
1 Introduction

Despite recent advances and interest from researchers and practitioners, pedestrian monitoring and data 
collection remains incomplete and insufficient, especially compared to motorized data collection. In 
practice, there are two kinds of methods for counting pedestrian activity at intersections: manual and 
automatic approaches (FHWA, 2016; Greene-Roesel et al., 2008). Manual counts involve collecting 
pedestrian volumes (by an observer) in real-time in situ or later using video recording. Although manual 
counts are accurate and advantageous for making modal distinctions (walking vs. cycling) and deter-
mining directional flows (left, straight, or right), the accuracy of counts depends upon characteristics 
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Advances in pedestrian travel monitoring: Temporal patterns and 
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Abstract: In this study, we advanced pedestrian travel monitoring 
using a novel data source: pedestrian push-button presses obtained from 
archived traffic signal controller logs at more than 1,500 signalized 
intersections in Utah over one year. The purposes of this study were 
to: (1) quantify pedestrian activity patterns; (2) create factor groups 
and expansion/adjustment factors from these temporal patterns; and 
(3) explore relationships between patterns and spatial characteristics. 
Using empirical clustering, we classified signals into five groups, based 
on normalized hourly/weekly counts (each hour’s proportion of weekly 
totals, or the inverse of the expansion factors), and three clusters with 
similar monthly adjustment factors. We also used multinomial logit 
models to identify spatial characteristics (land use, built environment, 
socio-economic characteristics, and climatic regions) associated with 
different temporal patterns. For example, we found that signals near 
schools were much more likely to have bimodal daily peak hours and 
lower pedestrian activity during out-of-school months. Despite these 
good results, our hourly/weekday patterns differed less than in past 
research, highlighting the limits of existing infrastructure for capturing 
all kinds of activity patterns. Nevertheless, we demonstrated that signals 
with push-button data are a useful supplement to existing permanent 
counters within a broader pedestrian traffic monitoring program. 
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of observers (e.g., attentiveness) (Diogenes et al., 2007). More critically, manual counts are infeasible 
over longer time periods, because of the need for direct human supervision. Another method based on 
automated instruments—such as microwave, ultrasonic, infrared etc.—are feasible for longer-duration 
counts, and thus are ideal for identifying variations in pedestrian activity over time (Bu et al., 2007; 
Green-Roesel et al., 2008). However, automated counts can be susceptible to adverse weather or crowd-
ing, are expensive to install, and sometimes require periodic validation from manual counts (FHWA, 
2016; Ryus et al., 2014). 

1.1 Pedestrian push-button data to measure pedestrian activity

Alternatively, one novel source of pedestrian data is from pedestrian push-buttons at signalized intersec-
tions. Many (but not all) traffic signals require people walking who want to cross an approach to press 
a pedestrian push-button to request (actuate) the walk phase. Given readily available hardware and 
software, each pedestrian push-button press event can be timestamped, logged (Smaglik et al., 2007; 
Sturdevant et al., 2012), archived, and made available (for example) through the Automated Traffic 
Signal Performance Measures (ATSPM) system (ATKINS, 2016; Day, Bullock et al., 2014; Day, Taylor 
et al., 2016). Such high-resolution traffic signal controller log data are relatively ubiquitous in both time 
and space (available 24/7 at many intersections), making them a potentially rich source of information 
about pedestrian activity levels. Some of the limitations of existing methods—such as requirement of 
manual labor or upfront costs for installation of automated counters—and the lack of pedestrian data 
could be addressed by the use of this novel pedestrian data source. 

Until recently, few studies investigated the use of pedestrian data from traffic signal controller logs 
to estimate walking activity. Day et al. (2011) analyzed data on pedestrian actuations per hour at one 
signalized intersection in Indiana over an 18-month period, finding impacts of time-of-day, day-of-
week, weather and other seasonal effects, special events, and a change in pedestrian phase configuration 
on pedestrian actuations. Similarly, Blanc et al. (2015) and Kothuri et al. (2017) conducted studies of 
pedestrian activity at one intersection in Oregon that had actuated pedestrian crossings (using push-
button detection) for all four crosswalks. The two Oregon studies used video data to manually count 
pedestrians, which they then compared to pedestrian actuations for each crosswalk, usually finding cor-
relations of around 0.80 or greater. Recently, a large-scale validation study of pedestrian push-button use 
and walking activity at signalized intersections was conducted in Utah by Singleton et al. (2020). The 
authors compared hourly pedestrian signal activity metrics derived from push-button presses against 
observed pedestrian counts—obtained from manual counts of over 20,000 hours of videos recorded 
in 2019 for 320 crosswalks at 90 signalized intersections—using simple non-linear regression models. 
The models’ estimated pedestrian volumes were strongly correlated with observed pedestrian crossing 
volumes (0.84) and had a low mean absolute error (3.0 pedestrians per hour) (Singleton et al., 2020; 
Singleton & Runa, 2021). Overall, these studies demonstrate that traffic signal data can be used to es-
timate pedestrian crossing volumes and monitor levels of pedestrian activity at intersections. We utilize 
pedestrian data from traffic signals in this paper. 

1.2 Applications of continuously measured pedestrian data

Temporally-rich pedestrian data—measured continuously over time—has many applications. Quanti-
fying and understanding the characteristics of pedestrian activity patterns in different spatial locations 
over time can assist planners and/or researchers in any (or all) of the following ways: 

1. Planning: Pedestrian data can help planners to prioritize pedestrian infrastructure investments in 
specific areas and predict the impacts of new transportation or urban development projects on 
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walking. 
2. Safety: Pedestrian safety analysis could use temporal patterns of pedestrian activity to better quan-

tify risks related to exposure to traffic at crossings. 
3. Traffic operations: Hourly distributions of pedestrian activity by location can assist with optimizing 

traffic signal timing for pedestrian delay or safety, as well as scheduling/permitting maintenance or 
construction work for areas and times with low pedestrian activity. 

4. Traffic monitoring: Automated pedestrian counters cannot be deployed in all areas, so long-term 
count data are used to develop expansion factors that translate short-duration (e.g., manual) 
counts into estimated average annual daily pedestrian volumes, information which is useful for all 
of the activities listed above. 

This fourth application (traffic monitoring) is the area to which our paper contributes. 

1.3 Pedestrian expansion factors 

To develop expansion factors, locations with similar pedestrian activity patterns (quantified either daily 
or weekly) are often grouped together into “factor groups” (FHWA, 2016; Medury et al., 2019; Ryus et 
al., 2017), each with a unique set of expansion factors. Short-duration pedestrian volume measurements 
(e.g., manual peak-period or daily counts) are then multiplied by the expansion factors—for the specific 
factor group to which that short-duration count location best belongs—in order to estimate long-term 
average pedestrian volumes more precisely (FHWA, 2016; Ryus et al., 2017). In current practice, there 
are two common approaches to constructing factor groups of multiple locations with similar pedes-
trian activity patterns. The first method is the land-use classification approach (Medury et al., 2019), 
which involves classifying locations based upon their surrounding land-use characteristics, under the 
assumption that locations with similar land uses will generate similar pedestrian activity patterns. Studies 
implementing this approach have identified distinct patterns for commercial areas, employment areas, 
university areas, trail areas, etc. (Medury et al., 2019; Schneider et al., 2009). The second method is the 
data-driven empirical clustering approach, which essentially groups locations based upon their pedestrian 
activity patterns, referred to as clusters. In short, the clustering algorithm works by minimizing differ-
ences in patterns within each cluster, while simultaneously maximizing differences in patterns between 
clusters. Miranda-Moreno and Lahti (2013) classified bicycle traffic patterns into four distinct groups 
as utilitarian, mixed-utilitarian, mixed-recreational, and recreational. Griswold et al. (2018) compared 
land use and empirical clustering approach and concluded that both approaches provided better results 
than a “single factor” method (where all locations are combined into single factor group). No matter the 
approach, the process of constructing factor groups is limited by the number and variety of locations 
with long-duration pedestrian count data. 

1.4 Research Objectives

In this study, we aim to overcome limitations surrounding the lack of long-term automated pedestrian 
count data for traffic monitoring through the use of pedestrian push-button information from hundreds 
of sites in one US state. Specifically, we utilize high-resolution data collected from traffic signal controller 
logs at more than 1,500 signalized intersections throughout Utah—available from the Utah Depart-
ment of Transportation (UDOT)’s ATSPM system—to investigate the temporal patterns of pedestrian 
activity and develop expansion factors and factor groups that relate to spatial characteristics. As such, the 
objectives of this paper are threefold, to: 

1. Quantify and understand pedestrian activity patterns at signalized intersections, using continuous, 
archived data from pedestrian push-buttons at more than 1,500 signalized intersections in Utah. 
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2. Calculate time-of-day/day-of-week expansion factors and create factor groups based on empirical 
clustering of pedestrian activity patterns at signalized intersections, while accounting for seasonal 
variation. 

3. Explore relationships between pedestrian factor groups and land use, built environment, and  
socio-economic neighborhood characteristics. 

2 Data and methods

In this section, we present the data and an overview of the analysis methods. First, we describe cal-
culating the pedestrian activity metrics for two temporal dimensions—hourly/weekday patterns, and 
monthly (seasonal) patterns—from traffic signal controller log data, as well as assembling data on spatial 
characteristics from various sources. Second, we explain the analysis methods employed, including em-
pirical clustering, regression modeling, and expansion/adjustment factor accuracy. The data and scripts 
used in this paper are publicly available (Singleton, Runa, & Humagain, 2021). 

2.1 Data sources and preparation

2.1.1 Pedestrian traffic signal data

Traffic signal controller log data from most of the over 2,000 signalized intersections in Utah were col-
lected from UDOTs ATSPM system (UDOT, 2020) for one full year (July 2017 through June 2018). 
In total, data from 1,697 signals with pedestrian push-buttons were usable. The remainder of the signals 
either did not have pedestrian push-buttons (either in isolated rural/industrial locations or in the heart 
of downtown Salt Lake City) or were missing data for a significant portion of the year. 

In order to prepare time series pedestrian datasets for clustering, a suitable metric that defines 
intersection-level “pedestrian activity” from traffic signal data was required. For this purpose, we relied 
upon the research by Singleton et al., (2020) that validated pedestrian push-button data against ob-
served pedestrian counts using over 20,000 crossing-hours of observations in Utah. That research, using 
regression models and various fit statistics, determined that a new pedestrian activity metric of imputed 
pedestrian calls registered “45B” was the best predictor of actual pedestrian crossing volumes in many 
cases. More details about this validation and modeling process can be found elsewhere (Singleton et al., 
2020; Singleton & Runa, 2021). Specifically, the 45B pedestrian activity metric is defined as: 

• For each pedestrian phase, in a time-ordered sequence of traffic signal controller events with just 
events {0, 21, 90}, the number of 90 events immediately preceded by a 0 or 21 event, where: 

• Event 0, Phase On: This event occurs with the activation of the phase on, such as the start 
of green or the start of the walk interval. 

• Event 21, Pedestrian Begin Walk: This event occurs with the activation of the walk indica-
tion for a particular phase. 

• Event 90, Pedestrian Detector On: This event occurs when the signal from the pedestrian 
push-button is activated, after any delay or extension is processed, for a particular pedes-
trian detector channel.

In simple terms, the pedestrian activity metric 45B (imputed pedestrian calls registered) counts the 
number of times the walk signal appeared as a result of a pedestrian push-button press. 

We analyzed two types of temporal patterns in pedestrian activity: hourly/weekday patterns, and 
monthly (or seasonal) patterns. For hourly/weekday patterns, we did the following for each intersection 
i: First, we calculated the pedestrian activity metric (45B) for all pedestrian phases over the entire year, 
removing any hours with missing data (i.e., due to communication outages or maintenance work). Sec-
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ond, we averaged these year-long hourly observations into 168 values vi,t,d , one for each of the unique 
hour-of-day t and day-of-week d combinations (e.g., 4-5pm Mondays). Third, we calculated normal-
ized counts ῡi,t,d according to the following equation (Griswold et al., 2018; Ryus et al., 2014): 

ῡi,t,d= 
vi,t,d

∑24
t=1 ∑

7
d=1 vi,t,d 

        (1)

These normalized counts ῡi,t,d  are really the average hourly counts as a proportion of total average 
weekly counts of pedestrian activity at each signal, or essentially the (inverse of) hour-to-week expansion 
factors, specific to each intersection. By averaging across the entire year, this process mitigates some of 
the effects of temporal variation caused by special events, abnormal weather, or other unusual occur-
rences. These intersection-specific normalized counts (inverse expansion factors) of pedestrian activity 
(45B) were used as the data input into the empirical clustering analysis for hourly/weekday patterns. 

For monthly (seasonal) patterns, we did the following for each intersection i: First, we took the 
whole-year hourly pedestrian activity (45B) dataset from the first step of the previous paragraph, and 
summed the hourly values to generate 365 daily totals. Second, for each month m, we calculated the 
monthly average daily volume (di,m); we also calculated the overall annual average daily volume (yi,y). 
Third, we calculated the 12 monthly adjustment factors (mi,m) according to the following equation: 

mi,m= 
di,m

yi,y 
          (2)

These intersection-specific monthly adjustment factors were used as the data input into the empiri-
cal clustering analysis for monthly (seasonal) patterns. 

2.1.2 Spatial data

To explore relationships between temporal patterns in pedestrian activity and spatial characteristics, we 
assembled land use, built environment, and socio-economic attributes for the area surrounding each 
signalized intersection. Specifically, measures were calculated using quarter-mile network buffers. Data 
came from various sources, including population and employment data from the 2013-2017 American 
Community Survey and the 2017 Longitudinal Employer-Household Dynamics dataset for Census 
block groups, as well as 2019 land use and transportation data from the Utah Automated Geographic 
Reference Center. (See Singleton, Park, & Lee (2021) for details on these data.) Due to a lack of data, 
this information was available for only 1,161 signals. Descriptive statistics for these attributes are pre-
sented in Table 1. 
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Table 1. Descriptive statistics for land use, built environment, and socio-economic attributes (N = 1,161)

Attribute Mean SD

Land-use attributes

Residential land use (%) 31.264 22.006

Commercial land use (%) 30.756 19.360

Industrial land use (%) 2.007 8.190

Schools (#) 0.344 0.665

Places of worship (#) 0.593 0.850

Parks (acres) 1.537 3.622

Built environment attributes

Population density (1,000/mi2) 5.263 2.923

Employment density (1,000/mi2) 8.365 12.888

Intersection density (#/mi2) 105.228 46.549

4-way intersections (%) 30.988 20.036

Transit stops (#) 43.065 23.491

Socio-economic attributes

Vehicle ownership (#, mean) 1.646 0.418

Household size (#, mean) 2.972 0.850

Household income ($1,000) 57.655 20.152

2.2 Analysis methods

For each type of temporal pattern (hourly/weekday, monthly), we conducted a series of analyses: (1) em-
pirical cluster analysis to identify clusters of signals with similar temporal patterns; (2) multinomial logit 
regression modeling to understand spatial factors associated with temporal clusters; and (3) calculating 
the accuracy of applying the expansion/adjustment factors. 

2.2.1 Identifying temporal patterns using empirical cluster analysis

Critical steps in the cluster analysis process—selecting a (dis)similarity measure, choosing a clustering 
algorithm, and determining an optimal number of clusters—are discussed in this section. 

Because the objective of this study focuses on grouping intersections based on similar hourly/
weekly patterns, we used a structural-based (dis)similarity measure—temporal correlation (CORT)—
since it allows us to compare the relative trajectories of normalized counts across intersections. Basically, 
CORT measures the proximity of temporal variation between two time series, which aligns better with 
our objective than other conventional distance measures such as Euclidean distance, which works with 
difference in magnitude between data points (Montero & Vilar, 2014). The equation for CORT is: 

    (3)

where Fi and Fj represent two time series i and j, measured over T time points t. 
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In terms of clustering algorithms, we applied a k-means algorithm, which basically has the objective 
of minimizing differences within each cluster and maximizing differences between other clusters. The 
k-means algorithm is found to be computationally efficient and can group intersections based on subtle 
nuances in temporal patterns of pedestrian activity. 

The final step in cluster analysis is to determine the optimal number of clusters (between one and 
the number of observations) that adequately represent patterns within a dataset. Common tools to assist 
in the selection of the number of clusters include the Calinski-Harabasz criterion, the sum of squared 
differences, and the average silhouette width: 

• Calinski-Harabasz (CH) criterion: This is the ratio of between-cluster variation to within-clus-
ter variation, so a higher value reflects distinct clusters. 

• Sum of squared differences (SSD): This calculates the sum of squared differences between each 
observation’s values and the mean values of the cluster to which the observation belongs. Small-
er differences indicate more homogenous clusters. 

• Average silhouette width (ASW): This measures the similarity (ranging from −1 to +1) of pat-
terns of observations within each cluster (cohesion) compared to observations of other clusters 
(separation). A more positive value implies that observations are well matched within clusters 
and poorly matched to neighboring clusters. 

By performing k-means clustering for various numbers of clusters (2 to 7 for hourly/weekday, 2 
to 5 for monthly), we computed the various fit statistics and also visualized the patterns of resulting 
clusters. Generally, Table 2 shows that CH, SSD, and ASW values decreased with increased numbers of 
clusters, although not exclusively so. More clusters generally means an increase in both the distinctive-
ness and compactness of clusters; hence, the optimum number of clusters can be the number at which 
more/fewer clusters provides neither a significant improvement nor degradation in the fit statistics. 
Hence, the optimum number of hourly/weekday clusters was determined to be five, as it provides 
reasonable fit statistics and a relatively lower decrease in SSD (compared to six clusters). Similarly, the 
optimum number of monthly clusters was determined to be three, as it provides a reasonable tradeoff 
between low SSD and higher ASW. 

Table 2. Fit statistics for various numbers of clusters

Hourly/weekday clusters Monthly (seasonal) clusters

# clusters CH SSD ASW CH SSD ASW

2 1,424.71 4,715.61 0.72 700.38 668.42 0.54

3 1,082.93 3,226.85 0.54 585.93 539.92 0.40

4 1,052.84 3,612.17 0.54 539.65 475.59 0.30

5 985.61 2,285.66 0.57 502.74 307.44 0.27

6 973.47 1,970.04 0.31

7 995.75 1,520.18 0.28

2.2.2 Predicting clusters with spatial factors using multinomial logit regression models

In order to explain which signals belonged in each cluster on temporal patterns of pedestrian activity, we 
performed multinomial logit regression using the spatial factors shown in Table 1 (land use, built envi-
ronment, and socio-economic attributes) as explanatory variables. Variables with statistically significant 
coefficients indicate spatial characteristics associated with signals having different temporal patterns in 
pedestrian activity. 
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2.2.3  Assessing the accuracy of expansion/adjustment factors

When applying the cluster results and expansion/adjustment factors to convert short-duration counts 
to longer-term average volumes, there will be some discrepancy even with the same data due to us-
ing expansion/adjustment factors based on the cluster mean values. For hourly/weekday factors, this 
expansion accuracy is expressed as the absolute percentage error of the expanded weekly counts at a 
location relative to the average expanded weekly counts of the cluster to which that location belongs. As 
presented in Griswold et al. (2018) and Medury et al. (2019), the expansion accuracy  for hourly/
weekday expansion factors is given by the following equation: 

        (4)

where: ῡi,t,d is the normalized count and γci,t,d is the applicable expansion factor for cluster c, location 
i, and time period t. A similar equation applies to the accuracy of monthly adjustment factors. 

3 Results

3.1 Hourly/weekday patterns

3.1.1 Results of hourly/weekly clusters

To recap, we used the CORT (dis)similarity measure and the k-means algorithm to classify the normal-
ized counts of pedestrian activity at 1,697 signalized intersections into five clusters. The cluster analysis 
results are summarized in Table 3 and the text below, and the mean and distributions of the hourly/
weekly patterns are depicted in Figure 1. 

Table 3. Summary of hourly/weekly cluster results

Pattern Cluster (#, %) Visual characteristics

Uniform 1 (871, 51.3) Evening peak, increase from morning to evening, weekdays > weekends, peak 
hour volume ~1-1.5% of weekly volume

2 (278, 16.4) Evening peak, increase from morning to evening, weekdays > weekends, peak 
hour volume ~1-1.5% of weekly volume

Bimodal 3 (302, 17.8) Morning and evening peaks, evening > morning, weekdays > weekends, peak 
hourly volume ~1.5-2% of weekly volume

4 (188, 11.1) Morning and evening peaks, evening > morning, weekdays > weekends, peak 
hourly volume ~1.5-2% of weekly volume

5 (58, 3.4) Morning and evening peaks, evening > morning, weekdays > weekends, peak 
hourly volume ~2-2.5 of weekly volume

Overall, the hourly/weekday clusters can be classified into two general patterns of pedestrian activi-
ty: (a) unimodal, with one (usually evening) peak hour that is approximately 1-1.5% of the weekly total, 
and (b) bimodal, with two distinct peak hours (usually evening is greater than morning) and where the 
(usually evening) peak hour is approximately 1.5-2% of the weekly total. Besides these general observa-
tions, the clusters themselves show some (albeit more minor) differences. Unimodal clusters 1 and 2 are 
slightly differentiated in their daytime vs. evening patterns: for cluster 1, the pattern is somewhat more 
uniform (or smooth) than for cluster 2, and the mean is slightly more peaked. The bimodal clusters 3, 
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4, and 5 are distinguished by the magnitude of their peaks—cluster 5’s peaks are more than 2% of the 
weekly total, whereas peaks for clusters 3 and 4 are 1.5-2%—and somewhat by the difference between 
the morning and evening peaks (difference: cluster 5 > cluster 4 > cluster 3). 

There were also some similarities between all the hourly/weekday clusters. Unsurprisingly, pedes-
trian activity was highest during daytime and evening hours, with most intersections recording little-
to-no activity overnight. Peak pedestrian hours were more common in the afternoon and early evening 
than in the morning. Weekend pedestrian activity (especially on Sundays) was lower than on weekdays, 
but often without a clear single peak hour (usually mid-day). Tuesdays often had the largest peak hour of 
pedestrian activity, while Mondays and Fridays tended to have slightly lower peaks than other weekdays 
(although, Mondays had the highest peaks for clusters 3 and 4). 

 
     

                                 i. Unimodal – Cluster 1 ii. Unimodal – Cluster 2
 

   

                          iii. Bimodal – Cluster 3  iv. Bimodal – Cluster 4
 

v. Bimodal – Cluster 5

Figure 1. Mean and distribution of pedestrian activity patterns by hourly/weekday cluster 
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3.1.2 Spatial factors affecting hourly/weekly patterns

Some past studies have investigated the influential role of land use, the built environment, and socio-
economic characteristics in shaping temporal patterns of pedestrian activity across locations (e.g., Han-
key et al., 2012; Medury et al., 2019; Schneider et al., 2009). The presence of offices, schools/colleges, 
and different land-use characteristics surrounding count locations are found to influence the hourly/
weekday temporal patterns. For instance, locations near schools displayed multiple peaks on weekdays 
and relatively lower pedestrian activity during weekends, whereas recreational trails had higher activ-
ity during weekday evenings and relatively higher pedestrian activity during weekends (Medury et al., 
2019). We add to this literature using our larger dataset of over 1,000 signalized intersections in Utah. 

To understand the relationships between pedestrian activity patterns and spatial characteristics, we 
estimated a multinomial logit model on 1,161 signalized intersections with such data, where member-
ship in an hourly/weekly cluster (1 to 5) was the dependent variable and spatial characteristics were the 
independent variables. Results are presented in Table 4 and described below. 

Table 4. Multinomial logit model results of hourly/weekday cluster membership

Variable

Cluster-specific coefficients (ref. = 1)

2 3 4 5

Intercept 0.751 1.409 0.006 -0.576

Population density (1,000/mi2) -0.234 -0.240 -0.373

Residential land use (%) -0.035

Commercial land use (%) -0.046 -0.053 -0.055

Industrial land use (%) -0.034 0.058

Intersection density (#/mi2) -0.005 -0.010 -0.019

4-way intersections (%) -0.017 -0.018 -0.039

Schools (#) 0.515 1.039 1.166

Vehicle ownership (#, mean) -0.555

Household size (#, mean) 0.275 0.325

Household income ($1,000) 0.021 0.012 0.016

McFadden pseudo-R2 0.170

Sample size (N) 1,161

Statistical significance: bold for p < 0.05, italics for p < 0.10, not shown for p > 0.10. 

The model results help to explain why we see some of the differences in the pedestrian activity pat-
terns across clusters. Notably, the bimodal patterns (multiple peaks) of clusters 3, 4 and 5 is partially ex-
plained by the result that these locations were much more likely to located within a quarter-mile walking 
distance of one or more schools, indicated by the significant positive coefficients for number of schools. 
Signals were also more likely to have a bimodal pattern in areas with less street network connectivity, as 
shown by the significant negative coefficients for intersection density and percentage of four-way inter-
sections. Based on the results for population density, percentage of commercial land use, and household 
income, signals were more likely to have the smooth unimodal pattern of cluster 1 when they were in 
areas with greater population density, more commercial land uses, and lower household incomes. Look-
ing at differences between unimodal signals, belonging to cluster 1 was more likely in neighborhoods 
with more residential land uses, greater vehicle ownership, and smaller household sizes. 
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3.1.3 Expansion factor accuracy

Figure 2 displays the average expansion accuracy for each hour in the week by hourly/weekly cluster. 
Overall, expansion accuracy is greater (lower error) for clusters and during times with higher pedestrian 
activity levels. Average error is less than 75-100% for all clusters when counts are taken during daytime 
hours, but greater than 75% (and as much as 150%) when overnight counts are expanded. Expansion 
errors for daytime counts at signals in clusters 1 and 3 (the largest clusters) are around 25% or less, sug-
gesting that only a few hours of counts at these locations may be enough to accurately estimate longer-
term pedestrian volumes. Conversely, counts taken at signals in the smallest cluster (5) may need to be 
of a longer duration in order to produce similarly accurate estimates of pedestrian activity. 

 

Figure 2. Expansion accuracy for hourly/weekday clusters

3.2 Monthly patterns

3.2.1 Seasonal (monthly) clusters

The normalized counts (inverse expansion factors) for the hourly/weekday clusters shown in Figure 1 
depict average hourly and weekday pedestrian activity patterns expressed as a proportion of weekly to-
tals. Homogeneity within those clusters may obscure other sources of temporal variations in pedestrian 
activity patterns between locations, such as those differences due to seasonal variation. In fact, factoring 
processes in traffic monitoring to convert short-duration counts to annual average daily volumes require 
seasonal adjustment factors as well. 

Therefore, we performed a similar empirical clustering process to generate monthly clusters of 
similar seasonal pedestrian activity patterns. In traffic monitoring, such seasonal variation in activity at 
intersections is addressed during the calculation of annual volume by using monthly adjustment factors. 
After calculating the monthly adjustment factors as described in section 2.1.1, some of the intersections 
were removed due to unusually high factors above 3.0, which could have resulted from missing data or 
technical errors, resulting in a total of 1,446 intersections. To recap, the optimum number of monthly 
(seasonal) clusters was determined to be three (based on fit statistics and visualization). 

The mean values of the adjustment factors for the three monthly clusters are shown in Figure 3. On 
average, the largest cluster A (1,076, 74.4%) has the least variation in pedestrian activity patterns from 
month-to-month, peaking in the summer months (especially June, but with a slight decrease in July) 
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and bottoming out in the winter months (especially December). Higher pedestrian activity during the 
summer is warranted because of pleasant weather (warm and dry) throughout most of Utah. Similarly, 
cold temperature and snow conditions result in lower levels of pedestrian activity during Utah winter 
months. The other two clusters B and C show greater (and different) variations on this trend. Signals 
in cluster B (111, 7.7%) have sort of a more extreme version of cluster A’s pattern, with even higher 
relative volumes in the summer (from June through September) and lower volumes in winter (espe-
cially February). The pattern suggests that pedestrian activity for signals in cluster B is more sensitive to 
weather. Conversely, cluster C (259, 17.9%) shows a distinctly different pattern, peaking in September 
and having less-than-average pedestrian activity during the summer months (June through August). 
Signals in cluster C could be near schools or universities, which are usually not in session during these 
three summer months. These hunches about the reasons motivating seasonal variations in pedestrian 
activity could be confirmed through comparisons with spatial characteristics, as presented in the follow-
ing section.

 

Figure 3. Means of pedestrian activity patterns by monthly cluster

3.2.2 Spatial factors affecting seasonal (monthly) patterns

As described earlier, seasonal variation in pedestrian activity patterns are mostly influenced by climatic 
conditions (i.e., snow, temperature, rainfall) (Runa, 2020). To help explain these seasonal variations in 
Utah, we estimated another multinomial logit model on 1,161 signalized intersections, this time where 
the dependent variable was membership in a monthly cluster (A, B, or C). In addition to the same land 
use, built environment, and socio-economic characteristics as used previously, we also added climatic 
divisions classifications from the National Climate Data Center. The assumption is that signals in the 
same climatic division experience similar weather patterns throughout the year. As shown in Figure 4, 
Utah contains seven climatic divisions, although most signals in our dataset are located in the North 
Central region (also known as the Wasatch Front), with some in the Northern Mountains and Dixie 
regions. (We did not have spatial characteristics data for signals in the other climatic divisions.) Note 
that although many of the signals appear to lie along the border of the North Central and Northern 
Mountains divisions, almost all are truly located in the urbanized valleys of Utah’s Wasatch Front (such 
as in Salt Lake City). These signals experience weather patterns that are much more similar to each other 
than they are to higher-elevation locations in the Northern Mountains (such as in Park City). 
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Figure 4. Map of signalized intersections and climate divisions

The results of the multinomial logit model for monthly clusters are shown in Table 5; the largest 
cluster A is the reference alternative. Signals were less likely to be in cluster A and more likely to be in 
clusters B or C if they were in areas with greater employment density, lower traffic volumes, and larger 
household sizes. Cluster B was associated with less commercial land uses, greater intersection density, 
and fewer places of worship. Signals in the Dixie climatic region were much more likely to belong to 
cluster B or C than to A. Typically, this region experiences hotter summers and milder winters than 
other areas of Utah, which could explain the greater monthly variation for cluster B and the summer 
trough of cluster C. Also, signals near schools were much more likely to be in cluster C, which supports 
our hypothesis about a lack of school attendance being an explanation for lower pedestrian activity levels 
in summer months. 
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Table 5. Multinomial logit model results of monthly cluster membership

Variables

Cluster-specific coefficients (ref. = A)

B C

Intercept -2.233 -3.521

Climate division: Dixie 

(ref. = North Central) 2.852 4.666

Employment density (1,000/mi2) 0.029 0.046

Commercial land uses (%) -0.031

4-way intersections (%) 0.019

Schools (#) 0.734

Places of worship (#) -0.399

Vehicle ownership (#, mean) -1.001 -0.880

Household size (#, mean) 0.722 1.053

McFadden pseudo-R2 0.186

Sample Size (N) 1,161

Statistical significance: bold for p < 0.05, italics for p < 0.10, not shown for p > 0.10. 

3.2.3 Adjustment factor accuracy

The average error (expansion/adjustment accuracy) for the three monthly clusters is shown in Figure 5. 
Accuracy is remarkably good (around 10% error) for the largest cluster A all year round, but even cluster 
C has reasonably good expansion/adjustment accuracy (10-20% error) throughout most of the year. 
The smallest cluster B shows the potential for more error (30-40%). As with the hourly/weekday clus-
ters, accuracy for the monthly clusters tends to be worse during months with lower levels of pedestrian 
activity (December for all clusters, July for cluster C). 

 

Figure 5. Expansion accuracy for monthly clusters
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3.3 Cross-classification of hourly/weekday and monthly clusters

As hourly/weekday and monthly pedestrian activity pattern trends differ in nature (due to variations in 
climatic conditions and some spatial characteristics), it is useful to examine the frequency of signals in 
each of the hourly/weekday clusters that belonged to a particular seasonal trend produced by the month-
ly clusters. Therefore, we cross-tabulated the number of intersections that belonged to each combination 
of hourly/weekday and monthly clusters. Table 6 indicates that most unimodal hourly/weekday clusters 
(1 and 2) pertain to the more uniform seasonal variations of cluster A. However, most of intersections 
that belonged to the bimodal hourly/weekday clusters 4 and 5 (those with high relative peak pedestrian 
activity levels) were grouped under monthly cluster C, where pedestrian activity dips during summer 
months. This makes sense, given that a bimodal daily pattern and a summer lull in pedestrian activity 
are both indicative of school-driven pedestrian activity patterns. 

Table 6. Cross-classification of hourly/weekday and monthly clusters (N = 1,446)

Hourly/weekday clusters Monthly Clusters

A B C

1 661 38 85

2 152 36 39

3 199 11 50

4 53 19 70

5 11 7 15

4 Discussion and conclusions 

In this study, we provided an empirical clustering approach to grouping locations with similar long-term 
pedestrian activity patterns using pedestrian push-button data from over 1,500 signalized intersections 
in Utah. After calculating the proxy measure of pedestrian activity (imputed pedestrian calls registered), 
we performed cluster analysis to: classify signals based on the normalized hourly/weekly counts (each 
hour’s proportion of weekly totals, or the inverse of the expansion factors), and account for seasonal 
variation using monthly adjustment factors. We also used multinomial logit models to identify spatial 
and climatic characteristics (land use, built environment, and socio-economic characteristics, as well 
as climatic regions) that help predict and explain which locations see different temporal patterns in 
pedestrian activity levels. Finally, we assessed the accuracy of applying the expansion/adjustment factors. 

The ultimate objective of this work was to investigate the temporal patterns of pedestrian activity 
and develop expansion/adjustment factors and factor groups that relate to spatial characteristics. Utiliz-
ing the hourly/weekday and monthly clusters that we developed, each with an average temporal pattern, 
one can expand a short-duration count (for a specific hour, weekday, and month) through multiplica-
tion and/or division to get an estimate of the long-term average pedestrian volume at a particular loca-
tion. In the process of achieving this aim, our paper made several contributions to travel monitoring for 
pedestrian travel. 

• Most notably, we utilized a much greater quantity of pedestrian data than has been possible to 
examine before, specifically one year of data from 1,697 signalized intersections throughout 
Utah. This larger sample size allowed us to examine more nuanced differences in pedestrian ac-
tivity patterns and have the power to identify significant associations with spatial characteristics. 

• Our use of separate hourly/weekday and monthly clusters allowed us to distinguish the influ-
ences of time-of-day and day-of-week from seasonal variations. 
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• We also considered the expansion/adjustment accuracy for our factor groups (clusters), which 
has implications for the selection of times-of-day and durations for short-term pedestrian 
counts. 

• In the remaining section of this paper, we discuss key findings, their applications for under-
standing pedestrian behavior and monitoring pedestrian traffic, and study limitations. 

Overall, the clustering of average hourly proportions of weekday counts revealed common hourly/
weekday pedestrian activity patterns at most signalized intersections, as shown for the five clusters alto-
gether in Figure 6. All clusters saw their highest pedestrian volumes during weekday daytime hours, with 
peak pedestrian volumes in the afternoon or early evening, lower volumes on weekends, and slightly 
lower volumes on Mondays and Fridays. In fact, the differences between clusters were more nuanced. 
Three clusters (3, 4, and 5) showed bimodal morning and evening peaks, with the other two clusters 
(1 and 2) having just a single evening peak. The weekday peak hours varied from 1 to 2.5 percent of 
weekly totals, depending on the cluster. The fact that the clustering algorithm picked up even these small 
differences in temporal patterns highlights the utility of an empirical data-driven approach to construct-
ing pedestrian factor groups. On the other hand, the small differences between locations shown here 
suggests that a coarser factor grouping might not result in significantly inferior count expansion results. 

Compared to past research defining pedestrian or non-motorized count factor groups (Medury et 
al., 2019; Miranda-Moreno & Lahti, 2013; Schneider et al., 2009), the hourly/weekday factor groups 
(clusters) we identified are not as distinct. This is likely due to several factors, most notably the limitation 
of our source data. Research relying on permanent non-motorized counters can cover a wider range of 
types of temporal use patterns—commuting vs. recreational vs. mixed—precisely because the locations 
where counters are deployed were selected to capture a variety of behaviors and uses. In this study, we 
relied upon existing infrastructure (traffic signals) in locations that were not chosen with pedestrian 
count programs in mind. In other words, location selection was exogenous to our study purpose. Since 
most traffic signals are located in areas with higher traffic volumes (such as along arterials) or where walk-
ing for utilitarian/transportation purposes is expected, they may not be able to detect the full variety of 
pedestrian temporal patterns that exist, such as along trails or in recreational areas. 

 

Figure 6. Means of pedestrian activity patterns by hourly/weekday cluster: 1 (N = 871), 2 (N = 278), 3 (N = 302), 4 (N = 188), 
and 5 (N = 58)
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Despite the less noticeable differences between hourly/weekday pedestrian activity patterns in 
different clusters, the model illuminated land use, built environment, and socio-economic differences 
that help to explain these pattern variations. Notably, having schools nearby significantly increased the 
chances of a signal having a bimodal pedestrian activity pattern, coincident with the morning and after-
noon/early evening time periods bracketing the school day. Several other built environment attributes—
population density, residential and commercial land uses, connected street networks—were linked to 
signals belonging to cluster 1, with unimodal, smoother, and less varied weekday pedestrian activity pat-
terns. This information about spatial characteristics—along with insight into expansion accuracy—aids 
planners and pedestrian traffic monitoring program managers by suggesting the types of locations where 
different expansion/adjustment factors are needed or even where longer or shorter short-duration counts 
are needed to provide accurate pedestrian volume estimates. 

Our clustering of monthly adjustment factors showed more significant differences in the seasonal 
patterns of pedestrian activity across intersections (see Figure 3) than were found for hourly/weekday 
patterns. Specifically, we captured both the general seasonal trend (higher pedestrian activity in summer, 
lower activity during winter months) and also trends specific to certain locations, such as the drop in 
pedestrian activity during out-of-school months from June through August. By linking these monthly 
groupings to spatial characteristics, we confirmed that this latter specific pattern occurred more of-
ten near schools and universities. We also demonstrated that pedestrian activity was more sensitive to 
weather in certain regions (southwestern Utah) with higher summer temperatures and mild winters. 

Another finding of this study is about expansion factor accuracy. Confirming past research, our 
results suggest that the expansion accuracy is cyclical in nature, with higher errors during low-volume 
overnight hours and greater accuracy at daytime. This implies that manual counts should be conducted 
at intersections during the daytime, and longer counts may be beneficial, especially during off-peak 
hours and at locations with more variability (i.e., cluster 5). The expansion accuracy from empirical 
clustering should be more accurate than the “single factor” approach of having just one factor group, as 
shown by previous studies (Griswold et al., 2018; Medury et al., 2019). 

4.1 Limitations 

The study is not without additional limitations. First, the pedestrian activity metrics derived from pe-
destrian push-button data does not provide the actual pedestrian volume, and may contain errors, be-
cause of imperfect correlation and non-linearities. However, correlation between push-button data and 
volumes is high (Singleton et al., 2020; Singleton & Runa, 2021), and we suspect the benefits of being 
able to analyze data from hundreds if not thousands of locations outweigh the inaccuracies of the source 
data. Second, the clustering approach produced five clusters, but in reality, there were only two distinct 
groupings (unimodal and bimodal). However, the tradeoff between cluster fit and the number of clus-
ters is difficult to control for, and empirical clustering does offer the benefit of identifying smaller differ-
ences that may be obscured using a different approach. Third, the sample size decreased somewhat when 
incorporating spatial characteristics, which might cause bias or lack of generalizability of the spatial 
analysis results. Fourth, the relatively coarse nature of the climatic divisions used in the study could not 
exactly pin-point what causes the variation in seasonal patterns (i.e., snow, rainfall, wind), and there may 
be additional influential weather variations within each climatic division. Fifth, the use of empirical clus-
tering and Utah-specific climate zones may limit the generalizability of these temporal patterns to areas 
outside of Utah. Nevertheless, a similar process may be useful for developing pedestrian expansion and 
adjustment factors in other states. Despite these limitations, in summary, we have demonstrated that 
traffic signals with pedestrian push-button data are a very useful supplement to—but not a complete 
replacement for—existing permanent counters within a broader pedestrian traffic monitoring program. 
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4.2 Future research

There are many opportunities to refine this research or extend it in new directions. Future research could 
look at using alternative data sources (such as the Google Places API) to calculate the attributes near 
intersections, which could provide more detailed insights into specific land uses or place types than some 
of the aggregate metrics used in our study. Correlating traffic signal-based pedestrian activity levels with 
weather is a potential fruitful area of inquiry. In this regard, more fine-grained data—about temperature, 
humidity, snow, air quality, etc.—collected from nearby weather stations could be assembled and cor-
related with pedestrian activity patterns at intersections (Runa & Singleton, 2021). If there are common 
patterns in how pedestrian activity changes when it snows, rains, etc., it may be possible to develop 
expansion/adjustment factors that work for short-duration counts conducted during mildly-inclement 
weather. Additionally, another promising area for future research could be the investigation of the effects 
of major events such as concerts or sporting events on changes in pedestrian activity compared to normal 
days. More research could also be done using these pedestrian traffic signal data to inform the duration 
and timing of short-term pedestrian counts. For example, one could extend this study to determine the 
average expansion/adjustment accuracy of different count durations (anywhere from one hour to one 
week), in an attempt to find the optimum tradeoff between cost and accuracy. Finally, research also 
could look at using pedestrian push-button data to calculate and compare other types of traffic moni-
toring count data expansion factors, such as hour-to-year or day-to-year expansion factors, as these have 
been suggested as potentially more accurate alternatives for estimating annual average volumes (Medury 
et al., 2019). 
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