phenomenon. Regional studies of social equity in
the distribution of transit services for example rely entirely on the spatial distribution of access being
accurately measured. And any research attempting to use such spatial accessibility scores as inputs to
a statistical model would have to contend with this omitted spatial pattern (see Anselin and Griffith
1988).

² e SouthwestOhio Regional Transit Authority for example can clearly be seen operating with timepoints, oenmak-
ing vehicles wait for several minutes before passing one, while their GTFS data includes no information on this. emethod
they use to estimate times between timepoints is not provided to users of the data.

http://www.go-metro.com/about-metro/developer-data
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3 Methods & Data

is research seeks to discover whether schedule-based GTFS accessibility calculations generally over
or underestimate real accessibility, in what circumstances, and by how much. e overall strategy is
to compare accessibility measurements derived from a published GTFS dataset to those derived from
a detailed reconstruction of what actually happened on the ground based on fleet-wide Automatic
Vehicle Location (AVL) data. at ground-truth dataset, though it inevitably has its own flaws, is
taken as amore accurate representationof reality than the schedule and allowsus tomeasuredifferences
between the schedule and reality, orwhatwewill term error in the schedule-based accessibilitymetrics.
We will explore the magnitude and distribution of this error as it varies over space, over time, and
between different types of transit agencies.

All data used in this paper is available online at https://osf.io/s5k3b/files/.

3.1 The Transit Agencies

We take as case studies four very different transit agencies over the course of a single five day work-
week in November 2017: the Toronto Transit Commission (TTC), the San Francisco Municipal
Transportation Agency (SF Muni), the Massachusetts Bay Transportation Authority (MBTA), and
the Jacksonville Transportation Authority ( JTA) in Florida. ese agencies were chosen for their size
and diversity and because they all had the necessary data available: a current schedule-based GFTS
package and AVL data for most of the fleet available through the NextBus API. A map of each agency
is provided in Section 4.4.

e TTC serves the City of Toronto, Ontario and is the third largest transit agency in North
America with 1.7 million passenger trips daily. It is situated in a larger urban region where surround-
ing municipalities operate their own transit services, and fare integration between these agencies is
minimal. e TTC sits at the center of this region and operates a grid of high-frequency services
across the city ranging from grade-separated rapid transit to streetcars and buses operating in mixed
traffic (see Figure 5). Most service is operated (during the day at least) with the goal of maintaining
adequate headways andminimizingmajor delays, though some smaller routes do attempt to adhere to
a regular schedule where service is relatively infrequent.

At the other extreme, the JTA serves roughly 42 thousand daily passenger trips across the entire
Jacksonville, Floridametropolitan area. e system is largely radial, withmost lines radiating out from
a single downtown transit station (see Figure 8). All services operate inmixed traffic, andmost operate
at hourly or half-hourly frequencies. A timed-transfer system dictates that schedule adherence is oen
of critical importance for passengers making connections between lines.

In between these extremes are the MBTA and the SF Muni. e MBTA operates all public tran-
sit services in the entire Boston, Massachusetts metro area, serving about 1.3 million weekday trips.
Much of this ridership is concentrated on the rapid transit lines which radiate out from downtown,
while about third of all daily trips are served by surface-running buses and trolleys which fill in the net-
work andmake connections to subway stations. While theMBTAoperates an extensive commuter rail
system, we will ignore it in this analysis and focus on the more central parts of the region (Figure 6).

eSanFrancisco (SF)Muni by contrast serves only thedense core city of SanFrancisco, providing
about 600,000 daily trips via buses, trolley buses and trams running mostly in mixed traffic. Like the
TTC, the network follows a grid street network, thoughMarket Street provides a diagonal connection
to downtown where many services operate in a transit-only right of way. (See Figure 7). e SF Muni
serves a relatively small but dense and central part of a large region, and surrounding municipalities
have their ownconnecting transit services. Notably, theBayAreaRapidTransit (BART) is a commuter
rail system with many stops in San Francisco, though we do not consider it or other agencies in this
analysis.

https://osf.io/s5k3b/files/
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3.2 Retrospective GTFS

We implement the method described by Wessel et al. (2017) for constructing a routable retrospective
GTFS package based on historical vehicle locations; we will briefly outline the method here, but refer
readers to that paper for a more detailed explanation.

We start by scraping a web-API which provides live GPS-based vehicle locations for all vehicles
in a transit agency’s fleet. In the case of this study, we use the NextBus API, which provides access
to about forty agencies around North America from which the above agencies were selected. Vehicle
locations along with a timestamp, vehicle ID, the route ID, and other attributes were collected and
stored. Sequential observations for the same vehicle are then grouped into trips and trips into blocks
to mimic the format used in schedule-based GTFS. Spatial precision is increased by map-matching
trips to detailed street network data from OpenStreetMap and the matched geometry is in turn inter-
sected with transit stops from the schedule for the route. Arrival times at each stop along the route
are interpolated from the timestamps of the vehicle location records. is procedure effectively re-
produces a GTFS format but where each trip is unique to a time and date and based on actual GPS
observations of a particular vehicle. e code used to produce the retrospective GTFS is available at
https://github.com/SAUSy-Lab/retro-gtfs.

For this study, we constructed a one work-week retrospective GTFS network for all four agencies
with data collected from Monday November 6 through Friday the 10 of 2017. is week was chosen
because it did not have any major holidays, festivals, or exceptional weather events that would have
impacted transit service in any of these cities. While a longer period of observationwould be desirable,
a five day period across four agencies already was a strain on our computational resources. All agencies
had schedules with uniform weekday service, meaning that the data contains five real observations of
a standard scheduled level of weekday service.

Each of the four agencies, to the extent possible, was treated in isolation from any surrounding or
overlapping transit services. While this may in some cases produce unrealistic absolute estimates of
accessibility, it would be a bigger issue for this study to confound the results by including scheduled
services fromother agencies in both the retrospective and schedule-basedGTFS packages. Commuter
rail services for example are not included for theTTC,MBTA, orMuni, and any neighboring agencies
such as AC Transit in the Bay Area or York Region Transit in Greater Toronto are excluded as well.

Where AVL data was missing entirely for a few key routes within an agency however, it was nec-
essary to copy these routes over from the schedule-based GTFS in order to have a complete network.
For the TTC and MBTA it was necessary to copy all rapid transit lines (see Figures 5 & 6) from the
schedule and for Muni, three tourist-oriented cable car lines. e omissions are likely due to differ-
ences between the AVL systems available for different vehicle types (ie. bus, rail, trolley). e JTA
did not require any substitutions from the schedule. Because of the substitutions though we should
expect some degree of confounding for the TTC and MBTA data, and to a very minor degree for the
SF Muni. at is, differences from the schedule data will appear smaller than they actually are because
some parts of the schedule are used in both datasets.

3.3 Calculating Travel Times

It has become conventional in many studies of transit accessibility to demonstrate a new method or
dataset by showing its application to themeasure of residents’ access to jobs in a region. euse of such
simplistic measures in applied studies is becoming less common however as researchers complicate the
jobs-access problem with notions of competition (Merlin and Hu 2017) or skill-appropriateness (Lee
and Miller 2018). Many other researchers have focused on measuring access to phenomenon with
very different spatial distributions such as medical services (Zygo 2017), grocery stores (Farber et al.
2014), or schools (Pereira et al. 2018). We hope this work will be relevant to such studies; to that
end, instead of weighting our origin and destination points toward a region’s population distribution
(as census geometries tend to do) or toward space (as a regular grid would) we wanted to synthesize a

https://github.com/SAUSy-Lab/retro-gtfs
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set of points weighted to the distribution of transit service and placed along the transit network itself.
is has the benefit of preventing many essentially redundant calculations in areas with little or no
service, and reduces somewhat the role of time spent walking to and from stops in total travel times.

To achieve this, we randomly selected a subset of stops from the GTFS data for each agency and
used an iterative, centroidal Voronoi tessellation³ to disperse these points along the network. Cen-
troids were weighted by the number of arrivals scheduled at each stop. e result is a semi-stochastic
set of points dispersed along the transit network and generally placed within easy walking distance
of stops. e resulting sampling distribution for each agency can be seen in the maps in Section 4.4.
Roughly 300 points per agency was chosen as a balance between coverage and computational feasibil-
ity. Some points that failed to properly snap to the street network were removed.

e choice of one particular distribution for origins and destinations will necessarily influence the
outcome of the study and researchers are cautioned to think carefully about how results might have
been different if accessibility were calculated to or frommore concentrated or dispersed locations (e.g.,
Stępniak et al. 2019). Alternative spatial distributions were not tested in this study.

Travel timematrices were computedwithOpenTripPlanner (version 1.2.0), one of several applica-
tions commonly used for this purpose and default settings were used for all calculations. Travel times
were calculated between all points at every minute of the morning and evening peak periods, defined
as 6:00-10:00am and 4:00-7:00pm respectively. Due to an error with the server theWednesdaymorn-
ing peak period for the JTA was missing data and had to be omitted from the analysis of that agency.
For the retrospective data, travel times were calculated for each of the five days, while for the schedule
data only one daywas required since scheduled service for all agencieswas invariant betweenweekdays.
is gives a total of 35 hours ((4+ 3) ∗ 5) of estimated minutely travel times for each agency with the
exception of the JTA which has 31 hours. Scheduled and retrospective travel times were arranged in
3-dimensional matrices, respectively T s c hed

od t
and T r e t r o

od t
where o, d , and t index origins, destinations

and departure times.

3.4 Measuring Accessibility

In transport planning, accessibility can be defined as a measure of the ease with which some set of
destinations distributed in space can be reached. As this is a spatial problem, accessibility is always tied
to a particular location. And as access by transit in particular can vary greatly frommoment tomoment
compared to other transport modes, accessibility metrics for public transit have typically been tied to
a particular time as well. While many different ways of measuring accessibility have been proposed,
we will address only the methods most commonly used in the literature as discussed in Section 2.1.
Notably, we will not be discussing metrics that explicitly account for competition or reliability (e.g.,
Conway et al. 2018; Merlin and Hu 2017) as these do not yet seem to be in common use.

In general, given a travel time matrix Tod t , momentary accessibility from one origin to a set of
destinations is defined by Equation 1

Ao,t =
D∑
d

f (Tod t ) ·Wd (1)

where f (Tod t ) is an impedance function that defines how accessible a destination is based on the
travel time to that point; and Wd is a set of weights on the destination points. To enable comparisons
between agencies, we set all weights to 100/n, standardizing accessibility scores to the range 0-100
percent, where 100 percent would indicate that all destinations are fully accessible. Accessibility can
also be averaged over time t yielding Āo , a measure of average instantaneous accessibility from origin

³ For background on centroidal Voronoi tesselations, see Du et al. (1999).
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o to all other destinations d (Equation 2).

Āo =
D∑
d

T∑
t

f (Tod t ) ·Wd ·T −1 (2)

Instead of averaging accessibility over all times in our large sample however, we break time into one
hourwindows, each ofwhich is amore realistic representation ofwhat an accessibility researchermight
feasibly calculate from schedule data. We call this measure Āoh , letting h index hourly bins.

Accessibility researchers have defined the impedance function f (Tod t ) in many different ways.
One of the most common, called cumulative opportunities, is just a binary measure of whether a desti-
nation is accessible within a given time threshold θ (Equation 3).

f (Tod t ) =

(
1 if Tod t ≤ θ
0 if Tod t >θ

(3)

Another alternative, the negative exponential function (Equation 4) diminishes smoothly as travel
time increases and has been shown to more closely reflect the way peoples’ activity patterns actually
change as a function of distance. Its parameter,β, controls how quickly the curve diminishes.

f (Tod t ) = e−Tod t /β (4)

A visual comparison of the two functions with typical parameters is given in Figure 1.

0

1

0 30 minutes 1 hour 1.5 hours 2 hours

Cumulative

Negative
Exponential

Figure 1: Negative exponential and cumulative opportunities impedance functions f (Tod t ) with pa-
rameters θ= 45 minutes (Equation 3) andβ= 30 minutes (Equation 4).

3.5 Measuring Accuracy

Absolute travel times and levels of accessibility among the four agencies in this study vary widely; in
order tomake comparison easierwe look at the deviation of the retrospective dataset from the schedule
in relative terms. We define error, e , for any measure of interest m as the percent difference of the
retrospective measure from the schedule-based measure (Equation 5).

e(m) = (m r e t r o/m s c hed − 1) · 100 (5)

To allow easier visual comparison of positive and negative percent changes, we use log scales in all plots
making doubling and halving of the scheduled values visually equivalent.

For measures of error resulting in multiple values at different times ( e(Tod t ) and e(Āoh ) ) we use
medians and quantiles to describe the distribution of errors. In practice, such distributions tended to
be skewed toward large values and our intent is to minimize the effect of outliers in the analysis as it
is conceivable these could be due for example to missing or erroneous data in the retrospective GTFS
package.
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4 Results

Westart the discussion of results in Section 4.1with a look at error in estimated travel times between all
points as these are the basis of the accessibility measures that follow. In Section 4.2 we explore average
agency-level accessibility error and its sensitivity to the selection and parameterization of impedance
functions. is allows us to select a reasonable impedance function parameterization for each agency
and proceed to Section 4.3 where we observe spatial patterns in accessibility error. In Section 4.5 we
take a close look at moment-to-moment variation in accessibility at a few selected origins.

4.1 Travel Times

In order to appreciate the accessibility measures that follow, it is necessary to understand something
of the distribution of the travel times used to construct them. Figure 2 plots scheduled travel times
T s c hed

od t
against e(Tod t ). A range of absolute differences from the scheduled travel times are given in

minutes on the right of each plot. Because the Tod t matrix contains more than 100 million travel
times, a density plot was necessary to avoid over-plotting points.
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Figure 2: Scheduled travel times between all points (T s c hed
od t

, on the X axis) are compared against
e(Tod t ) on the Y axis in the form of a density plot with labelled percentiles. Absolute differ-
ences between travel times (T r e t r o

od t
−T s c hed

od t
) are also given in minutes on the right margin.
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ere is a lot of information in Figure 2, but perhaps the first thing to notice is that themagnitude
of average travel times is quite different for each agency. e SF Muni is a geographically compact
agency, with most cross-network trips taking less than an hour. TTC, the next smallest by geograph-
ical extent, has most scheduled trips falling short of two hours. e JTA and MBTA by contrast are
region-spanning transit agencies and have trips scheduled to take up to four hours during the rush
hour periods. Such long trips are likely uncommon in reality, but are a natural result of calculating
travel times between all points in such a large area. Reasonably parameterized accessibility functions
will largely discount longer trips such as these.

e next thing to note is that the distributions for all four agencies have their densest parts right
along the line indicating near-zero difference from the schedule; that is, a solid portion of all trips
do appear to be behaving roughly as scheduled, with less than±15% deviation from scheduled travel
times. at being said, there is substantial variability around the expected times for all agencies but
especially for the two with regional coverage. We can observe a definite tendency toward longer travel
times in the retrospective dataset, though it may surprise some readers to note how symmetrical the
distributions are, with almost as many trips appearing to take less time than scheduled. is is to be
expected, partly as the result of conservative schedulingwhich takes account a priori of expected delays
which end up not materializing much of the time (Wessel and Widener 2016). Another possibility
is that travel times are consistent on average, but arrival times are offset from the schedule, making
precise momentary estimates quite inaccurate.

Differences in travel times between the two datasets for each agency, in percentage terms, are gen-
erally greatest for short to mid-length trips, tapering off for longer scheduled trips where greater rela-
tive differences equate to greater absolute differences. An interesting illustration of this can be seen in
the plot for the JTA where there appear to be bands in the dataset corresponding to 30 and 60 minute
absolute differences from on-schedule performance. ese are likely related to the JTA’s practice of
runningmany routes with clock-face scheduling, at 30 and 60 minute intervals throughout the day. A
missed connection on a trip requiring a transfer would generally require a passenger to wait an addi-
tional half-hour or hour for the next vehicle. Note though that the pattern is visible both above and
below the 0% line, indicating that the schedule may also incorrectly indicate that some connections
are not possible which actually are feasible. A similar pattern is visible to a lesser degree in the data for
the MBTA.

As we move on to using these travel time estimates to calculate accessibility, it is important to
remember that many of the longer travel times shown in Figure 2 (e.g., beyond 2 hours) end up simply
rendering certain destinations inaccessible, and that the impedance functions assign the highest values
to shorter travel times. Most of the weight of the analysis that follows therefore is focused on the
shortest travel times shown in these plots.

4.2 Parameter Selection and Agency-level Error

To calculate accessibility it is necessary to select parameters for the impedance functions described in
Section 3.4. Normally, a parameter would be chosen based on theories about or observations of the
phenomenon in question. However as our interest in this study is more general the selection is some-
what arbitrary. To account for this we start by exploring a range of parameters to discover the general
magnitude of error in averaged place-based accessibility, e(Āoh ). Figure 3 shows the median and in-
terquartile range of e(Āoh ) for both the cumulative and negative exponential functions as parameters
θ andβ range over 5 minute intervals from 0 to 60 minutes.

e general picture here is that as parameters increase from zero, more and more of the city is
deemed accessible. At very small values, weight is assignedmostly to very short trips where a large pro-
portion of time is spentwalking either directly to the destination or to and from stops. At intermediate
values however weight is assigned to trips where time spent waiting for or travelling on transit is the
largest proportion ofmost trips. is is where all of the difference between the two datasets exists, and
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Figure 3: emedian and interquartile range are given for e(Āoh) as parameters vary between 0 and 60
minutes for the cumulative opportunities and negative exponential functions.

where we see the largest errors. As parameter values get still higher however, error starts to taper off as
a larger portion of destinations are deemed accessible via either dataset.

Figure 3 shows that at intermediate parameter values e(Āoh ) can range quite widely but is in gen-
eral decidedlynegative; at themedian,we see accessibility scores roughly0−16% lower than scheduled
across all agencies. Recall that in the last section we saw generally longer than scheduled travel times,
so this difference is to be expected. ere are differences between agencies here too, with the TTC
and JTA showing lower average errors than either of the other two agencies. Potential reasons for this
will be discussed later.

We also observe that across all four agencies the cumulative impedance measure shows more vari-
ance and greater average error than the negative exponential. e variability is to be expected as the
cumulative function is discontinuous and will therefore generally exhibit sharp differences around
threshold travel times. e difference in averages however is likely due to the fact that the cumulative
function considers only potential trips up to its travel time threshold. It was shown in Figure 2 that
such short trips tend to exhibit greater negative deviations from the schedule while longer trips, which
are given someweight by the negative exponential impedance function are generallymore concordant,
at least in relative terms.

Basedon thesefindings, the rest of this analysiswill be basedonaccessibilitymeasureswith impedance
functions as defined inTable 1. ese parameters were selected as typical of transit accessibility studies
generally, and typical of the range of errors observed for each agency. e SF Muni was given lower
parameter values than the three other agencies as a result of its smaller geographic size and thus the
quicker change in its error curve exhibited in Figure 3.
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Table 1: Selected parameters for impedance functions defined in Section 3.4. Units are minutes.

Agency Cumulative θ Exponentialβ
TTC 45 30
JTA 45 30

MBTA 45 30
Muni 30 20

4.3 Error in Place-based Accessibility

From an agency-level summary of error in the previous section we now move to measures of average
error at particular origin locations. Recall that each origin has a measure of average instantaneous
accessibility calculated for each hour in the study period. Figure 4 plots the median scheduled accessi-
bility against themedian e(Āoh ) by origin. Color is used to show the relative dispersion (interquartile
range) of e(Āoh ) on a quartile scale ( ) relative to each agency. We can observe a clear
relationship between the three variables: as scheduled accessibility increases, errors, either positive or
negative, tend to become smaller and the variability in observed errors over time tends to decrease.

Origins with low average accessibility tend to be peripherally located and served by relatively few
transit lines. Accessibility at such locations may even depend entirely on the timely arrival of vehicles
on a single linewhich provides access to the rest of the network. Any disruptions to that line’s schedule
adherence can have an outsize impact on error in momentary accessibility, and as performance will
vary over time, may also tend to produce greater variability in error. By contrast, origins with high
average accessibility tend to be centrally located and/or served by multiple transit lines. If one vehicle
is running late another may be running early and total accessibility converges on an average. Note
though that if that is the case, it would likely not be the same destinations which would end up being
accessible. To illustrate these patterns we select two representative origins from each agencywhichwill
be subjected to amore detailed analysis in Section 4.5. ese origins are highlighted in Figure 4 as well
as in the maps in Section 4.4.

Figure 4 also shows that there is a very large range in average e(Āoh ) across origins. Again, the re-
lation between average scheduled accessibility and variability seems to hold: the JTA with the lowest
scheduled accessibility on average exhibits the highest range among errors, while higher-access agen-
cies like the SFMuni and the TTChave less variation among origins. ese two agencies, serving only
the centers of their respective regions have relatively frequent service and grid-like networks; most
origins in our sample are served by multiple lines. e more radial agencies by contrast, without the
redundancy of a grid structure, may tend to produce origins with access to the network depending on
a smaller number of lines, thus more susceptible to interruption.
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Figure 4: Median schedule-based Āoh (x axis) is plotted against Median e(Āoh ) (y axis) for each origin
using the negative exponential impedance function. Color gives the relative dispersion of
e(Āoh ) for each origin as a quartile classification ( ) relative to each agency.
Selected origins are highlighted in black and comparable results for the cumulative function
are provided in Appendix A.

4.4 Spatial Patterns

To detect any systematic spatial patterns in e(Āoh ) we compute Moran’s I for the median measure of
error at each zone. As origin points were originally placed using a Voronoi tessellation, we construct
an adjacency matrix using a Delauney triangulation. is is then thinned to a sphere-of-influence
graph (See Michael and uint 1999) to eliminate any unreasonably long edges around the margins.
As shown in Table 2 spatial autocorrelation is found to be strongly positive for all agencies and mea-
sures. e spatial distribution of median e(Āoh ) is mapped for all agencies at the end of this section
(Figures 5, 6, 7, & 8) and visually confirms the findings of strong spatial autocorrelation. Selected
points discussed in Section 4.5 are highlighted and labelled.

As would be expected, it appears that the errors at particular origins are related to the lines that
serve them. is is particularly visible in the map for the JTA, Figure 8, where definite linear patterns
in errors are visible. e MBTA, as the other radially structured regional agency, Figure 6, exhibits
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Table 2: Moran’s I of median e(Āoh ). All values are statistically significant (P < 0.001).

Agency Cumulative Exponential
TTC 0.547 0.603
MBTA 0.815 0.855
Muni 0.679 0.681
JTA 0.692 0.805

similar linear patterns but also appears tohave broader trendswith thenorth-west portionof the region
exhibiting greater average negative deviations in accessibility. Patterns in the TTC (Figure 5) and SF
Muni (Figure 7), the two grid-structured agencies, are somewhat harder to discern. Both have obvious
clusters of high and lowvalues, but theydon’t seemas clearly related toparticular lines. eTTCseems
to show some consistency along the east-west subway line which could be attributable to the fact that
subway departure times were copied directly from the schedule data. is consistency however does
not appear as strong for the north-south running lines which were also duplicated from the schedule
data.

Two previous studies of network-level GTFS reliability have presented maps of the TTC and
MBTA using similar measures of error to that used in this research. Stewart (2017a) gives a map of
e(Āo) for a central portion of theMBTAnetwork. e spatial distribution of error, whilemeasured to
and from different locations, does look similar in places to the measures we produced for the MBTA⁴.
As his analysis was conducted using data for October 2016, this may indicate that the observed spatial
pattern of error is persistent for the MBTA.

e work of Wessel et al. (2017) presents a brief 4-hour-average snapshot of error in transit access
to jobs in Toronto⁵. e map they present however, while covering the whole city of Toronto, does
not appear to match the patterns observed in this study, though the magnitude of errors does seem
to fall in the same range. It may be that the smaller time sample in that study produced less typical
results, or it may be that patterns in spatial error are less stable for the TTC. Another possibility is that
jobs are strongly clustered in downtown Toronto and this weighting skewed the accessibility results
sufficiently that the maps are not comparable. Without further comparisons with other agencies and
time periods, the utility of conjecture is limited.

While it’s natural that there should be spatial patterns to this phenomenon the patterns do present
a problem for any statistical application of schedule-based accessibility data. Models for example of
mode share or social equity that use schedule-based accessibility as an input will have unobserved spa-
tial patterns in their measurement error. Since this pattern would go unobserved by the typical re-
searcher, it cannot be accounted for in the model and may produce inefficient or biased estimates.

⁴ Cf. Stewart (2017a) Figure 8.7 page 178 with our Figure 6.
⁵ Cf. Wessel et al. (2017) Figure 4 page 95 with our Figure 5
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Origin
(Selected)

Transit	Line
Rapid	Transit

Error
-24.9	to	-5.8%
-5.8	to	-3.6%
-3.6	to	-1.6%
-1.6	to	0.4%
0.4	to	10.4%

Figure 5: TTC. 327 total O/D points. Note that the rapid transit lines were derived from schedule-
based GTFS data only. Color indicates median e(Āoh ) for each zone using the negative ex-
ponential impedance function.
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Origin
(Selected)

Transit	Line
Rapid	Transit

Error
	-82.9	to	-21.9%
	-21.9	to	-15.9%
	-15.9	to	-12.0%
	-12.0	to	-8.5%
	-8.5	to	-1.2%

Figure 6: MBTA. 294 total O/D points. Note that the rapid transit lines were derived from schedule-
based GTFS data only. Color indicates median e(Āoh ) for each zone using the negative ex-
ponential impedance function.



       .

Origin
(Selected)

Transit	Line

Error
	-30.8	to	-13.6%
	-13.6	to	-10.7%
	-10.7	to	-9.1%
	-9.1	to	-7.5%
	-7.5	to	-1.2%

Figure 7: SF Muni. 294 total O/D points. Note that the Bay Area Rapid Transit System (BART) was
not included in this analysis and is not shown. Color indicates median e(Āoh ) for each zone
using the negative exponential impedance function.
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Origin
(Selected)

Transit	Line

Error
	-76.8	to	-8.9%
	-8.9	to	-5.8%
	-5.8	to	-2.5%
	-2.5	to	0.2%
	0.2	to	72.1%

Figure 8: JTA. 282 total O/D points. Color indicates median e(Āoh ) for each zone using the negative
exponential impedance function.
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4.5 Momentary measures

To understand some of the phenomenon driving these errors we drill down into changing patterns of
momentary accessibility at a selection of typical origins. Figure 9 shows the change in cumulative Aot
for selected origins during the evening of Friday, November 10th. Scheduled accessibility is shown in
blue and retrospective in red.
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Figure 9: Change in As c hed
ot , Ar e t r o

ot from selected origins over the 4-7pm period on Friday October
10th 2017. Aot is given as a percentage of all origins accessible using the cumulative function.
Origins are identified on the maps in Section 4.4 and in Figures 4 & 10. Note the variable
range of the Y axis.

Both A andG are typical of access in zones with low-frequency service provided by a single transit
line. A is an unusually low-access zone for the TTC, but G is a relatively typical one for the JTA. Both
exhibit a regular sawtooth-wave pattern where accessibility climbs as the arrival of a vehicle gets closer
in time before falling again when travel times suddenly increase aer the vehicle has just departed. For
both origins, there is clear alignment between the schedule and retrospective scores, but also substan-
tial misalignment in spots. Origin A appears to have a mostly on-time service, with arrivals occurring
within a fewminutes of the schedule, however the height and shape of peaks in accessibility appears to
vary, perhaps as vehicles move more of less quickly to their destinations. Origin G by contrast shows
substantial misalignment with the schedule, with some departures occurring as much as 25 minutes
aer they appear to have been scheduled. From minute to minute, this causes G to actually exhibit a
slight inverse correlation between As c hed

ot and Ar e t r o
ot .

Origins B and H by contrast are relatively high accessibility zones for the TTC and JTA, served
bymultiple lines going in several different directions. As a result, Aot moves up and downmuchmore
rapidly as arrivals occur more frequently. Both origins also have at least slightly over average (less neg-
ative) e(Āoh ), meaning that the schedule is less prone to overpredicting access for these origins. Yet, it
seems hard to argue based on Figure 9 that this is due to stricter schedule adherence. While there is a
positive correlation between the two lines for both origins (r ≈ .2), it rather seems to be the case that
Ar e t r o

ot varies somewhat randomly from As c hed
ot , ie. with a pattern that is not easily discovered. For

origin B, we can see that Ar e t r o
ot is decidedly higher across the three hours shown while H is close at

most times and higher or lower only sporadically.
Origins C, D, E, & F, from the MBTA and SF Muni are all scheduled for moderate relative levels

of accessibility, however D and E achieve small to positive measures of median e(Āoh ) while C and F
both showdefinitenegativemedian e(Āoh ). Access at originDcanbe seen to trackAs c hed

ot quite closely
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with a few deviations, mostly upward, pushing it toward generally higher than scheduled accessibility.
Origin C by contrast, also from the MBTA, also appears to largely track the schedule data, though
Ar e t r o

ot misses a few peaks that appear in the schedule.
Origins E and F, both from the SFMuni, seem to show access scores that rangemuchmore widely,

frommoment tomoment, likely due to the smaller geographic scale of the agency. Origin E appears to
match scheduled levels of accessibility on average by swinging wildly both above and below the mark
at any particular moment. Origin F by contrast seems to not quite match the scheduled swings in
accessibility, showing generally lower peaks.

Generally speaking, where service is frequent, or provided by multiple lines, the correspondence
between Ar e t r o

ot and As c hed
ot appears quite weak. Accessibility scores for such origins are generally in

the correct range, though the minutely correlation between the two may be close to zero or even neg-
ative. Where service is less frequent, there generally appears to be a stronger correspondence between
momentary measures, however offsets in the waveforms due to off-schedule departures may produce
substantial error even when error is averaged over a one-hour period, at least if wait times are included
in the calculations. In such cases it may bemore realistic to assume that a passenger has some ability to
coordinate their arrival with the schedule or real-time data, minimizing the importance of long initial
waits.

5 Discussion

is research set out to explore the differences between accessibilitymeasurements commonly derived
from schedule-based GTFS data, and accessibility as experienced by actual transit users in a world
where late buses, traffic jams and missed transfers are not only possible, but a part of daily life. e
big assumption is that our method of using GPS-based AVL data to produce a comparison dataset
was able to produce accessibilitymetrics which better reflect the actual experience of accessibility than
the schedule data. We know that there are some instances where this is not the case, where GPS data
for example had irreconcilable spatial errors and had to be discarded. We also know that routing on
the retrospective dataset introduces a theoretical problem in that it is not always possible for a transit
user to know a priori which route choice will produce the fastest trip. If we assume that our data is
accurate though, which seems appropriate, there are some interesting findings that transit accessibility
researchers can take from this study.

First, common schedule-based measures of accessibility may overestimate net accessibility on av-
erage by about 5-15 percent or more. is finding has implications especially for any comparisons of
accessibility between modes, either as input to a mode share model, or as a factor in policy decisions
where accessibility outcomes are modelled for multiple alternative infrastructure investment options.
Using only schedule-based accessibility measures in such situations may be akin to estimating auto-
motive travel times without accounting for traffic congestion. It’s understandable why these global
differences in access come about; for example, schedules generally show vehicles operating perfectly
consistent headways, however any stochastic variation in actual timing, either faster or slower, for the
same number of vehicles will tend to lengthen average headways and increase average waiting times
even if speeds stay the same. Or in some cases schedules may be optimized to minimize time spent at
transfer points, however a late running vehicle leads to a long wait until the next timed transfer. When
we consider that both the TTC and MBTA had their rapid transit systems copied from the schedule
data rather than observed with AVL systems, it may be reasonable to suspect that real accessibility
would be even lower for those agencies across the board.

Second, there are strong and consistent spatial patterns in origin-level accessibility, even when ac-
cessibility is averaged over one-hour periods. It appears that schedule data does not predict origin-level
accessibility with error that is spatially random, but under-predicts (and occasionally over-predicts) in
consistent ways at particular places. e period of this study is not long enough to see how stable these
patterns are in the long termbut in the timewewere able to observe therewere indeed distinct patterns
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in accessibility error. Originswith over- or under-predicted accessibility scores tend to clump together,
exhibiting strong spatial autocorrelation. is is to be expected as this is indeed a spatial phenomenon
- vehicles running early or late, slow or fast relative to the schedule will have an effect on measured ac-
cessibility at every point they pass. Or, asWessel (2015) suggests, this could be a problemwith the way
recovery time is built into scheduled travel times rather than stationary route termini in GTFS data.
Regardless of the cause, this spatial error is of concern to any spatial use of GTFS-based accessibility
measures, whether the interest is trip-generation models or social equity. Especially where accessibil-
ity is used as an input to spatial statistical models, unobserved spatial measurement error could have a
large and unknown impact on coefficients and probability estimates.

ird, we observe that the negative exponential impedance function seems to consistently produce
smaller average errors than the cumulative function. is is likely due to the fact that the negative
exponential function inherently includesmore information, frommore estimated travel times than the
cumulative functionwhich effectively discards any information past its travel time threshold,θ. While
the cumulative function is easier to interpret⁶ the findings suggest that this ease be balanced against its
sensitivity to slightly varying travel times. Indeed, either of these impedance functions may perform
poorly in this context when compared to more advanced measures recently developed. Conway et al.
(2018) propose measuring a median (or other quantile) travel time over some period and using this
as the basis of accessibility metrics. e results discussed in Section 4.5 would seem to suggest that
this might be a good strategy to reduce average error in schedule data, though that would need to be
tested. Other interesting approaches are suggested byMerlin andHu (2017), who discuss competitive
measures of accessibility to scarce resources like jobs. It is not yet known what confidence intervals
might be placed on such measures derived from schedule data alone.

Finally, wehave seen that aswe go fromparticular travel time estimates (Section4.1) tomeasures of
momentary accessibility (Section 4.5), to hourly averages (Section 4.3), the size of the average relative
difference between schedule and retrospective datasets decreases. is is essentially a reversion to the
mean as each step is an increase in the level of aggregation, averaging together more and more travel
times to create each measure. While we have not addressed measures of momentary accessibility in
any depth, it should be expected that such measures will have larger errors than measures with any
degree of temporal aggregation. is consideration raises serious questions about research which uses
accessibility measures based on a single departure time, as these would likely include a good deal of
sampling error in their observations. While the problem of sampling error in this context has been
discussed elsewhere (e.g., Conway et al. 2018; Owen and Murphy 2018b; Stępniak et al. 2019), those
accounts have focused on the interactions between selected departure times and scheduled service
dynamics and have not addressed the possible gap between scheduled and actual travel times.

In general, this research points to the need for more work toward understanding uncertainty and
variability in transit travel. It may not be sufficient to use schedule data alone to see how access across
transit networks varies over time except perhaps in very simple cases, or where schedule adherence is
known to be exceptional. ere needs to be some understanding of how variability in transit travel
times are actually experienced as a quasi-stochastic phenomenon and used to inform mode choice,
route selection, and itinerary planning. We hope that this research helps move that conversation for-
ward.

⁶ We use it ourselves in Figure 9 for this reason.
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Figure 10: Median schedule-based Āoh (x axis) is plotted againstMedian e(Āoh ) (y axis) for each origin
using the cumulative impedance function. Color gives the relative dispersion of errors for
each origin as a quartile classification ( ). Selected origins are highlighted in
black and comparable results for the negative exponential function are given in Figure 4.
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