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1 Introduction

Pedestrian and bicycle crashes are a major concern in contemporary transportation planning. During
the past decades, federal, state, and local policies have encouraged multimodal transportation systems
that integrate facilities for vehicular, transit, and non-motorized traffic. For example, many states and
cities are participating in the nationwide Complete Streets initiative and implementing roadway im-
provements to accommodate cyclists, pedestrians, drivers, and transit riders of all ages and ability levels
(Burden & Litman, 2011; La Plante & McCann, 2008). As non-motorized modes of transportation
have been integrated with motorized modes, more and more pedestrians and bicyclists have been ex-
posed to vehicular traffic, increasing concerns for their safety. In 2016, 5,987 pedestrians and 840
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bicyclists were killed in traffic crashes, accounting for 18.2% of all traffic fatalities in the year (NHTSA,
2018b, 2018a).

To identify and improve high-risk locations, many studies have reported safety performance func-
tions (SPFs) to model the relationships between pedestrian/bicycle crashes and risk factors (FHWA,
2013). Exposure to risk, defined as the number of potential opportunities for a crash to occur, is one
of the key risk factors (FHWA, 2018; Merlin et al., 2020). It is theoretically clear that pedestrian and
bicycle exposure has significant relationships with pedestrian and bicycle crashes (Schepers et al., 2011;
Thomas et al., 2017). However, many, if not most studies have not incorporated measures of pedestrian
and bicycle exposure, mainly due to lack of related datasets. The failure to include these measures in
SPFs may lead to omitted variable bias and, in turn, misidentify high-risk locations when SPFs are used
in systematic applications to assess relative crash risk. Potential consequences of misidentification of
high-risk sites include erroneous prioritization of funds available for street improvements and misiden-
tification of risk experienced by poor, marginalized, and vulnerable subpopulations.

Using crash data from Minneapolis between 2005 and 2017, this study develops SPFs to examine
the effects of pedestrian and bicycle exposure on pedestrian and bicycle crashes, controlling for vehicu-
lar volume, built environment attributes, traffic facilities, and demographics. In particular, we develop
two sets of SPFs: one set includes both pedestrian and bicycle exposure and the other set excludes both
measures. Each set includes four models for pedestrian and bicycle crash risk at both intersections and
mid-blocks (the street segments that connect two consecutive intersections), respectively. We also assess
the consequences of excluding pedestrian and bicycle exposure from the SPFs. We address the following
research questions:

(1) Are pedestrian and bicycle exposure variables statistically and practically significant in safety
performance functions used to predict pedestrian and bicycle crashes?

(2) To what extent does inclusion of pedestrian and bicycle exposure variables change identification
of high-risk locations in the entire city and in disadvantaged neighborhoods, respectively?

This study contributes threefold to the literature. First, in addition to vehicular traffic counts, it
considers both pedestrian and bicycle exposure variables simultaneously in the SPFs and substantiates
the statistically and practically significant effects of these measures on pedestrian and bicycle crashes.
Second, this study shows that inclusion of pedestrian and bicycle exposure measures changes a substan-
tial proportion of the high-risk locations, highlighting the important role of these exposure variables in
planning practice. Finally, the inclusion of exposure also results in a different proportion of high-risk
locations in low-income and racially concentrated areas.

This paper is organized as follows. We begin with a review of the current literature and then present
our data and methods. Following presentation and discussion of our results, we conclude with a discus-
sion of limitations, key findings, and policy implications.

2 Literature review

Researchers have conducted many insightful studies to estimate pedestrian and bicycle crash risk (Nor-
dback et al., 2014; Schneider et al., 2010; Thomas et al., 2018) and to model the severity of crashes
(Chen & Shen, 2016). Crash risk studies have been conducted at two scales: area-wide analyses and
facility-specific investigations (Table 1). Area-wide analyses aggregate historical crashes to the area level
using units of analysis such as census tracts (Loukaitou-Sideris et al., 2007), census block groups (CBGs)
(Dumbaugh & Li, 2011), or trafhic analysis zones (TAZs) (Yasmin & Eluru, 2016). Because pedestrian
and bicycle crashes are rare events, area-wide studies help reduce the number of observations with zero
crashes. However, these studies have low resolution and cannot be used to identify high-risk locations
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or facilities. Facility-specific studies compare crash risk at the facility level. The units of analysis include
intersections (Lee & Abdel-Aty, 2005) or mid-blocks (Williams et al., 2018). These studies help identify
high-risk locations and provide guidance for pedestrian and bicycle facility improvement. For example,
to prioritize street improvements, the city of Minneapolis (City of Minneapolis, 2016) established a
ranking system, which incorporates safety (i.e., number of crashes), equity, and infrastructure condi-
tions, to assess all street segments.

Facility-specific studies often employ the systemic approach to assess the traffic environment for
pedestrians and bicyclists (Kim & Kim, 2015; Thomas et al., 2017). The core of this approach is to
estimate a SPF (i.e., a model depicting the relationships between different risk factors and crash risk),
predict crash risk, and examine high-risk locations. For example, using intersection crash data from
Seattle between 2004 and 2017, Thomas et al. (2017) constructed negative binomial regression models
to estimate the influences of pedestrian traffic count and other types of risk factors on total crashes for
the study period. Using the estimated SPFs, they then predicted pedestrian crash risk for all 12,266
intersections in the city and identified high-risk locations for improvement. Our study follows a similar
approach conceptually (i.e., predicting total crashes).

In systemic approaches, the choice of risk factors is critical to the validity of study outcomes. When
specifying SPFs, previous studies often have considered four types of risk factors, including exposure to
risk variables (Schneider et al., 2010; Thomas et al., 2017), built environment variables (Dumbaugh &
Li, 2011; Guerra et al., 2019), traffic facility characteristics (Dumbaugh & Li, 2011; Zangenchpour
et al., 2016), and socio-demographic characteristics (Loukaitou-Sideris et al., 2007; Yu et al., 2018).
Among these factors, exposure to risk is theoretically important. Exposure measures include vehicular
trafhic volume such as annual average daily trathc (AADT) (Cottrill & Thakuriah, 2010; Loukaitou-
Sideris et al., 2007) and comparable measures for pedestrian and bicycle traffic such as annual average
daily bicyclists (AADB) and pedestrians (AADP) (Nordback et al., 2014; Thomas et al., 2017). Previous
studies have shown that both pedestrian and bicycle exposure variables are positively associated with
crash risk (Thomas et al., 2017; Zangenehpour et al., 2016). Given their contribution to crash risk,
scholars argued that these variables should be included in the SPFs. In particular, Elvik (2013, p. 57)
suggested including exposure to risk as “a count of the number of road users.” Merlin et al. (2020, p. 7)
recommended including “mode-specific models of exposure” when studying pedestrian or bicycle crash
risk. Elvik (2013) also has shown that it is important to include all relevant measures of exposure (e.g.,
AADT, AADB, AADP).

Few studies, however, have included pedestrian and bicycle exposure, mainly because comprehen-
sive datasets for non-motorized modes historically have not been available. While the Federal Highway
Administration (FHWA), state transportation agencies, and regional and local agencies cooperate in
traffic monitoring programs to produce estimates of vehicular AADT for virtually all major roads in
the U.S., no similar and comprehensive monitoring programs exist for non-motorized modes, partly
because most bicycle and pedestrian traffic operates on local roads. Although an increasing number
of state departments of transportation, metropolitan planning organizations (MPOs) and local public
works agencies are monitoring non-motorized traffic, most do not manage comprehensive programs.
As a result, most studies have yet to account for risks associated with bicycling and walking. As shown
in Table 1, nine of the 20 studies incorporated vehicular traffic counts, but only three used pedestrian
counts, three used bicycle counts, and none used both. To confirm that the absence of pedestrian and
bicycle measures was mainly due to the unavailability of data, we checked the 20 papers for explicit
statements and/or contacted authors about the availability of exposure data. For the papers in Table 1,
both pedestrian and bicycle counts were available for only two studies (Nordback et al., 2014; Thomas
etal., 2017). Thomas et al. (2017) noted that bicycle exposure data were not included in final models;
Nordback et al. (2014) did not include pedestrian exposure in bicycle crash models because continuous
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count data were not available for estimating AADP from available short-duration counts. The failure
to include pedestrian and bicycle exposure variables from SPFs will lead to omitted variable bias (Elvik,
2013; Merlin et al., 2020).

In lieu of pedestrian and bicycle exposure variables, some studies have used proxy measures, such
as number of commuters (Yasmin & Eluru, 2016) or population density and job density (Loukaitou-
Sideris et al., 2007). Although these proxies are correlated with pedestrian and bicycle exposure, the
exposure is also associated with other built environment variables and socio-demographics in the vicin-
ity of the facility (Griswold et al., 2011; Hankey & Lindsey, 2016). Because these proxies explain only
a limited proportion of the variation in pedestrian and bicycle exposure, they result in only marginal
improvements in the SPFs. As the predicted crash risk is used to determine high-risk locations (Thomas
et al,, 2018), both the absence of exposure variables and poor proxies may lead to misidentification of
high-risk locations and thence misallocation of scarce resources.
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Furthermore, the omission of pedestrian and bicycle exposure in SPFs may result in failures to
prioritize improvements in non-motorized infrastructure in disadvantaged neighborhoods. Low-income
people and minority groups use non-motorized modes of transportation frequently (Renne & Bennett,
2014). Accordingly, low-income and minority-concentrated neighborhoods have more pedestrian and
bicycle activities (Cottrill & Thakuriah, 2010; Yu et al., 2018) and a higher proportion of crashes than
other neighborhoods (Loukaitou-Sideris et al., 2007; Siddiqui et al., 2014). The disproportionate safety
burden of these disadvantaged neighborhoods raises important equity issues and concerns (Loukaitou-
Sideris et al., 2007; Yu et al., 2018). Furthermore, omitting pedestrian and bicycle exposure variables or
using poor proxies will systematically understate the crash risk of the facilities located in these neighbor-
hoods. In turn, high-risk locations in these neighborhoods will be under-identified. Potential misalloca-
tion of budgetary resources for capital improvements from disadvantaged neighborhoods to affluent
neighborhoods will maintain transportation disparities for disadvantaged people. However, few studies
examine the extent to which high-risk locations in disadvantaged neighborhoods are misidentified and
the implications for equity planning,

In summary, most SPFs in published studies of pedestrian and bicycle crash risk do not include
both pedestrian and bicycle exposure measures. Few studies examine the impacts of omitting these mea-
sures on pedestrian and bicycle planning practice. To illustrate the importance of exposure measures, we
incorporate both pedestrian and bicycle exposure variables in the SPFs and compare the performance of
the SPFs with and without these variables. We further assess the implications for identification of high-
risk locations and social equity.

3 Data and method

3.1 Data

We acquired a dataset of pedestrian and bicycle crashes occurring in the city of Minneapolis reported
by police between 2005 and 2017 from the Minnesota Department of Public Safety (DPS, 2018). The
data include crash location, road user type, and other detailed information regarding the circumstances
of crashes.

Figure 1 illustrates the distribution of crashes in each CBG and two specific areas: the central busi-
ness district (CBD) and Areas of Concentrated Poverty (ACP50). The ACP50 are designated by the
Metropolitan Council, the metropolitan planning organization. These areas are CBGs where “50%
or more of residents are people of color, and 40% or more of the residents have family or individual
incomes that are less than 185% of the federal poverty threshold” (City of Minneapolis, 2017, pp.
5-23). The Metropolitan Council and cities in the region, including Minneapolis, often consider these
areas when spatially targeting equity initiatives. Between 2005 and 2017, 3,812 pedestrian crashes and
3,490 bicycle crashes occurred in Minneapolis. The number of crashes was highest in the CBD, and the
number of crashes in the ACP50 was higher than in the areas of the city that were more affluent and
majority white. There were more pedestrian crashes than bicycle crashes in the CBD but not in other
areas of the city.

We used ArcGIS to categorize crashes into intersection crashes and mid-block crashes. Our ra-
tionale for this distinction is that different factors may be associated with crashes at these two types
of locations. We defined an intersection crash as a crash that occurred within a 35-meter buffer of the
center of an intersection on main and secondary roads (e.g., minor arterials and collectors) and within
a 15-meter buffer of the center of an intersection on local roads. We developed this definition based on
conversations with practitioners and through empirical tests of different buffer measures. Practitioners
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noted that the influence zone of an intersection with respect to crashes varies with road geometry. We
tested several combinations of radii and reviewed the number of intersection and mid-block crashes with
each scenario, ultimately choosing the combination of 35-meter and 15-meter buffers to identify inter-
section crashes for main/secondary and local roadways, respectively. All crashes that were not classified
as intersection crashes were categorized as mid-block crashes.

We obtained three measures of exposure to risk. The Minneapolis Department of Public Works
(DPW) is distinctive among transportation agencies of the major cities in the U.S. in that it has recorded
peak-hour pedestrian and bicycle traffic volumes at multiple locations in the city during summer and
fall for years (2007-2014). We assigned DPW’s pedestrian and bicycle counts to intersections and mid-
blocks for further analysis (see Lindsey et al., 2019, p. 12). In total, our intersection and mid-block crash
models have sample sizes of 173 and 437, respectively.

Because we aim to predict crash risk for all intersections (N = 6,639) and mid-blocks (N = 12,589)
in the city, we need to produce pedestrian and bicycle exposure for all the locations where actual counts
were not available. To achieve this objective, we adapted the estimates of pedestrian and bicycle peak-
hour, mid-block traffic produced by the pedestrian and bicycle demand models developed by Hankey
and Lindsey (2016). These models estimate mid-block traffic as a function of adjacent land use, street
functional class, and other variables (see Appendix A). After obtaining the estimated pedestrian and
bicycle traffic counts for the 12,152 mid-blocks where actual counts were not available, we aggregated
them for the 6,639 intersections. More information about the data processing could be found in this
report (Lindsey et al., 2019).
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Figure 1. Distribution of pedestrian and bicycle crashes by each CBG in Minneapolis from 2005 to 2017 (ACP50 boundaries
were extracted from the Minnesota Geospatial Commons, http:/ gisdata.mn.gov).

We used vehicular AADT of mid-blocks from the DPW to measure vehicular exposure and, fol-
lowing DPW practice, imputed 500 cars per day for missing vehicular AADT on local streets. Although
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methods for imputing traffic volumes for local streets have been proposed (Chen et al., 2019), we used
the DPW estimate to maintain consistency with local engineering practice. We then used the same
method as aggregating pedestrian and bicycle traffic counts to calculate the vehicular AADT for each
intersection in Minneapolis.

Besides these three measures of exposure, we assembled data for 24 potential correlates of crash risk
(Table 2), including ten built environment variables, eleven traffic facility variables, and six socio-de-
mographic variables. Specifically, trafhc facility variables were selected within categories associated with
risk: including pedestrian and bicycle facilities, visibility, traffic control, and geometric characteristics
(Schneider et al., 2021). We checked for multicollinearity among the variables by assessing the variance
inflation factors of all independent variables. The value of each was smaller than 5, indicating multicol-
linearity is not a threat to validity.

3.2 Method

We used negative binomial regression to model the SPFs for four dependent variables because the de-
pendent variables (i.e., total crashes) are count data, and their variance is larger than their mean (Table
2). These SPFs estimated the number of pedestrian crashes at intersections (called the pedestrian in-
tersection model for simplicity), the number of pedestrian crashes at mid-blocks (called the pedestrian
mid-block model), the number of bicycle crashes at intersections (called the bicycle intersection model),
and the number of bicycle crashes at mid-blocks (called the bicycle mid-block model). We chose to use
total crashes during a long period (2005-2017) for three reasons. First, because pedestrian and bicycle
crashes are rare events, using total crashes over a multi-year period years increases the chances of obtain-
ing sufficient crash events for developing SPFs (Thomas et al., 2017). Second, we do not have the annual
measures for all the independent variables (e.g., road geometry) in our study period, so we cannot cor-
relate annual changes with annual crashes. Third, using total crashes is more consistent with the practices
used by Minneapolis DPW/, which incorporates total crashes over time to prioritize street improvements
(City of Minneapolis, 2016).

We developed cumulative residual (CURE) plots to determine the appropriate forms of exposure
variables in the SPFs. A CURE plot is a line graph showing the relationship between the cumulative
residuals of the SPF and an independent variable (Hauer, 2015). CURE plots can help examine whether
a selected transformation of an independent variable provides the best fit (Srinivasan & Bauer, 2013;
Srinivasan et al., 2013). Several studies have applied transformations of exposure variables in SPFs,
including the original form (Thomas et al., 2017), quadratic form (Carlson et al., 2019; Cottrill &
Thakuriah, 2010), and logarithmic form (Schepers et al., 2011; Turner et al., 2011). After reviewing the
CURE plots for the three exposure variables, we included the logarithmic form of exposure variables
in our SPFs (see the CURE plots in Appendix B). In addition to exposure variables, we included built
environment measures, traffic facilities, and socio-demographic variables as independent variables in the

SPFs. The general form of the SPF is:
y=eP’ xBFt xPF2 x AADTP x ePX (D

where y is the total crash number for 13 years, B is actual bicycle count, P is actual pedestrian count,
AADT is vehicular volume, f, to B, are the coefficients of the corresponding exposure variables, X is
the matrix of other independent variables, B is the corresponding vector of coefficients, and BO is the
intercept.

We constructed two sets of SPFs: one with pedestrian and bicycle exposure variables and the other
without. We included theoretically relevant independent variables in both sets of SPFs. This helps pres-



The effects of pedestrian and bicycle exposure on crash risk in Minneapolis 1195

ent results of all the variables we have tested and reduce the possibility of publication bias. We included
the deviance R?, Akaike information criterion (AIC), and Bayesian information criterion (BIC) to com-
pare the model fit to the dataset. We also constructed two sets of parsimonious SPFs and presented the
results in Appendix C. The rest of this paper focuses on the results of the full SPFs.

We then used the SPFs with and without exposure to estimate pedestrian and bicycle crashes for all
intersections and mid-blocks in the city. Following the guidance by FHWA (Srinivasan & Bauer, 2013;
Srinivasan et al., 2013), we applied the empirical Bayes (EB) method (Elvik, 2008; Hauer et al., 2002)
to calculate the final estimation of the pedestrian and bicycle crashes for all intersections and mid-blocks
in the city. The EB method helps to address the issues of regression to the mean and imperfect data qual-
ity (Thomas et al., 2017). Specifically, we used the equation below estimate crashes:

EB=wP+(1-w)x, (2)

where EB is the empirical Bayes estimate of the crash number, P is the estimated crash number calcu-
lated by the SPFs, x is the historical crash number, and w is the weight. We can calculate w with the
equation below:
! 3
w= ,
1+ P
k

where k is the inverse of the dispersion factor estimated by the SPFs (Elvik, 2008). Sengupta et al.
(2021) recommended using the same time period for the dependent variable and the EB estimation
to minimize biased estimation. Following this suggestion, our EB estimation is the total crashes for 13
years, which is consistent with the dependent variable in the SPFs.

To evaluate the performance of the EB estimation by the two sets of SPFs, we validated the results
using the crash history for 2018-2019, the two-year period following our study period (2005-2017).
Specifically, we applied the EB estimates for the SPFs with and without exposure to predict the total
crashes for 13 years. We then transferred these estimates to 2-year estimates by dividing them by 6.5.
We measured the accuracy of the predictions and compared the SPFs using root mean squared error
(RMSE) for performance assessment.

The other indicator is the discrepancy in high-risk locations identified by the two sets of SPFs. For
each set of SPFs, we ranked all the intersections and mid-blocks based on their EB estimation of crash
risk, respectively, and selected the locations within the top 1%, 5%, and 10% of the rankings as high-
risk locations. We then compared the high-risk locations identified by the two sets of SPFs in the entire
city and in the ACP50, respectively. We calculated the proportion of high-risk locations identified by
both the models with exposure and the models without exposure. A smaller proportion indicates a larger
discrepancy.
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4 Results

4.1 Model comparison

Table 3 and Table 4 present the comparison between two sets of SPFs: models with and without expo-
sure. The models with exposure have better goodness of fit than the models without exposure in terms
of deviance R?, AIC, BIC, and RMSE. Taking the pedestrian intersection models as an example, the
model with exposure has a deviance R? of 0.81, whereas the fit for the model without exposure is 0.74.
In addition, the model with exposure has a lower AIC (577) and BIC (668) than those of the model
without exposure, which are 607 and 692, respectively. Thus, pedestrian and bicycle exposure variables
substantially improve model performance. Compared with intersection models, the mid-block models
have relatively lower deviance R*. During the study period, 87% of the observations in the mid-block
pedestrian crash model and 84% of the observations in the mid-block bicycle crash model had zero
historical crashes; the corresponding statistics for intersection models are 38% and 34%, respectively.
The larger proportion of the observations with zero crashes in the mid-block models leads to a lower
explanatory power of the independent variables.

The pedestrian exposure variable is significant in two of the four crash models, and the bicycle
exposure variable is significant in three models. In general, these exposure variables have positive as-
sociations with the number of crashes, consistent with the literature (Schepers et al., 2011; Thomas et
al., 2017). However, bicycle exposure is negatively associated with pedestrian crash risk at intersections.
This may be because when there are more bicycles on roads, drivers may become more cautious when
driving, also creating a safer traffic environment for pedestrians.

Our analyses of elasticities also suggest the important role of pedestrian and bicycle exposure in pre-
dicting pedestrian and bicycle crash risk. In the models with exposure, the elasticities of pedestrian and
bicycle exposure variables are among the largest for all variables. Specifically, in the pedestrian intersec-
tion model, pedestrian exposure has an elasticity of 0.66, the fourth largest elasticity, following number
of legs (-1.51), vehicular AADT (1.19), and average houschold size (-1.02). In the pedestrian mid-block
model, pedestrian exposure has the sixth largest elasticity of 0.47, smaller than average household size
(-1.40), vehicular AADT (1.00), share of poverty population (0.79), travel width of road (-0.59), and
share of men (0.51). In the bicycle intersection model, bicycle exposure has an elasticity of 0.58, the
second largest one after average household size (-0.82). In the bicycle mid-block model, the elasticity of
bicycle exposure is 0.47, the fourth largest elasticity after travel width of lane (-0.75), vehicular AADT
(0.57), and average household size (0.49).

Among built environment variables, population density is positively correlated with both pedes-
trian and bicycle crash risk at intersections. Even after controlling for exposure, density of develop-
ment (which has been shown in other studies to be correlated with pedestrian and bicycle volumes), is
positively associated with both pedestrian and bicycle crash risk (Dumbaugh & Li, 2011; Siddiqui et
al., 2012). The presence of a transit stop is positively correlated with pedestrian crash risk in the inter-
section model, likely because transit stops attract pedestrians and cross-walkers (Thomas et al., 2017).
Consistent with studies that have found higher volumes of road users such as bicyclists and vehicles at
commercial areas (Griswold et al., 2011), the share of commercial area has a positive relationship with
bicycle crash risk in the mid-block model. Share of industrial area is positively correlated with bicycle
crash in the mid-block model. Share of open space is positively correlated with bicycle crash risk at mid-
block. This is plausible because many bicyclers ride there for purposes of workout or entertainment.
Mid-blocks in the downtown area have higher bicycle crash risk than those which are located outside.
Some results are counter-intuitive and need more investigation in future research (e.g., include more
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other influencers in the models to check the potential issue of endogeneity). Job density is negatively
correlated with pedestrian crash risk in intersections, and open space is negatively correlated with pedes-
trian crash risk at intersections. These findings may reflect features not included in our models such as
specific traffic controls or signs.

4.2 Validation of the EB estimation

We compared the empirical Bayes estimation of the crash risk by the two sets of SPFs with crash history
from 2018 to 2019 (Table 5). While the RMSEs are very close, three of the four SPFs with exposure
have slightly lower RMSEs than those of the SPFs without exposure (specifically, the bicycle intersec-
tion, bicycle mid-block, and pedestrian mid-block). The difference is greatest for the bicycle intersection
model. This result confirms that, in general, incorporation of pedestrian and bicycle exposure variables
in SPFs can improve their prediction of crash risk in the future.

Table 5. Comparison between Empirical Bayes estimation and two-year historical crash numbers (2018-2019) in terms of
RMSE

Intersection models Mid-block models
Pedestrian
With exposure | Without exposure | With exposure | Without exposure
Average historical crash number 0.0738 0.0127
Average estimated crash 0.0613 0.0924 0.0080 0.0122
number
RMSE 0.2998 0.2917 0.1203 0.1205
Intersection models Mid-block models
Bicycle
With exposure | Without exposure | With exposure | Without exposure
Average historical crash number 0.0452 0.0084
Average estimated crash 0.0388 0.0977 0.0068 0.0149
number
RMSE 0.2199 0.2310 0.0941 0.0953

43 Differences in high-risk locations

To illustrate the changes in high-risk locations identified by the two sets of SPFs, we ranked all 6,639
intersections and 12,589 mid-blocks by the EB estimation of crash risk and then identified the locations
comprising the top 1%, top 5%, and top 10% of the rankings. Table 6 presents the share of the high-
risk locations identified by both the models with and without exposure. When high-risk locations are
defined as top 1%, approximately 60% of the intersections and 80% of the mid-blocks identified by the
two sets of SPFs are the same. For example, 60% of the high-risk intersections identified by the bicycle
model with exposure measures are the same as those identified by the bicycle model without exposure.
As the proportion used to define high-risk locations increases, the share of the same high-risk locations
identified by the two sets of models change slightly. However, the discrepancy is still large: about 20%
of the top 10% high-risk locations differ.
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Table 6. Share of high-risk locations in the city identified by both the SPFs with and without exposure

Pedestrian Bicycle
Intersection Mid-block Intersection Mid-block
(N = 6,639) (N =12,589) (N =6,639) (N = 12,589)
Top 1% 54% 88% 60% 75%
Top 5% 72% 81% 71% 75%
Top 10% 87% 86% 79% 77%

Theoretically, the models with exposure predict high-risk locations better than those without exposure.
Empirically, the former models fit the data better than the latter ones in terms of model performance
(i.e., deviance R?, AIC, and BIC) and variables’ significance and elasticities (Section 4.1). If we assume
for sake of illustration that the high-risk locations identified by the models with exposure have greater
validity, the models without exposure potentially misclassify a substantial number of locations as high-
risk locations (Table 6). Figures D1 and D2 in the Appendix D visually compare the top 1% high-risk
locations predicted by the two sets of SPFs.

Overall, the models with exposure produce different high-risk locations, especially the top 1%
high-risk locations, from the models without exposure. In Minneapolis, 1% of high-risk locations in-
cludes 66 intersections and 126 mid-blocks. Given the objective of increasing safety, and assuming that
funds are prioritized for the intersections and mid-blocks with highest relative risk, the choice of models
potentially affects the allocation of millions of dollars of scarce public resources.

We next compared the overlap of high-risk locations in the ACP50s (i.e., low income, majority-mi-
nority areas) identified by the two sets of SPFs (Table 7). While there was overlap in the sets of intersec-
tions and mid-blocks identified as higher risk, there were also substantial differences in the distributions.
For example, only 42% and 68% of the intersections with the highest pedestrian and bicycle crash risk,
respectively, were the same.

Table 7. Share of high-risk locations in the ACP50s identified by both the SPFs with and without exposure

Pedestrian Bicycle
Intersection Mid-block Intersection Mid-block
(N = 6,639) (N = 12,589) (N = 6,639) (N = 12,589)
Top 1% 42% 91% 68% 67%
Top 5% 73% 83% 79% 64%
Top 10% 92% 87% 82% 67%

We also compared the number of high-risk locations identified by the sets of SPFs with and with-
out exposure in the ACP50s (Table 8). As expected, the numbers of high-risk locations change. For
example, the pedestrian mid-block model with exposure identified 19 mid-blocks as top 1% high-risk
locations, while the corresponding model without exposure identified 16 high-risk mid-blocks, a rela-
tive difference of 16%. Conversely, four cases show that SPFs with exposure predicted fewer high-risk
locations than those without in the APC50 areas. These results confirm that inclusion of pedestrian and
bicycle exposure variables has an influence on the number of identified high-risk locations in ACP50s.
However, all mechanisms that affect whether differential crash risk exists in these racial and low-income
neighborhoods are not clear and additional studies are needed.
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Table 8. Comparison of the number of high-risk locations in the ACP50s identified by both the SPFs with and without

exposure
Pedestrian
Intersection Mid-block
(N = 6,639) (N = 12,589)
SPFs with SPFs without Difference SPFs with SPFs without Difference
exposure exposure exposure exposure
Top 1% 19 16 -16% 32 32 0%
Top 5% 93 115 24% 185 181 -2%
Top 10% 207 221 7% 359 350 -3%
Bicycle
Intersection Mid-block
(N = 6,639) (N =12,589)
SPFs with SPFs without Difference SPFs with SPFs without Difference
exposure exposure exposure exposure
Top 1% 22 23 5% 18 19 6%
Top 5% 118 107 -9% 121 101 -17%
Top 10% 192 184 -4% 285 229 -20%
5 Conclusions

In this study we explored the influences of pedestrian and bicycle exposure on pedestrian and bicycle
crashes at intersections and mid-blocks in the city of Minneapolis. We also assessed the implications
of including or excluding estimates of exposure by constructing two sets of SPFs, one with, and one
without, both exposure variables, for both the intersection and mid-block models. The results show
that including pedestrian and bicycle exposure variables in the SPFs improves model goodness of fit.
Furthermore, the elasticities of the exposure measures and their significant relationships with pedestrian
and bicycle crash risk suggest that they are essential to increasing the validity of predictions of pedestrian
and bicycle crash risk.

Transportation agencies have scarce resources for street improvements, so they must prioritize hot
spots with the highest pedestrian and bicycle crash risk. They also must redress historic inequities in
investment in poor, marginalized neighborhoods. This study shows that many of the intersections and
mid-blocks identified as high-risk by the models with exposure and those without are different. Among
the top 1% high-risk intersections in Minneapolis, about 40% of the locations differ; among the top 1%
of mid-blocks, about 20% of the locations differ. Because an improvement project may cost hundreds
of thousands of dollars, the choice of models matters, and it is important to use tools that account for
as many variables associated with crash risk as possible. Using Minneapolis as an example, the annual
budget for street facility improvement is $21.2 million (City of Minneapolis, 2016). If, as estimated,
20% to 40% of the high-risk locations were misidentified, millions of dollars potentially could be misal-
located to lower priority sites.

The high-risk locations identified by the two sets of SPFs are also different in ACP50 neighbor-
hoods that are the focus of local efforts to address historical inequities. Among the top 1% high-risk
intersections, roughly 30% to 60% locations differ; among the top 1% high-risk mid-blocks, 10% to
30% differ. Given these inclusion of exposure variables clearly matters, it is important to include them
to ensure validity of prioritization of high-risk locations in ACP50 areas. Additional studies to confirm
these findings and address equity-related issues are needed.



The effects of pedestrian and bicycle exposure on crash risk in Minneapolis 1205

Overall, these findings add to the growing evidence of the importance of including pedestrian and
bicycle exposure variables in the SPFs. Models that include measures of pedestrian and bicycle crash risk
simultaneously have the greatest theoretical validity. In addition to producing more valid estimates of
crash risk, they also can facilitate more robust assessments of other measures, like safety in numbers (El-
vik & Bjernskau, 2017). To increase the availability of exposure measures, local transportation agencies
will need pedestrian and bicycle monitoring programs that are the foundation of developing pedestrian
and bicycle exposure data.

Our research has limitations that can be addressed over time through additional analyses and as
more data are collected. First, our crash dataset extends over a period of 13 years. During this period,
exposure measures and other independent variables such as geometric characteristics, traffic controls,
and transportation policies have changed. This limitation, which is common in the literature, reduces
the validity of our estimates, but can be addressed in the future as better databases become available.
Second, the time periods for our crash data, our estimates of exposure to risk, and our other independent
variables are different. For example, we use two-hour peak hour counts as measures of pedestrian and
bicycle exposure, while our crash dataset includes crashes at all times of day. This limitation could be
addressed with better measures of exposure such as AADP or AADB that will become available as more
communities implement monitoring programs. A related limitation is that a small share of our measures
of bicycle and pedestrian exposure are actual counts; the vast majority are estimates from a validated de-
mand model. A specific limitation of our pedestrian mid-block model is that our estimate of pedestrian
exposure is pedestrians on the sidewalk, not pedestrians in the street or crossing at mid-block. We believe
that these two measures are to be highly correlated, but field studies would be required to confirm this
hypothesis. In general, new data collection initiatives can help address both limitations. Another limita-
tion not accounted for in our analyses is that some behavioral or cultural factors may be associated with
crashes. For example, certain driver behaviors, such as failure to yield for pedestrians, or certain activi-
ties by vulnerable users (e.g., pedestrians jaywalking or cyclists running red lights) likely are important.
Studies of specific factors associated with crashes may provide insight into these issues. Although we
considered several socio-demographic variables as proxies, but most of them are not significant, thus
precluding any generalizations about associations with crashes.
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