
Abstract: I present a method for calibrating the impedance parameter 
of a gravity spatial interaction model using only the median travel time 
as a measure of observed traveler behavior. Complete information about 
the spatial structure of origins, destinations, and travel times between 
origins and destinations is also required. Using Monte Carlo simulation 
techniques on stylized cities, I attempt to recover true (a priori known) 
impedance values with this method for a range of impedance values for 
both negative exponential and power impedance functions. The results 
are compared with estimates obtained by other fast methods. The pro-
posed method proves to provide a fairly accurate estimate of the imped-
ance parameter, with a mean percent error typically below 20% and 
often below 10% for common impedance values. The proposed method 
is an improvement over existing calibration methods in several respects. 
First, it allows for the estimation of the impedance parameter directly 
without lengthy iterative calculations. Second, because it only requires 
median travel times, it can be calibrated with smaller samples (n~200), 
allowing the construction of gravity models for specific modes and/or 
travel purposes. And third, the method does not require expensive travel 
demand software and so can be implemented more widely in practice. 

A new method using medians to calibrate single-parameter  
spatial interaction models

Article history:
Received: May 21, 2019
Received in revised form:  
November 14, 2019 
Accepted: November 17, 2019
Available online: January 29, 
2020

Copyright 2020 Louis A. Merlin
http://dx.doi.org/10.5198/jtlu.2020.1614
ISSN: 1938-7849 | Licensed under the Creative Commons Attribution – Noncommercial License 4.0 

The Journal of Transport and Land Use is the official journal of the World Society for Transport and Land Use (WSTLUR) 
and is published and sponsored by the University of Minnesota Center for Transportation Studies. 

T J  T  L U    http://jtlu.org
V. 13 N. 1 [2020] pp. 49–70

Louis A. Merlin
Florida Atlantic University
lmerlin@fau.edu 

1 Introduction

Spatial interaction models are mathematical models that help describe or explain the likelihood of inter-
actions across space. They are premised upon the idea that interactions between more distant locations 
are less likely, in many cases because the cost of such interaction varies with distance. Geographers, soci-
ologists, demographers, and urban planners employ spatial interaction models to explain activities such 
as migration, travel behavior, and social interactions. In particular, transportation analysts frequently 
apply spatial interaction models to understand travel behavior, such as the factors that underly trip 
distribution for a specified trip purpose. 

Spatial interaction models can take on different mathematical forms that account for the various 
factors that influence spatial interactions. Perhaps the most commonly used spatial interaction model is 
the gravity or potential model, which assumes that interactions are less likely over greater distances (or 
costs) and are more likely between larger centers of activity, in an analogy to the physical force of gravity 
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between spatial bodies (Hayes & Wilson, 1971). The intervening opportunities model also takes into 
account the spatial locations of destinations, but spatial distance has no fixed effect within the interven-
ing opportunities model; rather closer destinations are more likely to be selected over more distant ones, 
and it is these intervening opportunities that make more distant destinations less attractive (Hayes & 
Wilson, 1971; Stouffer, 1940). Another related spatial interaction model is the radiation model, which 
assumes that the interaction between two centers is directly proportional to their size but inversely 
proportion to the number of intervening opportunities, i.e., the number of alternative destinations that 
are the same distance or closer to the proposed destination (Piovani, Arcaute, Uchoa, Wilson, & Batty, 
2018; Simini, González, Maritan, & Barabási, 2012).

The measurement of accessibility, often defined as the ease of access to destinations of interest, 
necessarily rests upon a model of spatial interaction. This is because understanding the “ease of access” 
requires an understanding of the degree to which the costs or impedance of travel inhibits interactions 
over distance. Therefore, the accurate calculation of accessibility requires a spatial interaction model that 
describes to what degree distance presents an obstacle to interactions over space. The most commonly 
employed accessibility measure among practitioners is the cumulative opportunities model (Boisjoly 
& El-Geneidy, 2017b; Gutman & Tomer, 2016), which assumes a binary structure to space, i.e., ei-
ther a destination is close enough to be of interest or it is not. The gravity-based measure is the second 
most common type of accessibility measure; however, the calibration of gravity-based spatial interaction 
models presents an obstacle to many researchers and practitioners interested in accessibility analysis. In 
accessibility analysis, it is not uncommon for the impedance to be assumed to be a constant value, or for 
the analyst to use a streamlined method such as calibrating the impedance to the trip length distribution. 
All of this points to the need for straightforward and streamlined methods for the accurate calibration of 
gravity-based spatial interaction models.

The proposed method in this paper is superior to existing calibration methods for several reasons. 
The first is that the traditional complex, iterative calibration required for the doubly-constrained spatial 
interaction models can be avoided (Fotheringham & O’Kelly, 1989; Williams, 1976). An accurate esti-
mate of the impedance parameter can be derived quickly via the proposed method. If a full doubly-con-
strained spatial interaction model is desired, then the inverse balancing factors only need be calibrated a 
single time based upon this impedance estimate.

The second advantage of the proposed method is that because the calibration of the impedance 
parameter requires only an accurate median cost as an input, calibration is possible with smaller data 
samples. Therefore, analysts can readily derive impedance parameters for particular population seg-
ments, modes, or trip purposes, opening the world of accessibility analysis to a wider range of applica-
tions beyond job accessibility. For example, separate impedance parameters can be derived for work and 
non-work travel, or even for specific kinds of non-work travel such as social and recreational travel.

Thirdly, the proposed method can be implemented without expensive travel demand modeling 
software. The following implementation was conducted in free, open-source R software, and implemen-
tation of the proposed method with commonly available spreadsheet software is likely feasible.

Finally, the method rests upon a highly intuitive principle, which may be an effective basis for 
further innovation. That principle is the following—that the median travel time should be the one 
where the total destination opportunity (accessibility) passed is equivalent to the total destination op-
portunity not yet reached. By marrying a gravity model to the principle of opportunities passed, this 
brings the gravity model closer to the conceptually distinct intervening opportunities model (Goncalves 
& Ulyssea-Neto, 1993; Lenormand, Bassolas, & Ramasco, 2016).

The organization of the remaining paper is as follows. First, the basic form of gravity-based spatial 
interaction models is discussed. The following section reviews the many challenges to the calibration of 
spatial interaction models, including the selection of a zonal structure, the issue of self-potential, the se-
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lection of a functional form, and methods of calibration. Median calibration methods are also discussed 
at the end of this section. The newly proposed method is then detailed in a step-by-step fashion in the 
following section. Then follows a case study where the method is tested for both negative exponential 
and power functions and its accuracy is compared with alternative fast methods. Next comes a discus-
sion section that addresses how the method could be applied and why some of the estimated impedance 
parameters are further off than others. The conclusion section reiterates the proposed method, the case 
study analysis, and the findings in brief form.

2 The basic form of gravity-based spatial interaction models

Spatial interaction models can be unconstrained, production-constrained, attraction-constrained, or 
doubly-constrained (See equations 1-4) (Fotheringham & O’Kelly, 1989). Unconstrainted models pre-
dict flows based on the mass of source activity at the origin, the mass of attraction activity at the des-
tination, and the impedance between the origin and destination (equation 1). Production-constrained 
models are similar to unconstrainted models, but the total flows leaving each origin zone are known 
and therefore used as a constraint in calibration (equation 2). Attraction-constrained models likewise 
have known total flows into each destination zone, which are in turn used as a constraint (equation 3). 
Doubly-constrained models have both known total flows from each origin and to each destination, and 
both known quantities are then used to constrain the model and obtain a more accurate estimate of spa-
tial interaction behavior (equation 4). These four types of models are reviewed in detail in Fotheringham 
and O’Kelly (1989) and by Wilson (1971).

          (1)

          (2)

          (3)

          (4)

In these formulas, Tij is the predicted flow from zone i to zone j. Oi is the number of travelers living 
in zone i, Dj is the number of destinations located in zone j, cij is the cost of travel from zone i to zone j 
and f() is the impedance function, which transforms a positive cost cij > 0 into an impedance factor that 
is non-increasing, i.e., that decreases as the cost of travel increases.

3 Challenges in the calibration of spatial interaction models

3.1 Zonal structure and sampling

Spatial interaction models typically impose a zonal structure in order to avoid the informational com-
plexity and data requirements of considering every building being a possible origin and destination. 
However, there is little guidance available on what the most appropriate zonal structure should be. Dif-
ferent levels of spatial aggregation can produce differing results, per the Modifiable Areal Unit Problem 
(MAUP) (Batty & Sikdar, 1982; Horner & Murray, 2002). At first blush, it might seem that a greater 
number of zones is preferable because smaller zones provide greater accuracy in the calculation of zone-
to-zone travel costs. However, as the number of zones increases, any non-complete sample becomes an 
increasingly inaccurate representation of the proportion of flows between specific pairs of zones. In a 
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system with n zones, the number of potential flows is n^2, so there is a high likelihood that at least some 
of these zone-to-zone sample estimates are inaccurate if the number of zones is large and the sample size 
is small.

Maximum likelihood methods work well with near-complete data, but in many cases only a sample 
of total travel behavior is available. As mentioned above, with sample data, many zone-to-zone flows in 
the sample may highly biased, or worse still, some zone-to-zone flows will appear as 0 (Ortuzar & Wil-
lumsen, 2011). Since all four spatial-interaction model types are multiplicative, this creates a particular 
problem—for a particular OD pair between origin i and destination j, if the observed sample shows a 
flow of 0 between i and j but the number of origin travelers and destinations is non-zero, then one of 
the two constraints Ai or Bj is forced to take on a zero value. If, for example, the destination j takes on 
a Bj = 0, then the spatial interaction model will predict 0 trips to that destination from all origins. The 
problem of 0 or small flows between zones presents a barrier to other forms of model calibration as well 
(Gray & Sen, 1983).

Murat (2010) tests a range of sample sizes for calibrating doubly-constrained power and exponen-
tial models of four trip types using car-based travel times from the 2006 Istanbul travel survey. He finds 
that samples as small as 1000 produce similar root mean square error predictions of mean travel time 
and trip length distribution as using the full data. He handles the problem of zero flows by substituting 
the Furness Biproportional Balancing Procedure for the traditional iterative procedure of calculating 
balancing factors (Dennett, 2012).

One method of addressing the problem of zero flows is to fit an origin-constrained spatial interac-
tion model to sample data, only including those origins that have non-zero trip counts. The disadvan-
tage of this approach is that this type of spatial interaction model is known to be less accurate than the 
doubly-constrained model, and such a model can contain bias if it does not account for competition 
among destinations (Fotheringham, 1983).

Such singly-constrained models can often be calibrated accurately with sample data using maxi-
mum likelihood methods. However, since there is a constraint that must be estimated for each origin in 
the sample, this can greatly reduce the effective degrees of freedom and therefore the effective sample size 
for estimating impedance parameters. Take for example the 2017 Southeast Florida Household Travel 
Survey (WSP Parsons Brinckerhoff, 2017). This survey included 2,096 households and 19,630 trips. To 
calibrate home-to-work commuting trips by transit, there are a total of just 263 such trips coming from 
122 origins. The sample size is sufficiently large for maximum likelihood estimation of the required 123 
parameters (122 origin constraints + 1 impedance parameter), but barely so.

An additional issue with the calibration of spatial interaction models from sample data is that 
weights are set to reflect a representative population and not a representative set of trips. Therefore, if a 
person with a high population weight takes a trip of unusual length, this trip will be over-represented in 
the sample and could throw off the impedance estimate.

3.2 Self-potential or intrazonal trips

Another concern is how to accurately estimate intrazonal costs, i.e., the cost of travel from an origin 
within a zone to a destination within the same zone. Melhorado, Demirel, Kompil, Navajas, and Pan-
ayotis (2016) test four different measures of self-potential: area-based, fixed values, density-based and 
point-to-point. They find that fixed values and area-based measures tend to underestimate true intra-
zonal travel times for their data on travel between 23 European capital regions. Point-to-point estima-
tion of destinations within each zone provides the most accurate results. The inaccurate estimation of 
internal travel times can have a large influence on the measurement of accessibility if zones are large in 
terms of the number of destinations they contain. Stepniak and Jacobs-Crisioni (2017) suggest using 
mean distance to the population centroid as a fast method to estimate the cost of intrazonal trips.
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Another solution to the problem of self-potential is to ignore intrazonal trips in the calibration 
of the impedance function (Lenormand et al., 2016; Ortuzar & Willumsen, 2011). However, for the 
purposes of calculating accessibility, intrazonal potential cannot be ignored and an intrazonal cost must 
be introduced.

3.3 Functional form

The most commonly used functional forms for the cost element of spatial interaction models are nega-
tive exponential (equation 5), power functions (equation 6), and combined function that include both 
exponential and power elements (equation 7). The combined exponential-power functional form is 
also called the Tanner function. Other functional forms that have been explored include the logistic 
function (equation 8) (de Vries, Nijkamp, & Rietveld, 2009) and the log-normal function (equation 
9) (Feldman, Forero-Martinez, & Coombe, 2012; Reggiani, Bucci, & Russo, 2011; Taylor, 1971). 
An alternative to the spatial interaction models is the intervening opportunities model, which consid-
ers the availability of more proximate alternatives to be the determinative factor in destination choice 
rather than travel costs (Ortuzar & Willumsen, 2011). Goncalves and Ulyssea-Neto (1993) develop a 
combined intervening opportunities-gravity model and calibrate it to public transport trips in Santa 
Catarina, Brazil. This model potentially offers the strengths of taking into account both travel costs and 
the relative level of accessibility of competing destinations.

          (5)

          (6)

          (7)

          (8)

          (9)

Lenormorand et al. (2016) compare gravity, intervening opportunity, and radiation models to ex-
plain commuting trip distribution, integrating data from six countries and two cities into their analysis. 
They find that gravity models explain commuting patterns most accurately. Further, they find that the 
negative exponential function works best in most cases, though such functional forms do not accu-
rately capture relative sparse long-distance commuting flows. De Vries et al. (2009) examine commuting 
between cities in Denmark, using the financial cost of commuting by car as their measure of imped-
ance and find that the logistic function performs better than the exponential and power functions. In 
particular, they find that the marginal cost has a decreasing effect on destination attractiveness past a 
point of inflection as determined by the logistic function. Reggiani et al. (2011) find that log-normal 
and power functions better fit Germany-wide commuting patterns than does the negative exponential. 
Fotheringham and O’Kelly (1989) recommend negative exponential function for shorter trips and the 
power function for longer trips.
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3.4 Calibration

Calibration of the doubly-constrained spatial interaction model remains complex, though many alterna-
tive techniques have been proposed. The basic problem is the interdependence of the Ai values, the Bj 

values, and the impedance parameters within the impedance function (Fotheringham & O’Kelly, 1989, 
p. 53). Once the impedance parameters of f() are known, then Ai and Bj can be calculated iteratively 
through the formulas below:

          (10)

          (11)

But likewise, the impedance parameters within the impedance function f() cannot be known until 
the balancing factors are determined.

The practical suggestion of Ortuzar and Willumsen (2011) is to first estimate the balancing factors 
through Furness balancing procedure and then estimate the impedance parameters taking these balanc-
ing factors as fixed. 

A fast method for estimating single-parameter impedance functions (either the exponential or 
power functions in equations 5 or 6 above) given a set of fixed balancing factors is due to Hyman (Batty 
& Mackie, 1972; Hyman, 1969). The essential motivation for this method comes from the fact that 
the average cost for the estimated flows must be equal to the average cost for the observed flows. This 
constraint is expressed as:

          (12)

Where Tij represents estimated flows from the spatial interaction model, and Nij represents observed 
flows from the sample. This means that the left-hand side represents the average estimated trip cost 
due to the current form of the impedance function f, while the right-hand side represents the observed 
average trip cost from the sample c*. Details for following this procedure are produced in Ortuzar and 
Willumsen (2011, p. 193). In successive steps the parameter is adjusted until cf converges in value to c*.

To be precise, once the impedance parameter is calculated through the Hyman method and the 
impedance function f() is set, the inverse balancing factors should again be re-calibrated by employing 
equations 10 and 11 iteratively until a new balancing factor convergence is achieved. However, the prac-
tical value of this recalibration may be minimal; it is unclear from the literature if this is a necessary step 
or how much additional accuracy could be obtained by this recalibration.

When the impedance function has multiple parameters, first balancing factors are estimated, such 
as through Furness balancing procedure, and then a maximum likelihood model is estimated to deter-
mine the parameters of the impedance function.

Several other methods have been proposed for calibrating the numerous and mutually depen-
dent parameters of the doubly-constrained spatial interaction model. Williams (1976) compares three 
methods for calibrating single-parameter impedance functions—methods due to Hyman, Evans, and 
Hathaway. Williams finds that all such methods work quickly but that Hyman’s method provides the 
greatest precision and is the most straightforward to implement. Sen and Pruthi (1983) propose a fast, 
weighted-least-squares method that works only when intrazonal flows are not accounted for. Diplock 
and Openshaw (2010) explore the use of genetic algorithms to calibrate production-constrained, nega-
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tive exponential models and find that such strategies work reliably but take longer to converge than 
quasi-Newton methods. De Vries et al. (2009) use non-linear weighted least squares on log-transformed 
equations to calibrate exponential, power, and logistic-based models and include the numerous origin 
and destination constants (balancing factors) within their model calibration. Other non-linear methods 
have also been applied, such as Hooke and Jeeve’s discrete step method (Goncalves & Ulyssea-Neto, 
1993). Step-wise methods that search for the best parameter values over a constrained range are also not 
uncommon (Feldman et al., 2012; Murat, 2010).

As an aside, it is important to note that the observed trip length distribution is often the object 
taken to be fitted to (Feldman et al., 2012; Murat, 2010; Ortuzar & Willumsen, 2011; Piovani et al., 
2018). However, I have not been able to find a rigorous mathematical basis for directly fitting the im-
pedance function to the observed trip length distribution. Fitting directly to a trip length distribution is 
not equivalent to fitting a spatial interaction model, because the spatial structure of origins and destina-
tions is not accounted for and therefore is likely to result in an incorrect calibration of the impedance 
function (Krizek, 2010).

3.5 Median calibration methods

Osth, Reggiani, and Galiazzo (2014) proposed a method of calibration based only upon the median 
travel time, with the goal of avoiding the modifiable areal unit problem (MAUP). If spatial impedance 
could be determined without reference to a specific zonal structure, the spatial model would presumably 
be more robust and generalizable. Their proposed method of median calibration is termed a “half-life” 
method and is based on the concept of radiation half-life in physics. The premise of this method is that 
the median commute corresponds to the commute duration of half the population, and therefore it 
represents the point at which half of the traveling population has “decayed” or dropped off from the 
original total population, having already found a suitable destination by this time. Based on this theory, 
Osth et al. (2014) estimate the gravity impedance parameter as follows:

          (13)

where mdn is the median commute time in minutes. 
While an ingenious method, this method of calibration based upon median travel times suffers 

from two flaws. First, it does not consider the spatial structure of the geography being analyzed and 
so the half-life principle is not justified conceptually. A rate of decay proportional to the amount of 
substance remaining makes sense for a physically radioactive entity. But the decay rate for commuters 
must correspond in some sense to the presence of available destinations that can be reached at any given 
point in time. The half-life of commuters as proposed is only analogous to the physical case of radiation 
if the number of destinations reachable within each minute is proportional to the number of remaining 
travelers, which is unlikely to be the case. The second flaw in the proposed method is that it produces 
inaccurate results. Osth et al. (2014) report an R-square value of ~0.22 for the half-life calibrated model 
versus an R-square of ~0.95 for the doubly-constrained model in terms of describing commuting flows 
across Swedish municipalities in 1995 and 2008. Although the approach is novel, it is not sufficiently 
accurate for general use.

The method proposed herein is inspired by the half-life method of Osth et al. (2014) but addresses 
its greatest flaws. It explicitly accounts for the spatial structure of the geography of analysis in the calcula-
tion of the impedance parameter, and it can produce quite accurate results, often estimating the imped-
ance parameter within 10% of the true value. It leverages the insights of the Osth et al. (2014) paper that 
the median commute is a suitable data point for calibrating the single unknown parameter in either the 
exponential or power versions of the gravity formula. 
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How should the half-life concept be applied to spatial interactions? The median travel time is con-
ceptually important in a spatial context. It indicates the point at which exactly half the travelers have 
reached their destination. Therefore, at the median travel time, the amount of destination opportunity 
passed should be equal to the amount of destination opportunity remaining. This means that for the 
average traveler, the accessibility reachable by the median travel time should be equal to the accessibility 
reachable by more than the median travel time. This balance in the amount of accessible opportunity 
before and after the median travel time is expressed in equation 14 below, where med is the median travel 
time, δt is the attractiveness of destinations located distance t from all origins and f(c) is the impedance 
due to cost c. In that sense, the half-life principle is here retained. 

          (14)

4 Method

This section illustrates the procedure for calibrating the impedance parameter given the median travel 
time (or cost) for a particular population segment, mode, travel purpose, and time of day traveling be-
tween a known set of origins and destinations. The data requirements for the procedure are as follows:

• Median travel time (or cost)
• Counts of the population in each zone
• Counts or measures of destinations (or destination attractiveness) in each zone
• Travel times (or costs) between each origin and each destination for the given mode and the 

given time of day
To illustrate the method, some mathematical notation is helpful.
The median travel time is denoted mdn.
Let the zones z be enumerated i or j = 1, 2, 3, …, N where N is the total number of zones.
The population/origin count for each zone i is indicated by oi.
The destination count for each zone i is indicated by di.
The travel time between each origin zi and destination zj is indicated by tij.
Let the travel time t be denominated in minutes (positive integers) where t = 1, 2, 3, … T and T is 

the longest possible travel time across any pair of zones in the city zi and zj.
Step 1: Create a table of the number of destinations Dit reachable for every minute t = 1, 2, 3, …, T 

from each origin zone zi.
Create a table τ of the marginal number of destinations reachable by minute from each origin zone. 

That is, leaving from each origin i, the figure in each cell of the table will be the total number of destina-
tions reachable from i that are reached in the tth minute, but not in the t-1st minute. The origins range 
from 1, …, i , …, N across all origins, and the travel times t range from 1, 2, …T minutes, where T is 
the largest travel time possible in the zonal system.
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This table τ appears as follows:

In general, the mathematical formula for each element of this table from the ith row (zone) and the 
tth column (minute) is the following:

          (15)

Step 2: Create an array of the average number of destinations reachable from all origins for every 
minute t = 1, 2, 3, …, T.

Create an array δ describes the spatial structure of reachable destinations for the average traveler in 
the environment under analysis.

Weight each row in the above table by the population at each origin, and then take the weighted 
sum.

This array δ appears as follows:

The mathematical formula for each array member δt is:

          (16)

Step 3: Determine the impedance coefficient that balances the attractiveness of destinations reached 
within the median time with the attractiveness of destinations reached at longer than the median travel 
time.

This is the core insight of the process: That the median travel time should exactly balance the 
amount of opportunity passed with the amount of opportunity not yet reached.

Mathematically, this is determined by minimizing the objective function of the difference between 
the amount of opportunity reached and the amount not yet passed. The estimated impedance (βMED) is 
determined by minimizing this difference:

Columns: Minutes

Rows: Origins Zones

1 2 … … t … … T-1 T

Zone 1 D11 D12 … D1t … D1,T-1 D1,T

Zone 2 D21 D22 … D2t … D2,T-1 D2,T

… … … …

i Dit =

Sum of dj reachable from 
zone i in t minutes

(not cumulative)

… …

Zone N-1 DN-1,1 DN-1,2 … DN-1,t … DN-1,T-1 DN-1,T

Zone N DN,1 DN,2 … DN,t … DN,T-1 DN,T

Minutes 1 2 … T-1 T

All Zones δ1 δ2 δt = Population-weighted average total destinations d 
reachable from all zones in t minutes

δT-1 δT
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          (17)

The impedance value βMED that brings the above term as close to 0 as possible is the estimated 
impedance.

Practically, this can be achieved by a hill-climbing (descending) procedure that tests different values 
of βMED until equation (17) is minimized. Because the right-hand side of equation (17) decreases more 
quickly than the left-hand side, equation (17) only has no local minima and the global minimum will 
be found.

Note that although the negative exponential form of the impedance function is utilized here, any 
single-parameter impedance function could be calibrated via a similar objective function. The concept 
of half-life is generalizable to power-based as well as exponential impedance functions.

5 Case study with simulated city data

I built a series of simulated cities with commuting patterns of workers and jobs to test the above proce-
dure. These simulated cities are not intended to mimic the land-use patterns of real-world cities but are 
merely intended as a challenging test-bed for the proposed calibration method. Each city is a 20 x 20 
grid of zones (See Figure 1 below). Each zone can be indicated by a coordinate (x, y) where x corresponds 
with the zone’s column number and y corresponds with the zone’s row number. The total number of 
workers and jobs in the city are both fixed at 400,000. The number of workers for each zone is drawn 
from a Normal distribution with a mean of 1,000 and a standard deviation of 300, with the city-wide 
total normalized to 400,000. The employment within each zone is drawn from an Exponential distribu-
tion with a mean of 1,000. An Exponential distribution better simulates the more concentrated nature 
of employment in cities, which tends to be high in a few select areas and low in most residential areas. 
The concentration of employment also serves as a kind of “stress test” for the spatial interaction model 
because feasible destinations are not nearby for every origin. Zonal employment is likewise adjusted to 
ensure a citywide total of 400,000. Figure 2 illustrates worker population and employment densities by 
zone for a sample city.
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Figure 1. Conceptual diagram of simulated city structure and Manhattan-based travel times
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Figure 2. Population and employment densities by zone for a sample simulated city

Travel times are determined through a Manhattan travel distance (assuming travel only takes place 
parallel to the x and y axes along a rectilinear grid) with some randomization added to create a more 
naturalistic distribution of travel times. The travel time between adjacent districts (not including diago-
nally adjacent districts) is set at 5 minutes, and 5 minutes are added for each additional horizontal or 
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vertical movement. In addition, each zone-to-zone travel times are perturbed by a random integer value 
between -2 and 2, so that any positive integer minutes of travel times is possible between 3 minutes as 
the minimum and 192 minutes as the maximum.

The formula for travel time between zones i and j is as follows:

          (18)

Where tij is the travel time between zones in minutes xi and xj are the column numbers and yi  and 
yj are the row numbers of the zones i and j respectively. The rand() function indicates that one of the 
values in the list is selected at random. Note that travel times are not necessarily symmetrical, i.e., tij is 
not necessarily equal to tij.

Intrazonal travel times are then computed as ½ the average travel time to the three closest zones, 
rounded to the nearest minute. Therefore, intrazonal travel times range from a possible minimum of 2 
minutes to a possible maximum of 4 minutes.

Figure 3 displays the population-weighted zone-to-zone travel time distribution resulting from the 
above method.

Figure 3:  Population-weighted distribution of interzonal travel times in minutes

The true impedance (β) is set at the beginning of the analysis with the hope of recovering it via the 
proposed method. This true impedance is then used to generate a series of observed zone-to-zone flows 
for each simulated city based on a doubly-constrained spatial interaction model. The Ai origin balanc-
ing factor and the Bj destination balancing factor are calculated based upon the true value of impedance 
(β). Then the observed flow between zones i and j is calculated based upon a doubly-constrained spatial 
interaction model with a negative exponential impedance function:
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          (19)

Where Fij is the flow of workers from zone i into jobs in zone j, Ai is the origin balancing factor 
for zone i, Bj is the destination balancing factor for zone j, oi is the number of workers in zone i, dj is the 
number of jobs in zone j, and tij is the travel time from zone i to zone j. 

Then based on these flows Fij between zones, a median travel time is recovered.
Finally based upon this median travel time, the proposed methodology is applied and an estimated 

impedance βMED is recovered.
This median calibration method is then compared to two alternative fast-calibration methods. The 

first is the method proposed by Osth et. al. (2014) expressed in equation (13) above. And the second 
method is based on the observed trip length distribution of worker flows. 

The observed trip length distribution method (TLD) works as follows. If yt is the number of travel-
ers observed with travel time t, then a log-linear model is used to estimate the impedance coefficient βTLD:

          (20)

          (21)

In addition, I also tested the median calibration method with a power impedance function. The 
procedure is the same as above, except that the calibration of flows is based upon a power function:

          (22)

Then from this, the travel time distribution and median travel time are derived. Based upon me-
dian travel time, an estimated impedance coefficient βMED is estimated as described above. This imped-
ance estimate is then compared with a calibration based upon a trip length distribution method, which 
involves the following two formulae

          (23)

          (24)

6 Results

The estimates of the power impedance parameter based on median calibration range in average error 
from are below 12.1% for all impedance values in the range of 0.5-2.0 and below 5.0% for the values 
between 0.8-1.8. The variation in such errors across simulations is small, typically 1-2%, which means 
that the median calibration method provides robust results across a range of city geographies. See Table 
1 for full results on calibrating for the power function. In comparison, the Trip Length Distribution 
Method has very large error estimates —in all cases higher than 26% error, and in many cases more than 
100% in error; that is the estimated impedance parameter is more than double its true value using this 
method for impedance values in the 0.5-0.8 range. Although the Trip Length Distribution method of 
calibration is widely used, the simulation results here indicate that it is not a reliable method for calibrat-
ing power-based gravity spatial interaction models.

For the exponential impedance function, parameter estimate errors are less than 10% for imped-
ance values between 0.02 and 0.13, between 10-20% for impedance values 0.14-0.21, and between 
20-30% for impedance values of 0.22 and above. See Table 2 for full results on calibrating for the expo-



63A new method using medians to calibrate single-parameter spatial interaction models

nential function. The median method is almost always more accurate than the alternative Osth method 
and the trip length distribution method, except in the case where true impedance = 0.07 or 0.08, in 
which case the trip length distribution method is slightly more accurate. The small standard errors in 
parameter estimation error for the median method show that the process yields very similar values across 
different simulated cities. The negative exponential impedance parameter estimates based on the median 
calibration method have a range of errors that depend highly upon the true impedance value. Indeed, 
the amount of error in the median impedance estimate appears to grow systematically with the value of 
the true impedance.

How accurate are sample estimates of median travel times? This depends upon the underlying 
travel time distribution, but the simulations here are used to examine this question. Table 3 and Table 
4 illustrate some results obtained from the simulations on how accurately sample medians reflect true 
median values. Interestingly the accuracy of the sample median depends upon the impedance as well as 
the sample size. For example, for samples of 200, a precise median is only obtained 9% of the time for 
impedance values = 0.01, but is obtained 55% of the time for impedance values = 0.30. The accuracy 
of the true median increases as the true impedance value increases. The same pattern is observed for 
how often median estimates are within one minute of the correct value. Again for a sample of 200, the 
sample estimate is within 1 minute of the true value 34% of the time for impedance = 0.01 but 98% 
of the time for impedance = 0.30. Therefore, there is no universal rule about how large a sample must 
be to obtain an accurate median. Assuming a typical impedance value of 0.10, a sample size of 250 will 
result in a median estimate within 1 minute of the true value 85% of the time. So clearly large samples 
are to be preferred where possible.

Table 1. Impedance estimates for power impedance functional form

Note: Means and standard deviations are taken over a sample of 50 simulated cities.
TLD is short for the Trip Length Distribution method.

True Impedance 
Value

Mean Median 
Estimate

Mean TLD 
Estimate

Mean Error 
in Median 
Estimate

Standard Deviation 
of Error in Median 

Estimate
Mean Error in 
TLD Estimate

Mean Median 
Travel Time in 

Minutes

0.5 0.44 1.42 12.1% 2.3% 184.2% 52.8

0.6 0.54 1.50 9.6% 1.7% 150.4% 49.9

0.7 0.64 1.59 8.0% 1.4% 126.8% 46.8

0.8 0.76 1.67 5.4% 1.3% 108.4% 43.2

0.9 0.86 1.75 5.0% 0.8% 94.1% 40.0

1.0 0.97 1.83 3.5% 0.9% 83.1% 36.1

1.1 1.06 1.91 3.6% 1.0% 73.9% 32.7

1.2 1.16 1.99 3.2% 0.4% 66.0% 29.0

1.3 1.27 2.07 2.5% 0.7% 59.4% 25.1

1.4 1.36 2.15 2.9% 0.6% 53.5% 21.9

1.5 1.45 2.22 3.5% 0.8% 48.2% 18.8

1.6 1.54 2.29 3.8% 0.6% 43.4% 15.9

1.7 1.63 2.36 4.4% 1.2% 38.8% 13.4

1.8 1.71 2.42 5.0% 1.0% 34.3% 11.3

1.9 1.77 2.47 6.8% 1.0% 30.2% 9.8

2 1.85 2.52 7.4% 1.5% 26.2% 8.3
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Table 2. Impedance estimates for exponential functional form

Note: Means and standard deviations are taken over a sample of 50 simulated cities.
TLD is short for the Trip Length Distribution method.

True 
Impedance 
Value

Mean 
Median
Estimate

Mean 
Osth-based 
Estimate

Mean Trip 
Length 
Distribution 
Estimate

Median 
Estimate 
Mean 
Error

Median 
Estimate 
Std. Dev. 
Error

Osth 
Estimate 
Mean
Error

TLD
Mean 
Error

Mean 
Median 
Travel 
Time in 
Minutes

0.01 0.008 0.013 0.032 16.2% 3.1% 28.8% 222.6% 53.8

0.02 0.018 0.016 0.039 7.9% 1.0% 21.2% 96.8% 44.0

0.03 0.029 0.019 0.046 3.6% 0.8% 35.9% 53.8% 36.0

0.04 0.039 0.023 0.053 2.0% 1.1% 42.3% 31.4% 30.1

0.05 0.048 0.027 0.059 3.3% 0.6% 46.6% 17.8% 26.0

0.06 0.058 0.031 0.065 2.8% 2.6% 48.6% 8.7% 22.5

0.07 0.067 0.035 0.072 4.2% 1.1% 50.4% 2.5% 20.0

0.08 0.076 0.039 0.078 5.2% 1.1% 51.9% 2.3% 18.0

0.09 0.086 0.043 0.085 4.5% 1.3% 52.0% 6.0% 16.1

0.10 0.094 0.047 0.091 6.4% 2.9% 53.0% 8.8% 14.8

0.11 0.103 0.051 0.098 6.4% 4.0% 53.3% 11.3% 13.5

0.12 0.109 0.054 0.104 8.9% 3.7% 54.8% 13.3% 12.8

0.13 0.118 0.058 0.110 9.0% 2.4% 55.2% 15.1% 11.9

0.14 0.126 0.063 0.117 10.2% 2.1% 55.3% 16.6% 11.1

0.15 0.134 0.067 0.123 10.6% 3.6% 55.0% 18.1% 10.3

0.16 0.139 0.070 0.129 13.2% 3.0% 56.2% 19.5% 9.9

0.17 0.148 0.075 0.135 12.8% 3.9% 55.9% 20.8% 9.3

0.18 0.151 0.077 0.140 16.0% 2.6% 57.4% 22.0% 9.1

0.19 0.161 0.081 0.146 15.4% 5.2% 57.1% 23.2% 8.5

0.2 0.166 0.084 0.151 17.1% 4.6% 58.0% 24.4% 8.3

0.21 0.170 0.086 0.156 18.9% 1.9% 58.9% 25.6% 8.0

0.22 0.174 0.088 0.161 20.7% 4.6% 59.9% 26.7% 7.9

0.23 0.186 0.093 0.166 19.1% 6.2% 59.4% 27.8% 7.5

0.24 0.189 0.095 0.171 21.2% 5.7% 60.5% 28.9% 7.3

0.25 0.194 0.097 0.175 22.4% 4.6% 61.0% 29.9% 7.1

0.26 0.203 0.104 0.180 21.8% 5.7% 60.0% 30.9% 6.7

0.27 0.209 0.108 0.184 22.5% 4.8% 60.0% 32.0% 6.5

0.28 0.212 0.110 0.188 24.2% 4.0% 60.6% 32.9% 6.3

0.29 0.214 0.112 0.192 26.3% 3.7% 61.5% 33.8% 6.2

0.3 0.216 0.113 0.196 28.1% 3.5% 62.3% 34.7% 6.2
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Table 3. Percentage of time exact median travel time is obtained from sample based on impedance value and sample size (N)

Impedance N=50 N=100 N=150 N=200 N=250

0.01 3% 5% 7% 9% 10%

0.02 4% 6% 8% 10% 12%

0.03 4% 7% 9% 11% 13%

0.04 5% 8% 11% 15% 17%

0.05 6% 10% 13% 17% 20%

0.06 7% 11% 15% 19% 23%

0.07 8% 13% 18% 22% 26%

0.08 10% 17% 23% 28% 32%

0.09 9% 17% 22% 27% 32%

0.1 11% 19% 26% 30% 34%

0.11 13% 23% 30% 35% 38%

0.12 15% 25% 33% 39% 43%

0.13 12% 21% 28% 33% 37%

0.14 14% 24% 31% 37% 42%

0.15 17% 28% 36% 40% 45%

0.16 18% 30% 38% 44% 49%

0.17 22% 34% 42% 47% 49%

0.18 22% 36% 46% 53% 60%

0.19 24% 38% 44% 49% 51%

0.2 27% 40% 50% 55% 58%

0.21 27% 42% 53% 60% 65%

0.22 26% 40% 50% 56% 61%

0.23 22% 36% 44% 49% 52%

0.24 22% 35% 44% 50% 54%

0.25 21% 34% 41% 47% 51%

0.26 22% 35% 43% 48% 52%

0.27 23% 36% 44% 49% 51%

0.28 23% 38% 45% 49% 50%

0.29 24% 39% 48% 53% 57%

0.3 25% 40% 50% 55% 59%

For exponential impedance funtion
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Table 4. Percentage of time sample median estimate is =+/-1 minute based on impedance value and sample size (N)

 

7 Discussion

The median calibration method produces reasonably accurate estimates of the true impedance param-
eter for both exponential and power impedance functions. In both cases, it outperforms the accuracy 
of comparable fast methods such as the method proposed by Osth et. al. (2014) or the commonly used 
method of calibrating to trip length distribution curve (TLD method).

Although the proposed impedance parameter estimation method generally creates accurate esti-

Impedance N=50 N=100 N=150 N=200 N=250

0.01 16% 23% 29% 34% 37%

0.02 19% 26% 32% 38% 43%

0.03 21% 29% 36% 43% 48%

0.04 25% 35% 43% 51% 55%

0.05 27% 39% 48% 55% 61%

0.06 32% 44% 54% 62% 68%

0.07 36% 51% 61% 69% 75%

0.08 40% 56% 66% 75% 81%

0.09 42% 57% 68% 76% 81%

0.1 46% 64% 74% 81% 85%

0.11 52% 69% 80% 85% 89%

0.12 53% 71% 81% 87% 91%

0.13 53% 72% 82% 88% 91%

0.14 56% 74% 84% 90% 93%

0.15 61% 77% 85% 90% 92%

0.16 64% 82% 90% 94% 96%

0.17 70% 84% 91% 94% 95%

0.18 72% 89% 95% 98% 99%

0.19 72% 88% 94% 96% 98%

0.2 74% 90% 95% 98% 99%

0.21 74% 90% 95% 98% 99%

0.22 73% 89% 94% 97% 98%

0.23 74% 90% 95% 98% 99%

0.24 74% 90% 96% 98% 99%

0.25 74% 90% 95% 97% 98%

0.26 75% 89% 95% 97% 98%

0.27 76% 89% 94% 96% 97%

0.28 77% 90% 94% 96% 97%

0.29 79% 92% 96% 97% 98%

0.3 80% 92% 97% 98% 99%

For exponential impedance funtion
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mates for common values of impedance, it is notably less accurate for the negative exponential function 
for high levels of true impedance. For high values of impedance, the existing spatial structure may not 
permit sufficiently short trip lengths to reflect traveler preferences. Trip lengths hit a minimum dura-
tion due to the limitations of spatial structure and origin and destination constraints in the doubly-
constrained context. Therefore, the observed median travel times may not fully reflect the subjectively 
experienced resistance to traveling further distances.

Using median values to estimate impedance values for gravity accessibility reduces the data require-
ments and technical expertise required for accessibility calculations. The formulas above do not require 
access to specialized travel demand modeling software and can in concept be calculated with standard 
spreadsheet tools. 

The accuracy of the sample median depends highly both on the sample size and the underlying 
travel time distribution. That travel time distribution in turn depends upon the true value of impedance. 
Median estimates become more accurate for higher true values of impedance. In general, it appears that 
sample sizes of 200 or greater are desirable for obtaining a reasonably accurate estimate of median travel 
time. Although median travel time is not currently reported in US Census American Community Sur-
vey data on commuting, the data already collected could readily provide median commute travel times 
for a variety of geographic areas and populations—cities, counties, different income ranges, travel modes 
and genders—on an annual basis. 

Since median travel times can be estimated from relatively small samples (n~200), existing census 
and other public survey sources can be used to provide the necessary travel behavior information to 
calibrate impedance parameters. As interest in the deployment of accessibility metrics for transportation 
analysis spreads, the availability of new, simplified and streamlined methods for calibrating gravity-based 
accessibility measures is a welcome development.

Estimating impedance values based on median travel time alone also allows for greater nuance in 
the calculation of how accessibility varies by population group, by trip purpose, and/or by mode. For ex-
ample, the impedance parameters for accessibility to work for low-income populations and high-income 
populations can be readily calculated separately via this method. So if high-income populations drive 
further to work than low-income populations do, this greater constraint on low-income populations 
could be taken into account. Likewise, the calculation of impedance parameters for less-visited destina-
tions, such as shopping areas or parks, can be calibrated with smaller samples of traveler behavior using 
this method.

8 Conclusions

This paper presents a method for calibrating the impedance parameter of a spatial interaction model 
using only the median travel time as the measure of observed traveler behavior, alongside complete 
information about the spatial structure and interzonal travel times. The proposed method allows for ex-
pedited calibration of doubly-constrained spatial interaction models and allows the calibration of spatial 
interaction models with smaller samples of travel behavior data. The method does not require expensive 
software and can be implemented with little technical capacity, including via spreadsheet software. The 
method allows for the customized calibration of spatial interaction models for specific population seg-
ments, travel modes, and destination types. 

Using simulated city data with worker counts and job counts detailed by zone and interzonal travel 
times defined, estimated impedance values using this method are compared with the “true” apriori 
known impedance parameters. For power impedance functions, errors were consistently below 12.1% 
and typically below 10%. For negative exponential impedance functions, errors ranged to as high as 
28.1% but were lower than 10% for a significant range of impedance values (0.02-0.13). The proposed 
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median method consistently produced more accurate estimates of the true parameter value than alterna-
tive fast methods, such as calibrating to the Trip Length Distribution (TLD). As a result, the method 
appears viable for practical application in the calibration and implementation of gravity-based acces-
sibility measures.

Reducing the data requirements and computational burden associated with calculating gravity ac-
cessibility measures should make such measures more usable for a wider swath of transportation analysts 
and professionals. Cumulative opportunity measures are currently much more widely used than grav-
ity accessibility measures in applied realms (Boisjoly & El-Geneidy, 2017a; Virginia Department of 
Transportation, 2016). However, the problem with cumulative opportunity measures is that they rely 
upon arbitrary cut-offs regarding which destinations are considered. The proposed method of median 
calibration here relies upon observed traveler behavior and the spatial structure of the analysis area under 
consideration. Therefore, the proposed method is strongly rooted in the specific environment under 
analysis. Further, because of the modest data requirements for median calibration (typically n=200), im-
pedance values can be tailored for a range of situations, i.e., for varying modes, travel purposes, targeted 
traveler groups, and/or specific times of day.
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