
1	 Introduction

Transportation impact assessment (TIA) is an important tool and requirement to analyze the impact of 
any proposed development on the transportation network. The most commonly referenced guideline 
for TIAs is the Trip Generation Handbook, which is developed by the Institute of Transportation En-
gineers (ITE) (Institute of Transportation Engineers, 2017). This manual includes trip generation data 
plots for various land-use descriptions, time periods, settings or location, and trip types (i.e., vehicle or 
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Developing vehicular and non-vehicular trip generation models 
for mid-rise residential buildings in Kelowna, British Columbia: 
Assessing the impact of built environment, land use, and 
neighborhood characteristics

Abstract: This study develops vehicular and non-vehicular trip 
generation models for mid-rise, multi-family residential developments. 
A comparative analysis of observed and Instiutue of Transportation 
Engineers (ITE) trip rates suggests that ITE rates consistently 
overestimate. A latent segmentation-based negative binomial (LSNB) 
model is developed to improve the methodology for estimating vehicular 
and non-vehicular trips. One of the key features of an LSNB model is 
to capture heterogeneity. Segment allocation results for the vehicular 
and non-vehicular models suggest that one segment includes suburban 
developments, whereas the other includes urban developments. Results 
reveal that a higher number of dwelling units is likely to be associated 
with increased vehicle trips. For non-vehicular trips, a higher number of 
dwelling units and increased recreational opportunities are more likely 
to increase trip generation. The LSNB model confirms the existence 
of significant heterogeneity. For instance, higher land-use mix has a 
higher probability to deter vehicular trips in urban areas, whereas trips 
in the suburban areas are likely to continue increasing. Higher density 
of bus routes and sidewalks are likely to be associated with increased 
non-vehicular trips in urban areas, yet such trips are likely to decrease 
in suburban areas. An interesting finding is that higher bikeability 
in suburban areas is more likely to increase non-vehicular trips. The 
findings of this study are expected to assist engineers and planners to 
predict vehicular and non-vehicular trips with higher accuracy. 
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person). This handbook provides trip generation rates for ten broad land-use categories such as indus-
trial, residential, recreational, and retail among others. The urban settings include center city core, dense 
multi-use urban, general urban/suburban, and rural. Trip rates are provided in relation to explanatory 
variables such as the size of the land development (e.g., dwelling type, or floor space). One of the limita-
tions of the ITE older version recommended trip rates is that it does not account the effects of built en-
vironment attributes, such as transit infrastructures, mixed land uses, and walk and bike infrastructures, 
among others (Shafizadeh et al., 2012). The major reason for this incapacity is that the data collection for 
ITE guidelines started in the 1960s when the transportation network was designed for vehicular trips. 
As a result, the data predominantly represents vehicle trips in the suburban areas of the United States. In 
the context of the present era, transportation and urban configurations have significantly evolved since 
the 1960s (Clifton et al., 2015). Consequently, in the 10th edition, ITE modified the database signifi-
cantly and eliminated all the data prior to 1980. However, Government agencies around the world are 
investing to promote sustainable travel options, such as walking, biking, and transit, among others (City 
of Kelowna, 2019). Although ITE trip generation manual 10th edition includes the total person trip 
generation rates (Institute of Transportation Engineers, 2017), it does not provide the multi-modal trip 
generation guideline. Therefore, the ITE trip rate might provide an overestimation of vehicle trips, since 
people have reduced their share of vehicle usage (Clifton et al., 2015). Nowadays, people are making 
more multimodal trips, which indicates the requirements of a trip generation guideline for alternative 
transportation modes. Interestingly, ITE recently introduced the estimation of trip generation by pas-
senger vehicle, walk, transit, bike, and truck for varying land-use characteristics and settings (Institute 
of Transportation Engineers, 2020). However, it is critical to incorporate the micro-level quantitative 
effects of both the attributes of the development and the surrounding built environment. Furthermore, 
heterogeneity in trip generation rates might exist among the developments (Ewing et al., 2015). For 
improved estimation of trip generation, advanced models are required to capture such heterogeneity 
across developments. Therefore, there exists a need for further research in developing advanced models 
for improved estimation of trip generation rates, including vehicular and non-vehicular trips. 

This study investigates vehicular and non-vehicular trip generation for the mid-rise multi-family 
residential developments in Kelowna, which is located in the south of British Columbia. This research 
conducts a trip count survey for the mid-rise multi-family residential developments in Kelowna. This 
data is utilized to formulate a latent segmentation-based negative binomial (LSNB) model for vehicular 
and non-vehicular trips including walk, bike, and transit. One of the key features of this study is to 
capture unobserved heterogeneity across a range of urban land-use configurations. Such heterogeneity 
is captured by formulating a latent segment allocation model within the LSNB framework. Mid-rise 
multi-family developments are allocated into discrete latent segments. Another unique aspect of this 
study is to extensively test the impact of built environment attributes such as land use, transportation 
infrastructure, neighborhood, and accessibility measures.  

2	 Literature review

The Trip Generation Handbook developed by ITE has been widely used for traffic impact assessments 
(TIAs) of land developments. This initial guideline was developed using data mostly collected during 
the 1960s from the vehicle dominated suburban neighborhoods of the USA (Association of Bay Area 
Governments, 2008). During that era, private vehicle was the predominant mode of transportation; 
whereas, transit, walk, and bicycle facilities were very limited. Consequently, the ITE Trip Generation 
Handbook prior to the 10th edition provides only vehicle trip rates. One of the key changes since the 
9th edition is the inclusion of both vehicle and person trip generation data for varying land-use settings. 
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This edition also added new data in the database. For example, sites were surveyed in the 1980s, the 
1990s, the 2000s, and the 2010s in the USA and Canada for multifamily low-rise housing land char-
acteristics. Vehicle trip rates are developed in relation to different attributes of the developments such as 
dwelling units or floor areas among others. In addition to the land development attributes, trip genera-
tion is significantly influenced by the built environment, the land use, accessibility, and neighborhood 
characteristics (Ewing et al., 2015). Therefore, the ITE recommended trip generation rates might pro-
vide inaccurate rates since it does not consider the micro-level quantitative effects of built environment, 
density, and multi-modal transportation systems that vary by the different land-use settings (Evans et 
al.,  2003). For example, how the distance of transit stop or bicycle facility influence vehicular and non-
vehicular trip generation within the urban/suburban setting. Although, ITE updated the latest edition 
with a supplement that provides the estimation of trip generation by passenger vehicle, walk, transit, 
bike, and truck for different land-use characteristics and settings (Institute of Transportation Engineers, 
2020), it is difficult to predict the multi-modal trips precisely in an aggregate-level land-use setting. For 
example, distance to transit stops and number of transit routes within the neighborhood might influ-
ence the transit trips in an urban area. Walking trips might be stimulated by the increased land-use 
diversity, good sidewalk facility, and easier accessibility to transit (Ewing et al., 2015). Therefore, there is 
a need to evaluate the micro-level influence of the built environment, land use, accessibility, and neigh-
borhood characteristics for vehicular and non-vehicular trips.

With the limitations of the ITE guidelines, transportation engineers and planners are challenged 
to accurately perform TIA studies. In such scenarios, ITE suggests developing local rates (Institute of 
Transportation Engineers, 2004). In this line of work, some local governments have adjusted the ITE 
rates for different urban contexts. For instance, the Virginia Department of Transportation utilizes a 
10% reduction of the ITE rate for sites with frequent transit services (Virginia Department of Trans-
portation, 2013). Gard (2007) proposed that a residential project of 200 single-detached residential 
units within 1.5 miles of an existing rail station would generate 8% to 10% fewer trips than the ITE 
rate. The Wisconsin Department of Transportation (Traffic Analysis & Design Inc., 2017) reported 
that ITE overestimates daily traffic by 28% on weekdays for mixed-use developments. They recom-
mended adjustment of trip rates for several land-use types. For example, in the case of movie theaters 
they suggested a trip rate of 14.90 instead of the ITE rate of 20.22 for PM peak (Traffic Analysis & 
Design Inc., 2017). Moreover, the Transit Cooperative Research Program (TCRP) reported that ITE 
significantly overestimates vehicle trips for transit-oriented developments (TOD) in urban areas (Ar-
rington & Cervero, 2008). Furthermore, Maryland State Highway Administration explored how senior 
housing and city center expansions impact nearby roadways and transit (Mansoureh & Ricardo, 2010). 
They found that the ITE manual underestimates the vehicle trips generated by age-restricted housing. 
In the case of town centers, actual trip rates also deviate from the ITE rates. Lapham (2001) investigated 
the trip generation and modal split in the Portland Metropolitan Region. It was found that the average 
trip generation rate for the eight TODs in Portland is significantly lower than the ITE rates. Moreover, 
Clifton et al. (2015) reported a comprehensive review of studies in the domain of trip generation from 
1987 to 2011 and revealed a discrepancy between the actual and ITE trip rates over the years. The range 
of difference was found higher for trips generated in the central business district, downtown areas, and 
heterogeneous land-use zones. Schneider et al. (2013) collected multimodal trip generation data from 
the smart growth areas of California. They revealed that the ITE rates overestimate the actual rates by 
more than 2 times in suburban areas. In the case of smart growth projects, ITE guidelines lack precision 
due to the fact that the majority of the data was obtained at suburban locations. Handy et al. (2013) 
developed a method to estimate multi-modal trip generation rates for smart-growth land developments.  
They initially estimated the vehicular trips based on ITE rates. Then, they derived an adjustment factor 
based on the calculated smart-growth factor which is a function of site and adjacent land-use settings. 
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Therefore, it is evident that ITE guidelines have significant limitations in estimating vehicle trips with 
reasonable accuracy. Although several attempts have been made to adjust the ITE trip generation rates, 
limited studies have attempted to develop empirical procedures to improve the estimation methods, 
which might add further error to the rates (Clifton et al., 2015). 

Some research efforts have been made to develop empirical models to adjust the ITE trip rates. 
For example, Clifton et al. (2015) developed regression models to adjust ITE rates for restaurants, 
convenience markets, and drinking places in Portland, Oregon. They developed nine models to test the 
impact of built environment attributes such as activity density, number of transit corridors, employment 
density, and intersection density among others. Furthermore, Gulden et al. (2013) utilized a mixed-use 
development (MXD) trip generation model to estimate car, walking, and transit trips for an MXD. 
They suggested several improvements such as applying modifications to the ITE rates and accounting 
for shorter vehicle trips in MXD areas, among others. Clifton and Currans (2019) investigated the trip 
generation for multi-family developments. They developed multivariate statistical methods to explore 
the factors affecting multi-modal trips. As discussed above, most of the previous researches have adjusted 
vehicular trip rates. Development of rates for multi-modal trips have not occurred to any significant 
extent. 

Trip generation pattern for compact smart growth cities is driven by multi-modal trips. Multi-
modal trips are significantly influenced by built environment attributes such as bicycle infrastructure, 
transit accessibility, sidewalks, land use, connectivity, household type, and employment density among 
others. For example, Currans et al. (2020) collected trip counts from affordable housing developments 
in Los Angeles and San Francisco and found associations of employment density, population density, 
and parking supply for vehicular and person trips. Tian et al. (2015) presented that the likelihood of 
trips generated in mixed-use development is influenced by jobs within the development, job-population 
balance, and intersection density among others. In another study, Ewing et al. (2015) tested several built 
environment attributes to forecast trip generation. They found a negative association of car trips with 
the increase of diversity of land use and density of activity points. On the other hand, they reported 
increased probability of walk trips with the increase of land-use index, activity density, and accessibility 
to employment by public transport.  In the case of bicycle trips, they revealed the associations of inter-
section density, public transport stop density, and population among others. In another study, Targa & 
Clifton (2005) argued that walk trips are influenced by population density, street connectivity, public 
transport accessibility, park area, and diversity of land use among others. The impact of combined ef-
fects of the built environment, land development, and neighborhood characteristics on trip generation 
in multi-family developments has not been investigated to a significant extent. 

Methodologically, most of the empirical studies regarding ITE trip adjustments have adopted a 
linear regression modeling technique (Clifton et al., 2015; Clifton & Currans, 2019). One of the major 
limitations of the linear regression models is the normal distribution of the error term. This limitation is 
tackled by the alternative formulation of Poisson regression (Comer et al., 2014) and negative binomial 
regression (Poch & Mannering, 1996) models. However, these traditional regression models do not 
account for heterogeneity. For example, whether the influence of weather, elevation, bike facilities, and 
traffic on the demand of bicycling varies across the skilled and experienced bicyclists or not (Motoaki 
& Daziano, 2015). Adverse weather conditions might discourage unskilled bicyclists from bicycling 
more strongly than that of skilled bicyclists. Thus, there might exist unobserved heterogeneity across the 
bicyclists. Such heterogeneity might present across the residential developments for multi-modal trip 
generation which needs to be captured in the modeling framework for better prediction. If heterogene-
ity exists among the sample data, biased estimation might result in poor and inconsistent predictions. 
To capture heterogeneity, traditional regression modeling techniques need to be extended to advanced 
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models such as latent segmentation-based regression model (Garver et al., 2008) or random parameters 
regression model (Anastasopoulos & Mannering, 2009), among others. These models are capable of 
capturing heterogeneity by distributing parameters using a discrete distribution (Greene & Hensher, 
2003) or a continuous distribution (Revelt & Train, 1998). Further research is required to develop im-
proved empirical modeling techniques to address unobserved heterogeneity.

2.1	 Contributions of the current study

The contributions of this study are three-fold: i) developing methods for estimating vehicular and non-
vehicular trips, ii) formulating a latent segmentation-based negative binomial (LSNB) model, and iii) 
examining the combined effects of the size of the development and built environment attributes. This 
study develops trip generation models for vehicular trips and non-vehicular trips including walk, bike, 
and transit, among others. The models are developed for mid-rise multi-family residential develop-
ments. This study develops an advanced regression modeling technique, known as the latent segmenta-
tion-based negative binomial (LSNB) model. The purpose for developing the LSNB model is to capture 
unobserved heterogeneity in vehicular and non-vehicular trip generation across a wide range of urban 
context. Heterogeneity is captured by formulating a flexible latent segment allocation model within the 
LSNB framework. This segment allocation model distributes locations into discrete latent segments 
based on their observed attributes. Finally, this study contributes by testing the combined effects of the 
size of sites such as the number of dwelling units and built environment attributes such as land use, 
transportation infrastructure, neighborhood, and accessibility measures.  

3	 Methodology

This study develops an advanced regression model for estimating vehicular and non-vehicular trip gen-
eration from mid-rise multi-family developments. Specifically, a latent segmentation-based negative 
binomial (LSNB) model is developed that captures heterogeneity by assigning development sites into 
discrete latent segments. In the case of the count modeling approaches, Poisson and negative binomial 
models are commonly used (Tabeshian & Kattan, 2014). One of the assumptions of the Poisson regres-
sion model is that the mean of the dependent variable is equal to its variance (Ashqar et al.,  2019; Chen 
et al., 2016). In this study, the means for both the vehicular and non-vehicular trips are not equal to their 
variances. Rather, the data is over-dispersed as the variances exceed the mean value for both vehicular 
and non-vehicular trips. To account for this over-dispersion attribute of the data, a negative binomial 
model is developed. Assuming that Yj is the pm peak hour trip (vehicular or non-vehicular) generated 
at the mid-rise multi-family developments j, which is allocated to segment s. The probability expression 
for the negative binomial model is as follows:

Pjs [Yj |s]) = 
Γ(Yj + λs-1)

Γ(Yj+1) Γ(λs-1)
 (

1 
1+ λs μjs 

) 
1 

 
λs 

 (1 - 
1 

1+ λs μjs 
 )Yj  )	 			     (1)

Here,
ɼ(.)= Gamma function,
λs = negative binomial dispersion parameter specific to segment s (to be estimated)
μjs = mean of vehicular or non-vehicular (depending on the model) trip generated during the pm 

peak hour from the mid-rise developments j which is assigned to segment s.
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The Gamma distributed disturbance term of the negative binomial model relaxes the variance as-
sumption of the Poisson regression model (Cai et al., 2016). The expression of μjs takes the following 
form:
μjs = e θs Tj                 									           (2)

Here,
θs = segment-specific coefficient of the parameter (to be estimated), and
Tj = observed attributes of the mid-rise buildings

Now, the allocation of mid-rise development j into segment s is determined by developing a flexible 
segment allocation component within the LSNB framework. This component is formulated to assign 
the sites into discrete latent segments based on the built environment attributes of the mid-rise residen-
tial developments j. This segment allocation model takes the form of the following standard logit model:

Pjs =  
e αs+βs X

∑ Ss=1 e αs +βs Xs 
									           (3)

Here,
Xs = observed attributes of the mid-rise developments
βs = segment-membership coefficient of the parameter (to be estimated), and
αs = segment-membership constant (to be estimated) 

To identify the segment allocation model paraments, one of the latent segments is considered as the 
‘reference’ segment by fixing the value of βs and αs  as ‘zero’ (Khan et al., 2017).

The unconditional probability can be expressed as:

Pj (Yj )= ∑ Ss=1(Pjs [Yj |s]) * Pjs  							              (4)

The log-likelihood function can be expressed as:

LL = ∑ Ns=1 log (∑ Ss=1(Pjs [Yj |s])* Pjs 						      (5)

Here, N is the total number of observations. The model estimates segment specific parameters θ_s 
for s segments, and segment membership parameters βs and αs for s-1 segments. These parameters are 
estimated using the maximum likelihood method. The goodness-of-fit measure of the model is evalu-
ated using a log-likelihood function, Akaike Information Criteria (AIC), Bayesian Information Criteria 
(BIC), and adjusted pseudo rho-squared value (Orvin & Fatmi, 2020a).

4	 Study area

The study area for this research is Kelowna, the largest city of Interior British Columbia (BC), shown in 
Figure 1. Kelowna is presently the fastest-growing city in British Columbia. Since 1981, the population 
in Kelowna has grown rapidly at an average annual growth rate of 2.22%. As of 2015, dwelling units 
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in Kelowna rises to about 8% over a five-year period (City of Kelowna, 2018b). Rapid urban growth 
and high housing costs have triggered significant multi-family residential developments in the urban 
and suburban areas of Kelowna (City of Kelowna, 2018b). Although private vehicle is the predominant 
mode of transportation in Kelowna (City of Kelowna, 2018a); recently, the city has made significant in-
vestments in its transit, walk, and bike infrastructure (City of Kelowna, 2019). As a result, an increase in 
the share of alternative modes is observed (Acuere Consulting Inc., 2015). However, the industry prac-
tice is to use the ITE trip generation guideline for TIAs, which is expected to be over-estimating vehicle 
trips. The planners and engineers of the City of Kelowna are challenged to accurately predict the impacts 
of these developments on the transportation system. The need for adjusting the ITE has motivated this 
study to investigate trip generation rates for multi-family residential developments in Kelowna.  

5	 Data

5.1	 Principal data source and data collection

The data for this study were collected from 81 locations in March of 2019 in Kelowna. The data col-
lection focused on the mid-rise and high-rise multi-family residential developments. According to the 
ITE definition, a mid-rise development comprises apartments, townhouse, and condominiums located 
within the same building with at least three other dwelling units having three to ten floors, which is 
denoted in ITE manual with the land-use code (LUC) of 221. High-Rise development is apartments, 
townhouses, and condominiums that have more than ten floors as mentioned in the ITE LUC of 222 
(Institute of Transportation Engineers, 2017). A total of 78 locations out of 81 were mid-rise buildings. 
This study is limited to mid-rise multi-family developments. The data collection sites for this study are 
shown in Figure 1. Out of 78 sites, 50% of the developments are located within the urban centers, and 
the remaining sites are in the nearby suburban areas of the City of Kelowna.
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The survey includes two components: person count and intercept survey. In the case of the person 
count, a surveyor was stationed at each entry/exit door of the buildings to count the number of persons 
entering and exiting the building along with their travel mode. Person trips were the trips made by any 
travel mode by an individual person entering or exiting the residential development. Person trips were 
counted and categorized based on their travel modes. Surveyors documented the count of passenger 
vehicles and vehicle occupancy while crossing the cordon line. The cordon line was defined for each 
development during the reconnaissance such that surveyors could observe the vehicles entering/exiting 
the parking. To get the total person trip count for a development, passenger vehicle trip count was mul-
tiplied with vehicle occupancy and added with the walk/transit and bike trips. In the case of the inter-
cept survey, surveyors approached people as they were entering or exiting the building to collect further 
information such as whether they were a visitor or resident, origin/destination of the trip, travel mode, 
home ownership type, and trip purpose among others. Based on these data, the residential component 
of count was identified. Data were recorded at a 15-minute interval during the evening peak hour (i.e., 
4.00 to 6.00 pm) of weekdays from Tuesday to Thursday. Thus, the data collection procedure aligns 
with the recommended guidelines of ITE trip generation handbook 3rd edition (Hooper, 2017). For 
modeling purpose, this study categorized the trips as vehicular and non-vehicular trips. Vehicular trips 
were considered as the trips made by the passenger vehicles. On the other hand, non-vehicular trips were 
considered as the person trips made by transit/walk and bike. 

5.2	 Supplementary data source

Additional built environment data are collected from various resources. For example, neighborhood 
characteristics such as population density, percentage of single-detached houses, and employment den-
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sity are collected from Census, Canada at the dissemination area (DA) level. Dwelling unit information 
of each site is retrieved from BC Assessment. Land-use data such as residential, commercial, park, and 
aquatic area are collected from Desktop Mapping Technologies Inc. (DMTI). Transportation infra-
structure information including pedestrian and bicycle facility, bus routes, bus stops, and road network 
information are extracted from the Open Data, City of Kelowna, and BC Transit. Locations of activity 
points such as shopping centers, retail stores, and restaurants, among others are collected from DMTI. 
In the case of accessibility measures, distance from the sites to the central business district (CBD), dis-
tance to the nearest bus stops, and restaurants, among others are determined using the network analysis 
tool in ArcGIS. In addition, this study generates variables that have important policy implications. For 
example, variables that evaluate the influence of bike friendliness environment (Orvin & Fatmi, 2020b), 
street connectivity (Targa & Clifton, 2005), and land-use diversity (Mavoa et al., 2018) among others. 

To capture the effects of the immediate surrounding area, the variables are generated at the spatial 
unit of 1 km road network-based buffer from each counting site using ArcGIS. For example, bike index 
(BI)1 is generated for this 1-km buffer area, which is a measure of the overall bike friendliness of that 
area. BI is determined using several factors such as road and bike infrastructure, accessibility, topogra-
phy, environment, and diversity characteristics among others (Hartanto et al., 2017; Orvin & Fatmi, 
2020b).  At first, considered factors are normalized using the maximum and minimum values based on 
their positive or negative impact on bike friendliness. In the next step, BI is measured by combining all 
the factors using an equal weightage. BI value ranges from 0 to 1, where a value closer to 1 signifies a 
higher bike friendly environment. 

Land-use index (LUI)2 is measured for each development to identify the diversity in land usage 
(Frank et al.,  2005; Mavoa et al., 2018). Several land-use types including the residential, commercial, 
government and institutional, park and aquatic land use are considered in the calculation. LUI is ex-
pressed on a scale of 0 to 1, where a value closer to 1 indicates a heterogeneous land mix. Furthermore, 
road-connectivity index (RCI) is generated using a number of links and the number of road junctions 
(Agampatian, 2014). RCI is the ratio of the total number of links to total number of nodes.

6	 Comparative analysis between the observed rates with ITE rates

Data reveals that around 72% of the trips are made using vehicles. The remaining 28% are non-vehicu-
lar trips including walk, bicycle, and transit trips. A comparative analysis of the observed trip rates with 
the ITE rates for mid-rise multi-family developments during the PM peak hour of weekdays is shown in 
Figure 2 – 4. The analysis suggests that the observed vehicle trip rates are consistently below the ITE rate 
(Figure 2a). The average observed vehicle trip rate is lower (mean = 0.32, standard deviation = 0.19) than 
that of ITE rate (mean = 0.41, standard deviation = 0.22). In the case of the person trip rates, similar 
observation of consistently low observed rates compared to the ITE rates can be made for the majority 
portion of the plot (Figure 2b). The average observed person trip rate is 0.49 with a standard deviation 
of 0.28 which is lower than the ITE average rate of 0.50 with a standard deviation of 0.08. 

1  BI= [(number of activity point*0.091) + (average distance to activity points*0.091) + (length of sidewalk*0.091) + (length 
of cycle infrastructure*0.091) + (ratio of cycle infrastructure to road length*0.091) + (percent rise in elevation*0.091) + 
(distance to nearest park*0.091) + (distance to nearest water body*0.091) + (distance to nearest transit*0.091) + (road-con-
nectivity index*0.091) + (land-use index*0.091)]    
2 Land-use index = (-1)*∑S

s=1 Li*ln(Li )/ ln(S)    
Here, Li= proportion of land-use type (e.g., residential, commercial, park and aquatic land use among others),
S = number of land mix categories
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Figure 2. Vehicle and person trip rates for mid-rise multi-family (LUC 221) developments – Weekday, PM peak hour (4-6 pm) 
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Figure 3. Difference between the ITE vehicle trip rates and observed vehicle trip rates in Kelowna for mid-rise multi-family 
developments 
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Figure 4. Spatial Distribution of the overestimated and underestimated sites in Kelowna 
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Further analysis is performed by estimating the percentage difference between the ITE and ob-
served vehicle trip rates. Note that overestimation refers that the ITE rate is greater than the observed 
rate, and underestimation indicates that the ITE rate is lower than the observed rate. The analysis results 
suggest that the ITE trip generation guideline overestimates in 61.5% of the cases and underestimates 
in 38.5% cases (Figure 3). Figure 3 reveals that overestimation is greater than 25% for about 41% of 
cases. On another note, underestimation less than 25% is observed for approximately 59% cases. The 
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higher share of lower underestimation implies that ITE underestimated by a very small margin for a 
significant number of cases. Figure 4 shows the spatial distribution of overestimated and underestimated 
sites in Kelowna.  
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Figure 5. Distribution of vehicular and non-vehicular trip rates for mid-rise, multi-family developments with built environ-
ment attributes 

Figure 5 illustrates the distribution of observed vehicular and non-vehicular trip rates (i.e., walk, 
bike, and transit trips) with built environment characteristics. Among the built environment charac-
teristics, bus stop distance refers to the distance from study sites to the nearest bus stops. The rest of 
the built environment attributes are generated for the spatial unit of 1 km road network-based buffer 
from each study site. These attributes include land-use index (LUI), road-connectivity index (RCI), 
bike index (BI), length of the sidewalk, and length of the bicycle facility. In the case of the vehicular trip 
rates (Figure 5a), locations farther away from bus stops generate more vehicular trips. For example, the 
average vehicle trip rate for locations within 100 m of the bus stops is 0.35, which increased to 0.38 for 
locations farther than 250 m from the bus stops. In the case of LUI, average vehicle trip rate is lower 
(0.28) in higher mixed land-use areas than lower mixed land-use areas (0.35). For RCI, vehicle trip rate 
increases with RCI values. 

In the case of non-vehicular trip rates (Figure 5b), locations farther away from bus stops generate 
less non-vehicular trips. For example, the average non-vehicular trip rate for locations within 100 m of 
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the bus stops is 0.16, which is higher than the average rate of 0.10 for locations farther than 250 m from 
bus stops. For sidewalks and bicycle facilities, non-vehicular trip rates are found to incrementally in-
crease with the increase in these active transportation infrastructures in the vicinity of the sites. Similarly, 
non-vehicular trip rates are higher in locations with higher mixed land use and bike index.

7	 Model results

This study develops a latent segmentation-based negative binomial (LSNB) model to investigate the 
factors associated with the generation of vehicular and non-vehicular trips from mid-rise multi-family 
developments. This research develops two models: i) vehicular trip model, and ii) non-vehicular trip 
model. The models test the effects of the characteristics of the developments such as the number of 
dwelling units and built environment attributes such as land use, transportation infrastructure, neigh-
borhood, and accessibility measures, among others. A summary statistic of the variables retained in the 
final models is presented in Table 1. 

Table 1. Descriptive summary of variables

Variable name Description Vehicular trip Non-vehicular trip

% or Mean Std. dev. % or Mean Std. dev.

Dwelling units Number of dwelling units in the building 89.17 67.68 89.17 67.68

Road-connectivity index Road-connectivity index within 1 km buffer area of the 
development

0.46 0.18 0.46 0.18

Number of bus routes Number of bus routes within 1 km buffer area of the 
development

- - 3.63 2.08

Bike index Bike index within 1 km buffer area of the development - - 0.44 0.08

Sidewalk length Length of sidewalk in km within 1 km buffer area of the 
development

- - 0.16 0.17

Land-use index Land-use index within 1 km buffer area of the development - - 0.77 0.14

Land-use index greater 
than average

Dummy; If the land-use index within 1 km buffer area of 
the development is greater than the average of the sample = 
1, else = 0

56.41 - - -

Percentage of residential 
area

Percentage of residential land use within 1 km buffer area of 
the development

42.40 20.33 - -

Percentage area of the park 
and aquatic land use

Percentage area of the park and aquatic land use within 1 
km buffer area of the development

- - 10.63 9.79

Population density greater 
than average

Dummy; If population density in the dissemination area 
(DA) of the development is greater than average of the 
sample = 1, otherwise = 0

44.87 - - -

Percentage of single-de-
tached house greater than 
average

Dummy; If the percentage of single-detached house in the 
dissemination area (DA) of the development is greater than 
the average of the sample = 1, else = 0 

32.05 - - -

Employment density The number of employed divided by the area of dissemina-
tion area (DA)

1795 1581 - -

Distance to CBD greater 
than average

Dummy; If the distance from the development to the 
central business district is greater than the average of the 
sample =1, else = 0

39.74 - - -

Within urban centers Dummy; If the development is within urban centers = 1, 
otherwise = 0

50.00 - - -

Outside urban center Dummy; If the development is outside the urban centers = 
1, otherwise = 0

- - 50.00 -
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7.1	 Goodness-of-fit measures

The number of segments for the LSNB model is determined using AIC and BIC measures. In the case 
of the vehicular trip model, the LSNB model with two segments shows lower AIC and BIC measures of 
610.4 and 659.8 respectively than that of the three segments model (AIC = 616.6, and BIC = 687.2). 
Therefore, the LSNB with two segments is considered as the final model for the vehicular trip genera-
tion. In the case of the non-vehicular trip generation, the LSNB model with two segments is consid-
ered as the final model based on the AIC and BIC measures. For comparison purposes, in addition 
to the LSNB model, this study develops latent segmentation-based Poisson regression (LSPR), latent 
segmentation-based linear regression (LSLR), Poisson regression (PR), negative binomial (NB), and 
linear regression (LR) models. 

In the case of vehicular trips, the LSNB model outperforms the rest of the methods in-terms of 
adjusted pseudo rho-squared, AIC, and BIC measures. For instance, the adjusted pseudo rho-squared 
value for LSNB model is 0.963, for LSPR model is 0.961, for LSLR model is 0.962, for NB model 
is 0.312, for PR model is 0.567, and for LR model is 0.769 (Table 2). Only, the NB model shows a 
lower BIC measure (646.2) than LSNB model (659.8). However, the LSNB model reveals lower AIC 
measures, as well as capturing heterogeneity. In addition, LSNB model fits the dispersed data well. 
Therefore, for the vehicular trips, the LSNB model is considered to fit the data best. Similarly, for non-
vehicular trips, the LSNB model fits the data best. Therefore, both for the vehicular and non-vehicular 
trip generation, the LSNB model with two segments is considered for further discussion.  The estima-
tion results of the LSNB models for vehicular and non-vehicular trips are reported in Table 3 and 4 
respectively. The results suggest that the majority of the variables are statistically significant to at least at 
the 10% level in one latent segment. 

Table 2. Goodness-of-fit measures of the models

Vehicular Trip Model Non-vehicular Trip Model

LL function Adjusted pseudo 
rho-squared

AIC BIC LL function Adjusted pseudo 
rho-squared 

AIC BIC

LSNB 

-284.19 0.963 610.4 659.8 -259.87 0.907 553.7 593.8

LSPR -306.55 0.961 651.1 695.8 -271.29 0.903 572.6 607.9

LSLR -299.19 0.962 640.4 689.8 -290.14 0.896 614.3 654.3

NB -303.52 0.312 625.0 646.2 -270.02 0.415 554.0 570.5

PR -441.25 0.567 898.5 917.3 -461.88 0.235 935.8 949.9

LR -559.47 0.769 1132.9 1149.4 -431.62 0.282 873.2 885.0
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Table 3. Results of the LSNB model for vehicular trips

Attributes
 Segment 1 Segment 2

coefficient p-value coefficient p-value

Latent Segment Allocation Results

Constant 0.14 0.7994 reference

Population density greater than average -2.72** 0.0389 reference

Percentage of single-detached house greater than average 2.87*** 0.0069 reference

Parameter Estimation Results

Constant 2.796*** 0.0000 1.429*** 0.0047

Dispersion parameter 31.790 0.2614     15.303 0.1160

Dwelling units 0.008*** 0.0000 0.014*** 0.0000

Road-connectivity index 0.495 0.3796 1.347** 0.0271

Land-use index greater than average 0.233 0.2264 -0.418 0.1645

Percentage of residential area 0.006 0.1111 -0.001 0.8295

Employment density -0.061*** 0.0000 0.006 0.1233

Distance to CBD greater than average -0.530*** 0.0021 0.880*** 0.0002

Within urban centers -0.190 0.2352 -0.151 0.2647

*** significance at 1% level, ** significance at 5% level, * significance at 10% level

7.2	 Vehicular trip model

7.2.1 	 Model results of the latent segment allocation component

Table 3 presents the latent segment allocation component and parameter estimation results for the ve-
hicular trip model. The segment allocation component retains the following variables: population den-
sity greater than average, and the percentage of single-detached house greater than average. The model is 
estimated assuming segment 2 as the reference segment. The model results suggest that population den-
sity greater than average shows a negative relationship in segment 1. This indicates that developments in 
relatively higher population density areas are less likely to be included in segment 1. On the other hand, 
developments in relatively densely populated areas are more likely to be included in segment 2. Fur-
thermore, the positive relationship of the variable representing the percentage of single-detached houses 
greater than average reveals that developments in a higher share of single-detached houses have a higher 
likelihood to be assigned to segment 1. Therefore, segment 1 can be identified to include developments 
in suburban areas with lower population density and a higher percentage of single-detached houses. In 
the contrary, segment 2 can be identified to include developments in urban areas with a higher popula-
tion density and a lower percentage of single-detached houses. 

7.2.2	  Parameter estimation results

This model confirms the effects of the number of dwelling units in the building and built environment 
attributes such as road-connectivity index, land-use index, the share of residential land use, develop-
ments within urban centers, employment density, and distance to the CBD for the generation of vehicu-
lar trips (Table 3). For example, the number of dwelling units show a positive relationship. This implies 
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that developments with a higher number of dwelling units will generate a higher number of vehicle 
trips in urban and suburban areas. Road-connectivity index positively influences vehicle trips, since 
higher connectivity might offer better and convenient vehicle routing options. The variable representing 
land-use mix index greater than average shows heterogeneity across the segments. This variable shows 
a positive relationship for segment 1, which include suburban areas. This finding suggests that increas-
ing land-use index in the suburban areas does not necessarily decrease vehicle trip generation. Lack of 
walking, bicycling, and transit infrastructures in such suburban areas might generate higher vehicle trips, 
despite heterogeneous land uses. On the other hand, the negative relationship for segment 2 suggests 
that increased land-use mix decreases vehicle trip generation in urban areas. 

Similar heterogeneity is found for the variable representing the percentage of the residential area. 
The positive relationship for segment 1 refers that vehicle trips increase with an increase in the share of 
residential land use in suburban areas. In contrast, the same variable shows a negative relationship for 
segment 2, which indicates that vehicle trips decrease in the urban areas. For developments within the 
urban centers, a negative relationship is confirmed. This might be attributed to the high-density mix 
land use, and well-connected active transportation and transit infrastructures of the Kelowna urban 
centers. Employment density reveals a negative relationship for segment 1, implying that higher job op-
portunities in suburban areas reduce vehicle trip generation. In contrast, a positive relationship is found 
for segment 2. In the case of developments farther away from CBD, vehicle trip generation increases in 
segment 2.

7.3	 Non-vehicular trip model 

7.3.1 	 Model results of the latent segment allocation component 

In the case of the non-vehicular trip model, the negative sign of land-use index suggests that develop-
ments in lower mixed land-use areas are included in segment 1 (Table 4). A positive relationship is found 
for the variable representing developments outside urban centers interacted with road-connectivity in-
dex. Overall, segment 1 can be identified to include developments in suburban areas which are outside 
urban centers with a higher road-connectivity and homogenous land use. On the other hand, segment 
2 includes developments in urban areas. 

7.3.2 	 Parameter estimation results 

The model results suggest that the number of dwelling units in the building and built environment at-
tributes such as the number of bus routes, bike index, length of the sidewalk, and percentage of aquatic 
and park areas are the determinants for the generation of non-vehicular trips (Table 4). 
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Table 4. Results of the LSNB model for non-vehicular trips

Attributes
 Segment 1 Segment 2

coefficient p-value coefficient p-value

Latent Segment Allocation Results

Constant 9.00* 0.0516 reference

Land-use index -11.56** 0.0437 reference

Outside urban center*road-connectivity index 3.92 0.1712 reference

Parameter Estimation Results

Constant -0.585 0.5665 3.008*** 0.0047

Dispersion parameter 9.968 0.4537 3.108*** 0.0088

Dwelling units 0.016*** 0.0000 0.003* 0.0994

Number of bus routes -0.275*** 0.0058 0.082 0.2537

Bike index 7.253** 0.0178 -3.942 0.2125

Sidewalk length -5.970*** 0.0002 1.358 0.1070

Percentage area of park and aquatic land use 0.077* 0.0841 0.029* 0.0719

*** significance at 1% level, ** significance at 5% level, * significance at 10% level

Similar to vehicular trips, the number of dwelling units positively influence the generation of non-
vehicular trips. Higher percentage of parks and aquatic land-use areas are found to increase non-vehic-
ular trips. Interestingly, the number of bus routes, bike index, and sidewalk length show heterogeneity 
across the segments. For instance, the number of bus routes and sidewalk length show positive signs in 
segment 2, which includes developments in urban areas. This implies that increasing transit accessibility 
and walk supportive infrastructures such as higher number of bus routes and sidewalk lengths in the ur-
ban areas increase non-vehicular trips. In contrast, a negative relationship in segment 1 suggests that in-
crease of the number of bus routes and length of sidewalks in suburban areas do not necessarily increase 
non-vehicular trips. This might be attributed by the longer distance among destinations in suburban 
areas, further illustrating the need for dense developments coupled with transit and active transportation 
infrastructure to promote non-vehicular trips.  Interestingly, the bike index shows a positive relationship 
in segment 1. This implies that non-vehicle trips are more likely to increase with the increase of bike 
index in suburban areas. 

7.4	 Elasticity results

To determine the relative importance of variables and their magnitude of impact, it is important to 
estimate the elasticity effects of the explanatory variables. Aggregate-level elasticities are estimated for 
the explanatory variables of both vehicular and non-vehicular trip models based on the overall sample 
(Nashad et al., 2016). Elasticity results indicate the percentage change in the likelihood of expected 
number of trips caused by a unit percentage change of a specific explanatory variable, considering the 
other variables unchanged.  In the case of the vehicular trip model, results reveal that the variables rep-
resenting the dwelling units and road-connectivity index have substantial positive magnitude of impact 
on the likelihood of number of vehicular trips (Table 5). For example, probability of vehicle trip genera-
tion might increase by 1.04% with unit percentage increase in dwelling units. Road-connectivity index 
shows a 0.44% increase in the probability of generating vehicular trips. On the other hand, results sug-
gest a significant negative magnitude of impact for variable representing the employment density. For 
instance, unit percentage increase in employment density contributes to a decrease of the likelihood of 
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vehicular trips by 0.45%. It is also observed that variable representing the developments within urban 
centers is more elastic than that of land-use index. 

In the case of the non-vehicular trip model, variables representing the dwelling units and sidewalk 
length show a substantial impact (Table 5). For example, percentage increase in dwelling units increases 
the probability of non-vehicular trips by 0.67%. The magnitude of impact for the variable representing 
the sidewalk length is 1.9 times than bike index. Furthermore, percentage area of park and aquatic land 
use increases the probability of non-vehicular trips by 0.16%. Results imply that in addition to dwelling 
units, an increased bicycle-friendly environment and sidewalk facility might influence non-vehicular 
trips significantly. 

Table 5. Elasticity results 

Attributes Elasticity

Vehicular trip model

Dwelling units 1.04***

Road-connectivity index 0.44**

Land-use index greater than average -0.06

Percentage of residential area 0.10

Employment density -0.45***

Distance to CBD greater than average 0.09

Within urban centers -0.08*

Non-vehicular trip model

Dwelling units 0.67***

Number of bus routes -0.23

Bike index 0.09

Sidewalk length 0.17**

Percentage area of park and aquatic land use 0.16

*** significance at 1% level, ** significance at 5% level, * significance at 10% level

7.5	 Predictive performance evaluation of the models 

The predictive performance of the LSNB model is assessed by comparing: i) the predictive performance 
measures (Table 6), and ii) plot of predicted trips against the observed trips (Figure 6) for different mod-
els. Several goodness-of-fit measures are used to assess the performance, which includes the Mean Pre-
diction Bias (MPB), Mean Absolute Deviation (MAD), and Mean Squared Prediction Error (MSPE) 
(Yasmin & Eluru, 2016). These measures quantify the errors associated with the predictions. The model 
with a lower MPB, MAD, and MSPE value provides better prediction accuracy. In the case of vehicular 
trip model, results suggest that MPB, MAD, and MSPE measures of the LSNB model reveal a higher 
prediction accuracy than the LSPR, LSLR, NB, PR, and LR models. For instance, the LSNB reveals a 
MAD value of 5.38, which is smaller than that of LSPR (6.45), LSLR (5.81), NB (12.73), PR (11.14), 
and LR (10.67) models. Figure 6 also illustrates that the LSNB model provides reasonably satisfactory 
prediction accuracy compared to the other models. For example, plot of predicted vs observed trips re-
veals that the r-squared value for LSNB model is higher (i.e., 0.95) compared to the LSPR (0.93), LSLR 
(0.93), NB (0.75), PR (0.76), and LR (0.77) models. In the case of non-vehicular trips, r-squared values 
for the models are found as: LSNB (0.89), LSPR (0.90), LSLR (0.64), NB (0.19), PR (0.29), and LR 
(0.27). However, LSNB model shows a MAD value of 3.59 which is smaller than the MAD value for 
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the rest of the models (Table 6). Therefore, it can be concluded that the LSNB model provides reason-
ably satisfactory accuracy for estimating the vehicular and non-vehicular trips.

Table 6. Predictive performance evaluation of the models

Model
Goodness-of-fit measures

Vehicular Trip Model Non-vehicular Trip Model

MPB MAD MSPE MPB MAD MSPE

LSNB -0.21 5.38 45.48 0.23 3.59 19.11

LSPR -0.31 6.45 65.41 -0.26 3.60 21.94

LSLR -0.86 5.81 59.44 0.24 6.68 77.53

NB 2.38 12.73 701.75 0.62 9.09 207.42

PR 0.23 11.14 222.25 -0.24 8.30 153.06

LR -0.25 10.67 208.59 0.23 8.54 156.53

MPB =  
∑ Nn=1 (Yp-Yo) 

N
, MAD =  

∑ Nn=1 |Yp-Yo| 

N
,MSPE=  

∑ Nn=1 (Yp-Yo)
2 

N
Here, Yp = Predicted value, Yo = observed value, and N = total observation
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7.6	 Model implications

This study develops a latent segmentation-based negative binomial (LSNB) model for estimating vehic-
ular and non-vehicular trip generation from mid-rise multi-family residential developments. Developed 
models analyze the micro-level influence of size of the development and surrounding built environment 
attributes. Furthermore, developed models capture unobserved heterogeneity by assigning development 
sites into discrete latent segments. Discounting such unobserved heterogeneity might result in biased 
estimation and inconsistent forecasting. The interpretation of model results provides important and 
interesting insight to the practitioners. For example, increasing land-use index in the suburban areas 
does not necessarily decrease vehicular trip generation. Non-existence of walking, bicycling, and transit 
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infrastructures in such suburban areas might contribute to higher vehicle trips, despite diverse land mix. 
Residential developments within the urban centers might influence vehicular trips negatively due the 
heterogeneous land use, and well-connected active transportation and transit infrastructures within the 
urban centers. Number of bus routes, bike index, length of the sidewalk, and percentage of aquatic and 
park areas significantly influence non-vehicular trips. Increasing transit accessibility and walk-friendly 
infrastructures in the urban areas might encourage non-vehicular trips. City planners will find the pa-
rameter estimation results beneficial to precisely predict the multi-modal trips. Elasticity results will 
assist the decision-makers to plan effectively by identifying the critical factors contributing to vehicular 
and non-vehicular trips. 

8	 Conclusions

This paper investigates the vehicular and non-vehicular trip generation of mid-rise multi-family resi-
dential developments. This study collects trip generation information from 78 mid-rise multi-family 
residential buildings in Kelowna, Canada. The observed vehicle trip rates and person trip rates for the 
weekdays pm peak period are compared with the ITE rates. The comparative analysis suggests that the 
observed rates are consistently below the ITE rates. This motivated the development of an advanced 
method to improve the prediction accuracy of trip generation models. Specifically, a latent segmenta-
tion-based negative binomial (LSNB) model is developed utilizing the trip generation information of 
Kelowna. One of the key features of this study is to capture unobserved heterogeneity by formulating 
a flexible segment allocation model within the LSNB framework. This segment allocation component 
distributes mid-rise buildings across the urban context into discrete latent segments. Another unique 
feature of this study is to test the combined influence of the size of the proposed building such as the 
number of dwelling units, and the surrounding built environment attributes such as land use, transpor-
tation infrastructure, neighborhood, and accessibility characteristics. To determine the relative impor-
tance of variables and their magnitude of impact, aggregate-level elasticity effects are estimated for the 
explanatory variables.

This study develops two LSNB models for estimating vehicular and non-vehicular trips. The per-
formance of the LSNB models for both cases is evaluated by comparing their goodness-of-fit measures 
with five other methods such as LSPR, LSLR, NB, PR, and LR models. During the estimation process, 
the models are evaluated using their log-likelihood function, adjusted pseudo rho-squared, AIC, and 
BIC measures. The results suggest that the LSNB model out-performs other models by fitting the data 
best. In addition, the predictive performance of the models is assessed using MPB, MAD, and MSPE 
measures. Again, the LSNB model outperforms the rest of the methods with minimal error in predic-
tion. Therefore, the LSNB model is considered for further discussion of the results. 

In the case of the LSNB model for vehicular trips, the segment allocation model results suggest that 
segment 1 can be identified to include developments in suburban areas with a lower population density 
and a higher percentage of single-detached houses. In contrast, segment 2 includes developments in 
urban areas. The model results suggest that the number of dwelling units and road-connectivity index 
are associated with increased vehicular trips. Developments within urban centers are likely to reduce 
vehicular trips. Determinants such as land-use index, percentage of the residential area, employment 
density, and distance to CBD show significant heterogeneity across the segments. For example, increas-
ing land-use mix in the urban areas has a higher probability to decrease the generation of vehicular trips. 
On the other hand, vehicular trip generation is likely to be higher in suburban areas, despite increasing 
land-use mix index. Another interesting finding is that higher residential developments in urban areas 
are associated with decreased vehicular trips. Elasticity results reveal a substantial magnitude of impact 
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for dwelling units, road-connectivity index, employment density, and distance to CBD, among others. 
In the case of the non-vehicular trips, segment allocation model results suggest that segment 1 is 

likely to include developments in suburban areas; whereas, segment 2 includes developments in urban 
areas. The model results reveal that the number of dwelling units and the percentage of the park and 
aquatic areas are associated with increased generation of non-vehicular trips. The model also confirms 
significant heterogeneity across the segments.  For example, higher number of bus routes and longer 
length of sidewalks reveal a higher likelihood to increase non-vehicular trips in urban areas. In contrast, 
non-vehicular trip generation is lower in suburban areas, despite increasing the number of bus routes 
and sidewalk lengths. One of the interesting findings is that increased bike index in the suburban areas 
is likely to increase non-vehicular trips. Elasticity results suggest that dwelling units, bicycle-friendly en-
vironment, park and lake land development, and sidewalk facility might contribute to a higher number 
of non-vehicular trips.

This study has certain limitations. For example, parking data such as parking availability and pric-
ing was not available which is critical to predict the vehicular traffic. Previous studies reported that 
restricted parking affects vehicular trips, specially within the compact neighborhoods with sufficient fa-
cilities for walking, biking, and transit modes (Christiansen et al., 2017; Hamre & Buehler, 2014). One 
of the future research scopes could be collecting parking availability information for the developments 
to evaluate the vehicular trips more accurately. This study estimated the vehicular and non-vehicular 
trips independently to improve the existing vehicular and person-based approach of ITE.  However, 
choice of vehicular and non-vehicular trips might be interactive and substitutive. Trip purpose might 
also affect the mode choice. Further research should be done to identify the inter-dependency between 
the vehicular and non-vehicular trips. Future research should focus on jointly modeling the vehicular 
and non-vehicular trips. Another limitation is that few variables are included in the developed model 
even though not statistically significant. These variables are retained in the final model since they have 
important policy implications. Future research should focus on building the model using a larger data 
set and compare the statistical significance of these parameters. Furthermore, surveyors did not record 
data regarding the presence of bottom-floor retail and internal connections between uses. This is identi-
fied as another limitation of this study. Moreover, participation in the intercept survey was voluntary 
and, in many cases, people declined to participate and share information. Therefore, this study could 
not distinguish the walk and transit trips precisely and aggregated the non-vehicular trips which include 
walk, bike and transit trips. Future research should focus on developing mode-specific trip generation 
models. To prevent overestimation or underestimation of count and improve the precision of count by 
different modes, video cameras should be utilized. In summary, the findings of this study provide im-
portant insights towards the need for improving the ITE trip generation guidelines; particularly, efforts 
are required to develop multi-modal trip generation guidelines. This study further confirms the need to 
incorporate the combined effects of the built environment characteristics and the size of the proposed 
developments. This research proposes a methodology to improve the vehicular and non-vehicular trip 
generation estimates. The heterogeneity captured in this study needs to be accommodated within the 
policies to accurately estimate the generation of multi-modal trips. The elasticity analysis reveals im-
portant policy-making insights based on the most influential factors. Finally, the findings are expected 
to assist transportation planners and engineers in developing policies and transportation infrastructure 
investment decision-making. 
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