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Abstract: Demand prediction plays a critical role in traffic research. 

The key challenge of traffic demand prediction lies in modeling the 

complex spatial dependencies and temporal dynamics. However, there 

is no mature and widely accepted concept to support the solution of 

the above challenge. Essentially,  a prediction model combined with 

similar objects in temporal and spatial dimensions could obtain better 

performance. This paper proposes a concept called the Similarity-

based Principle (SP), which is applied to improve the prediction 

performance of deep learning models in complex traffic scenarios. For 

the temporal components, the long-term temporal dynamics in 

contemporaneous historical data for ridership are extracted by the 

Stacked Autoencoder (SAE) method. For the spatial components, the 

activity-based spatial geographic information (ABG-information) is 

used to capture the spatial correlation of the traffic network, which is 

reflected in the daily activities of humans. Specifically, the SP is 

applied to a Spatio-temporal Graph Convolutional Neural Network 

(STGCNN) model. In the case study, the  Similarity-based Principle 

Spatio-temporal Graph Convolutional Neural Network (SP-STGCNN) 

model predicts demand for bicycle sharing in San Francisco. The 

results show that the SP effectively improves the model's 

performance. The prediction accuracy is enhanced by up to 10.34% 

compared with STGCNN. For spatial relationships, the model using 

the geographic information attribute performs better than that using 

the road information attribute and the distance attribute. It is proved 

that the construction of the Spatio-temporal model-based similarity 

principle can improve the performance. 
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1 Introduction 

Traffic prediction is an important research area focused on anticipating traffic demand 

to mitigate congestion and balance demand and supply (Li et al., 2015; Maleki Vishkaei 

et al., 2020). Essentially, traffic demand prediction aims to predict a traffic-related value 

for a location at a timestamp based on historical data. Traffic prediction for a long period 

gives a detailed predicting of traffic models to evaluate future capacity requirements and 

therefore permits for more minute planning and better decisions. Short-term traffic 

prediction can provide decision support for congestion control and for optimal resource 

management (organization dispatch and path planning) (Chen et al., 2020). 

In the past, prediction problems have not been extensively studied, even though the 

importance of traffic prediction in real traffic management. The primary challenges in 

traffic prediction lie in temporal variations and spatial variations. Concerning temporal 

variations, traffic patterns display daily, weekly, and seasonal fluctuations. For instance, 

morning and evening rush hours may vary, and there might be distinctions between 

weekday and weekend traffic flows. Without advanced models, accurately predicting 

these patterns was challenging. Regarding Spatial Variations, traffic dynamics differ 

across various locations. CBD (Central Business District) may exhibit distinct traffic 

flows compared to their suburban counterparts. Earlier prediction models struggled to 

integrate spatial correlations effectively. Two primary reasons underlie these challenges 

for predict models: traditional traffic prediction models mainly focus on the prediction 

task of single time series and lack the ability to combined multi-source data (Joshi & 

Hadi, 2015). In the past decade, with the development of deep learning (DL) prediction 

models (Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU)), the 

prediction accuracy of traffic prediction tasks has been significantly improved 

(Ramakrishnan & Soni, 2018). Predictions for the single time series have been well 

addressed. In recent years, how to solve many-to-many traffic prediction have gradually 

become a hotspot research task (Xu et al., 2018). Due to the spatial-temporal nature of the 

traffic domain, the critical challenge of traffic demand prediction lies in how to model the 

complex spatial and temporal dependencies. 

In this study, we aim to address certain challenges by proposing a Similarity-based 

Principle (SP). This principle is designed to construct deep learning models and enhance 

the performance of the Spatio-temporal Graph Convolutional Neural Network model 

specifically for traffic demand prediction. For the temporal components, the long-term 

temporal dynamics in contemporaneous historical data for ridership are extracted by the 

Stacked Autoencoder (SAE) method. For the spatial components, the activity-based 

spatial geographic information (ABG-information) is used to capture the spatial 

correlation of the traffic network. Specifically, the Similarity-based Principle is applied to 

a Spatio-temporal Graph Convolutional Neural Network (GCNN) model. Our 

contributions are three-fold: 

(1) In this study, an innovative principle, the Similarity-based Principle, is applied to 

the Spatio-temporal traffic demand prediction model. 

(2) This paper uses the Stacked Autoencoder (SAE) method to compress the long-

term historical contemporaneous information. The feature extraction method introduces 

the activity-based data to improve the spatial correlation of the GCN model to improve 

the prediction accuracy and training efficiency.  

(3) This paper verifies a thought that the integration of similar information is helpful 

to the optimization of the Spatio-temporal demand prediction model. 
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2 Literature review  

Considering the influx of scholars with computer backgrounds into traffic field 

research in the past two years, their research has been provided a large number of 

prediction models. 40 highly cited papers published in the last four years are summarized 

in Table 1. 

Table 1. Highly cited papers on traffic prediction 

 Prediction objects Multi-data Model 

 P1 P2 P3 P4 P5 M1 M2 M3 M4 M5 Temporal model Spatial model 

(J. Feng et al., 2018)      *  *    LSTM General feature 

extractor 

(S. Feng et al., 2018)   *    *     Spectral Clustering (SC) Algorithm 

 

(Hulot et al., 2018)   *    *     Distribution hypothesis 

(Chai et al., 2018)   *       *  Convolutional 

layers 

Multiple graphs 

(Li et al., 2018)  

 

    *     O1 Encoder-decoder 

architecture 

Bidirectional random 

walks on the graph 

(Lin et al., 2018)  

 

 *       *  Graph Convolutional Neural Network with 

data-driven graph filter (GCNN-DDGF) 

model 

(Yu et al., 2018)      *    *  Gated CNNs Graph CNNs 

(Fang et al., 2019)  

 

*  * *     *  Multi-resolution 

temporal module 

Global correlated 

spatial module 

(Yao, Wu, et al., 2019)  *     *  *   LSTM Local CNN 

(Liu et al., 2019)  *     *     Temporal 

evolution context 

Local spatial context 

(LSC) and global 

correlation context 

(GCC) 

(Pan et al., 2019) *      *  *  Recurrent neural 

network 

Meta graph attention 

network 

(Saxena & Cao, 2019) * *    * *    ConvLSTM ST maps 

(Yao, Tang, et al., 2019) * *        O2 Periodically 

Shifted Attention 

Mechanism 

Flow Gating 

Mechanism 

(Jiang et al., 2019)  *       *  LSTM Convolutional neural 

network 

(Li et al., 2019)  *       *  Dynamic 

attention-based 

graph embedding 

model 

Dynamic 

heterogeneous graph 

(Wu et al., 2019)     *    *  Gated temporal 

convolution layer  

Graph convolution 

layer (GCN) 

(Do et al., 2019)     *    *  Temporal 

attention 

Spatial attention 

(Geng et al., 2019) *      *    Contextual gated 

recurrent neural 

network 

(CGRNN)  

Multi-graph 

convolution  

(Li & Zheng, 2020)  *         Gaussian Process 

Regressor 

Adaptive Transition 

Constraint (AdaTC) 

clustering algorithm 

(Zhang et al., 2020) *          Spatiotemporal 

dynamic time 

warping  

(ST-DTW) 

algorithm 

Multi-task learning 

temporal convolutional 

neural network  

(MTL-TCNN) 

(Bogaerts et al., 2020)     *    *  LSTM Graph convolutional 

neural network 
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Notes: 

P1-Taxi  P2-Bike  P3-Subway  P4-Bus  P5-Traffic flow 

M1-Weather  M2-POI  M3-OD  M4-Network  M5-Other data 

O1-Distance  O2-Similarity of demand patterns  O3-Twitter 

 

 

Despite the diversity of these models, their common characteristics are 1. The state-

of-the-art DL-based methods combine the spatial modules (such as CNN, GCN) with the 

temporal modules (such as LSTM, GRU) to address the spatial and temporal dependence 

of traffic prediction problems. 2. Multi-source data are used. 3. Most papers predict 

traffic flow and used public data sets. However, these methods have three significant 

limitations in application: 1. There is no clear theoretical guidance on how to select 

among these modules to build a well-performed model given the diversity of existing 

deep learning modules. 2. There is no clarity on how to organize these multi-source data 

to achieve the best performance for models. 3. There is no generalization model applied 

to traffic flow prediction and demand prediction, which means that traffic flow 

prediction, cannot be directly transplanted to the demand prediction problems. 

 Prediction objects Multi-data Model 

 P1 P2 P3 P4 P5 M1 M2 M3 M4 M5 Temporal model Spatial model 

(Chen et al., 2020)     *      AE-GRU 

(Cui, Henrickson, et al., 

2020) 

    *    *  LSTM Traffic graph 

convolution (TGC) 

(Cui, Ke, et al., 2020)     *      Gated recurrent 

structure 

Graph wavelet 

(Shi et al., 2020)     *    *  Attention-based 

Periodic-Temporal 

neural Network 

(APTN) 

Graph Convolution 

Networks GCN) 

(Wang et al., 2020)     *    *  Sequence to 

sequence 

(seq2seq) 

architecture 

Graph convolution 

(L. Zhao et al., 2020) *    *    *  GRU GCN 

(Zheng, 2020)     *    *  Temporal 

attention 

mechanism 

models 

Spatial attention 

mechanism 

(Bao et al., 2021) *          LSTM 3D convolution 

(L. Chen et al., 2021) *          CNN 

(Wang et al., 2021)  *     *    Deep Convolutional Neural Network 

(Yao & Qian, 2021)     * *    O3 Clustered learning 

structure 

Social media data 

augmentation method 

(Zhang et al., 2021)     *   *   Dynamic OD graphs 

(Guo et al., 2021)  *       *  Self-attention 

mechanism 

Dynamic graph 

convolution module 

(Z. Chen et al., 2021)  *       *  Attention-based ST-GCN (AST-GCN) 

(Yin et al., 2021)     *    *  Internal attention 

mechanism 

Dynamic 

neighborhood-based 

attention mechanism 

(Zi et al., 2021)  *       *  Temporal 

attention 

GCN 

(Yuan et al., 2021) *        *  Temporal graphs Three spatial graphs 

(Du et al., 2021) * *     *    Dynamic 

transition 

convolution 

Clustering algorithm 

(Xiao et al., 2021)  *       *  Gated CNNs Convolutional neural 

networks 
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First, there is no clear theoretical guidance on how to select among these modules to 

build a well-performed model given the diversity of existing DL modules. Traffic 

researchers need to understand how to select and deploy these modules inside a DL 

network to maximize the effect. Although there are many well-performing models, no 

study has proposed standardized guidelines for the construction of DL models in different 

prediction scenarios (Sarker, 2021) (Taye, 2023). 

Second, existing studies lack interpretability in selecting and organizing multi-source 

information. An increasing number of studies are using multi-source data (traffic data, 

land use, weather, etc.) as input to deep learning models. In Table 1, 35 studies (87.5%) 

integrate weather, road network, land use, and other external factors into the prediction 

model. One potential assumption underlying these studies is that the used DL models can 

understand the dependency and capture beneficial information in the multi-source input 

dataset (Alzubaidi et al., 2021) (Taye, 2023). To the best of the author’s knowledge, no 

studies have proved this assumption by interpreting the information been captured in the 

proposed model. It’s still not clear how to organize these multi-source data to achieve the 

best performance.  

Third, in Table 1, 13 studies (59.1%) predict traffic flow combined road network 

between 2020 and 2021. In the task of traffic flow prediction, the adjacent and close 

monitoring points on the road network have a strong correlation. Taking the intersection 

as an example, vehicles passing through the detector of the East through lane will 

probably pass through the detector of the adjacent West through lane. The correlation of 

detectors is more evident in some highway data sets because vehicles are impossible to 

leave or turn around easily on highways (Li et al., 2017). This graph network structure 

constructs the link relationship according to the spatial correlation between detectors or 

measures it with distance. Such the network relationship can effectively grasp the core of 

traffic prediction, that is, the strong correlation of adjacent objects. Demand predicting 

refers to predicting the traffic inflow and outflow of an object (traffic district, station, 

etc.) (Sun et al., 2022). However, the graph network structure of traffic flow prediction 

can not be directly transplanted to the demand prediction problems (Z. Chen et al., 2020). 

To solve the abovementioned challenges, we propose a novel method named 

Similarity-based Principle (SP) to construct the deep learning model and organize multi-

source data in traffic demand prediction. The SP refers to combining related/similar 

objects temporally and spatially. In the traffic domain, the similarity feature means that 

the change of traffic data characteristics has the spatial dependency on locations and the 

temporal dependency on historical periodicity. The thought of SP is valuable in traffic 

prediction issues. As the essence of the traffic prediction task is multiple regressions, the 

more relevant the input information is to the prediction target, the more accurate the 

prediction result is. SP is consistent with researchers' general consideration of prediction 

issues. Researchers have pre-processed data for traffic prediction, such as eliminating 

data outliers (Ma et al., 2021), mining the correlation between variables (Liu et al., 2022), 

and pre-classifying the sample data. The essence of these operations is to reinforce the 

similarity between the inputs to the model internally.  

To prove the effectiveness and interpretability of this concept, we use SP for training 

and testing the state-of-the-art deep learning prediction model. Previous research has 

improved the structure and performance of the model in both temporal and spatial 

modules. For the temporal components, as demonstrated in Figure 1(a), some researchers 

assumed the model could capture long-term traffic characteristics (in days or weeks) and 

utilize them to estimate short-term traffic demand (in hours or minutes). Previous 

research employed CNN models for the spatial components to extract spatial features in 

traffic prediction (Pan et al., 2018). They commonly used distance, road network, 

interaction, and station clustering to show spatial relationships, as shown in Figure 2(a). 
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However, longer input sequences may contain long-term data features and more 

irrelevant information, causing the model's performance to decrease rapidly. In addition, 

the road network topology, station distances, and interworking relationships cannot 

accurately reflect users’ actions in the actual world because daily human activities 

generate traffic data.  

 

 

 

Figure 1. Periodic repetition of traffic demand 

  

Figure 2. Spatial heterogeneousness among stations 

To fill these gaps, SP is applied to the spatio-temporal demand prediction framework. 

As indicated in Figure 1(b), the similarity-based principle integrates similarities between 

the features of the period to be predicted and those of historical periods (Yang, 2013). It 

can successfully reduce the input sequence's dimension and extract long-term historical 

data features. For spatial relationship, ridership fluctuation has similar characteristics, 

which is related to geographic information. For example, during the morning rush hour 

on weekdays, most traffic starts from the residential areas and ends at workplaces. On 

weekdays, there is an opposite traffic phenomenon during the evening rush hour, as 

shown in Figure 2(b). In addition, existing research shows that the distribution of shared 

bicycles is highly coincident with the distribution of hotspot facilities such as urban 

residences, companies, restaurants, and rail transit stations (J. Zhao et al., 2020). 

Therefore, the introduction of geographic data to measure spatial relevance may have a 

better performance in demand prediction. Based above analysis, the Similarity-based 

Principle is applied to the Spatio-temporal Graph Convolutional Neural Network model 

in the shared bicycles research scenario.  
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The rest of this paper is organized as follows. Section 3 describes the proposed 

prediction model for the traffic system. Section 4 discusses the case study for shared 

bicycles in San Francisco and results in various scenarios. Finally, the conclusions are 

provided in Section 5. 

 

3 Problem description and model formulation 

3.1 Problem description 

The objective of demand prediction is based Similarity Principle to predict the future 

demand using activity-based spatial geographic information. Our proposed approach 

consists of two stages: spatio-temporal similarity processing and the ST-GCNN model 

prediction. At the first stage, the Stacked Autoencoder (SAE) method is applied to extract 

the similarity of contemporaneous historical data and get long-term traffic data 

information. The activity-based data are used to measure the spatial similarity among 

different prediction objects. The spatial geographic information is extracted from the 

land-use planning data and the points of interest data (POI). At the second stage, the 

Spatio-temporal Graph Convolutional Neural Network is proposed to reconstruct the 

graph structure for the demand prediction.  

3.2 Bicycle sharing ridership predicting 

Both contemporaneous historical data and the geographic information on where the 

trips are generated and attracted are needed to predict the traffic demand. Making full use 

of the spatial and temporal dependences is the key to solving traffic demand prediction 

problems. The architecture of SP-STGCNN is shown in Figure 3. 

 

 

Figure 3. Architecture of SP-STGCNN 

The graph structure shows the topological characteristics of the network and its spatial 

dependence. The network can be defined by a graph as 𝐺 = (𝑁, 𝐸, 𝑊), where N is the set 

of nodes, and 𝐸 is the set of edges. Each node has its characteristics, and the relationship 

between each pair of nodes forms a matrix of 𝑁 × 𝑁, known as the weighted adjacency 

matrix of 𝑊. At the 𝑡𝑡ℎ  time step, 𝑥𝑡
𝑛  represents the ridership (generation or attraction) of 

stations 𝑛 at time step 𝑡. 𝐸𝑛𝑖,𝑛𝑗
 represents the spatial relationships between any two 
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stations, where ∀𝑛𝑖 , 𝑛𝑗 ∈ 𝑁. If 𝑛𝑖 and 𝑛𝑗 are connected ((𝑛𝑖 , 𝑛𝑗) ∈ 𝐸), 𝑊𝑖,𝑗 represents the 

spatial relationship between 𝑛𝑖 and 𝑛𝑗. 

 

 

Figure 4. Illustration of ridership data 

The ridership data 𝑋𝑡
𝑛 contains long-term information and short-term information, 

which presents as 𝑋𝑡
𝑛 = [𝑋𝑙 𝑡

𝑛 , 𝑋𝑠𝑡
𝑛]. The illustration of ridership data is shown in Figure 

4. The long-term information 𝑋𝑙𝑡
𝑛 contains several contemporaneous historical data, 

which can be defined as 𝑋𝑙𝑡
𝑛 =

[𝑥𝑡−𝑑∗𝑚−𝑙
𝑛 , … , 𝑥𝑡−𝑑∗𝑚

𝑛 , … , 𝑥𝑡−𝑑∗2−𝑙
𝑛 , … , 𝑥𝑡−𝑑∗2

𝑛 , 𝑥𝑡−𝑑−𝑙
𝑛 , … , 𝑥𝑡−𝑑

𝑛 ]. The SAE model is 

chosen to reduce the dimension of 𝑍𝑙𝑡
𝑛 to concentrate on the long-term information 𝑋𝑙 𝑡

𝑛. 

The input data is presented as 𝑋𝑖𝑛𝑡
𝑛 = [𝑍𝑙𝑡

𝑛 , 𝑋𝑠𝑡
𝑛]. At the same time, POI data and land use 

planning data are combined to extract the activity-based geographic information, The 

weighted adjacency matrix of 𝑊 measures the spatial relationship between nodes based 

on the geographic information. Finally, the temporal and spatial similarity information is 

inputted into the deep learning prediction model, and the demand prediction results �̂�𝑡+1
𝑛  

are obtained for the docking station 𝑛 at time step 𝑡 + 1.  

3.3 Similarity principle in temporal module 

Predicting future traffic demand needs historical demand series data. Yao et al. (2018) 

focused on the impact of long-term and short-term time series on prediction, and he 

pointed out that periodically shifted attention mechanism captures the long-term 

dependency and temporal shifting, and the LSTM captures the short-term temporal 

dependence. For the prediction model, the length of the data collection time frame can 

affect the accuracy of the results significantly as the long-term effects on the demand 

could not be captured if the data are collected during a short period. Meanwhile, the 

short-term effects could be missed if data collected over a long period are applied to the 

model (Wu et al., 2019; Wang et al., 2020). Therefore, this study uses Stacked 

Autoencoder mode to integrate the historical contemporaneous information based on the 

Similarity Principle. 

The Stacked Autoencoder (SAE) is connected to several Autoencoders (AE) (Hinton, 

2006). AE is used for dimension reduction and abnormal detection. Specifically, AE 

encodes the input data 𝑋 to obtain a new low-dimensional feature 𝑍, and then decodes 𝑍 

into 𝑌, and makes 𝑌 as close to the input 𝑋 as possible. 
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Figure 5. Structure of Autoencoder and Stacked Autoencoder 

 

The AE network can be divided into two parts: the encoder represented by the 

function 𝑍 = 𝑓(𝑋) and the decoder 𝑌 = 𝑔(𝑍) to generate the reconstruction using the 

following formula. 

𝑧𝑖 = 𝑓(𝑤𝑡 ∙ 𝑥𝑖 + 𝑏𝑡)                                                 (1) 

𝑦𝑖 = 𝑔(𝑤𝑦 ∙ 𝑡𝑖 + 𝑏𝑦)                                                   (2) 

𝑌 = 𝑔(𝑍) = 𝑔(𝑓(𝑥)) ≈ 𝑋                                              (3) 

Using the model parameters, reconstruction errors 𝐿(𝑋, 𝑍) can be minimized and 

denoted as 𝜃. 

𝜃 = arg 𝑚𝑖𝑛
𝜃

𝐿(𝑋, 𝑍) = arg 𝑚𝑖𝑛
𝜃

1

2
∑ ‖𝑥𝑖 − 𝑧𝑖‖2𝑁

𝑖=1                              (4) 

After encoding, the intermediate state 𝑍 has a low-dimensional feature that contains 

long-term historical information. When repeating this process, the intermediate state 𝑍 is 

used as the new input 𝑋 for the new AE. A new Auto-Encoder is trained and stacked 

layer by layer to form a Stacked Auto-Encoder. 

In this paper, the sliding window algorithm is used to make predictions for multiple 

time steps. The algorithm divides the time window into smaller periods. Every period, the 

time window slides a grid to the right. The algorithm is shown in Figure 6. The counters 

in all periods are accumulated when calculating the total number of requests over the 

entire time window. The finer the time window is, the smoother the scrolling of the 

sliding window is. 

 

 
 

Figure 6. Sliding windows algorithm 
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3.4 Similarity principle in spatial module 

Given that the traffic state is spatio-temporal related in nature, the traffic prediction 

needs to consider the impact of the spatial correlations, which can be achieved by 

characterizing similar traffic measures from one road to another (Triguero et al., 2017). 

Many studies concluded that spatial correlations are determined by distance attributes, for 

example, Bogaerts et al. (2020) found that the adjacent sections exhibit the same 

phenomena as distance attributes. However, compared with the distance attribute, the 

spatial correlation of ridership is more suitable to be measured by the built environment 

or land use which can reflect human beings' daily activities. In this study, graph 

structures use the activity-based geographic information as the spatial similarity matrix in 

the ridership prediction.  

The activity-based geographic information (ABG-information) is estimated to 

describe the land-use characteristics and intensity using existing land-use planning and 

GIS data. The first ABG-information dataset (D-1) is based on the method introduced by 
Zhao et al. (2020). Four types of land-use categories are included: work, consumption, 

transit, residence. The work level is evaluated based on factors provided by land-use 

planning reports and GIS datasets, such as the level of commerce, the density of 

industries, and the density of companies. The consumption level is estimated using the 

level of commerce, the density of shopping centers, and the density of restaurants. The 

transit level is evaluated using the level of transport, the number of transit lines, and the 

density of transit stations. The level of residence refers to the density of residence. The 

weighted adjacency matrix of ABG-information is presented as 𝑊1𝑎𝑏𝑔𝑛𝑖,𝑛𝑗

, 

𝑊1𝑎𝑏𝑔𝑛𝑖,𝑛𝑗

= ∑ |𝑔𝑛𝑖
𝑘 − 𝑔𝑛𝑗

𝑘 |𝐾
𝑘=1                                        (5) 

where 𝑘 is one of the ABG-information categories, 𝐾=4, and 𝑔 is the value of activity-

based data for work, consumption, transit, or residence. 

The second ABG-information dataset (D-2) is from (Zhao et al., 2022). There are seven 

categories: CIE (cultural, institutional, and educational), MED (medical), MIPS (office 

(management, information, and professional services)), PDR (industrial (production, 

distribution, and repair)), RES (residential), RETAIL (retail, and entertainment), VISITOR 

(retail, entertainment, hotels and visitor services). The weighted adjacency matrix of ABG-

information is presented as  as W2abgni,nj

, 

 

𝑊2𝑎𝑏𝑔𝑛𝑖,𝑛𝑗

= ∑ |𝑔𝑛𝑖
𝑘 − 𝑔𝑛𝑗

𝑘 |𝐾
𝑘=1                                              (6) 

where 𝑘 is one of the ABG-information categories, 𝐾=7, and 𝑔 is the value of activity-

based data for seven categories. 

The road network dataset is used in the comparison experiments and obtained from 

the DataSF government website. This dataset includes bikeway network, street 

intersection, traffic signal, traffic stop and the number, type and length of road segment. 

This weigh adjacency matrix of road information 𝑅𝑖𝑛𝑓𝑜𝑛𝑖,𝑛𝑗
 is defined as, 

              𝑅𝑖𝑛𝑓𝑜𝑛𝑖,𝑛𝑗
= ∑ |𝑟𝑛𝑖

𝑘 − 𝑟𝑛𝑗
𝑘 |𝐾

𝑘=1                                             (7) 

where 𝑘 is one of the road network information categories, 𝐾=8, and 𝑟 is the value of 

road information for eight categories. 

The weighted adjacency matrix of distance 𝑊𝑑𝑖𝑠𝑛𝑖,𝑛𝑗
 is defined and used in the  
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comparison experiments, and is presented as, 

𝑊𝑑𝑖𝑠𝑛𝑖,𝑛𝑗
= √(𝑑𝑥𝑛𝑖

− 𝑑𝑥𝑛𝑗
)

2
+ (𝑑𝑦𝑛𝑖

− 𝑑𝑦𝑛𝑗
)

2
                            (8) 

where 𝑑𝑥 is the latitude of the node 𝑛, and 𝑑𝑦 is the longitude of the node 𝑛. 

3.5 Prediction methodology of STGCNN 

The Similarity-based Principle is applied to the Spatio-temporal Graph Convolutional 

Neural Network model which combines both temporal and spatial dimensions. In the 

temporal blocks, the Gated Liner United model is chosen to capture temporal dynamic 

behaviors in traffic demand. In the spatial blocks, Graph Convolution Network is applied 

to extract features in the space domain. 

The temporal module of GCNN can extract temporal correlations from the historical 

data. According to Dauphin et al. (2017), the Gated Liner United (GLU) model requires 

fewer computational resources than the LSTM model with simple operation. The GLU 

model cancels the forget gate and uses the activation function to control the transmission 

of input information, thereby forming long-term memory. The temporal gated 

convolution. The temporal gated convolution 𝐻(𝑦) can be defined as, 

𝐻(𝑦) = (𝑦 ∗ 𝑊 + 𝑏) ⊗ 𝜎(𝑦 ∗ 𝑉 + 𝑐)                                             (9) 

where 𝑦 is the input information of the layer, 𝑊, 𝑉, 𝑏, 𝑐 are learnable parameters and ⊗ is 

the element-wise product between matrices. In addition, 𝜎 is the Sigmoid activation 

function. The expressions can be indicated by the following formula. 

𝑠𝑖𝑔𝑚𝑖𝑜𝑑(𝑦) =
1

1+𝑒−𝑦                                                 (10) 

The spatial module of GCNN can extract spatial correlations between any two nodes 

in the traffic network. The spectral convolution of the graph 𝐺(𝑥) is defined as the 

operation of the signal 𝑥 ∈ 𝑅𝑁  and the filter 𝑔𝜃 = 𝑑𝑖𝑎𝑔(𝜃), 

𝐺(𝑥) = 𝑔𝜃 ∗ 𝑥 = 𝑈𝑔𝜃(𝐿)𝑈𝑇𝑥                                     (11) 

where 𝜃 is the learnable parameters, and 𝑈 is the eigenvector of the normalized 

Laplacian. However, the Laplace eigenvalue decomposition results in high complexity in 

the convolution computation. Traditionally, the convolution kernel is replaced by the 

Chebyshev polynomial. The convolution formula in the spectrum domain can be obtained 

as follows. 

𝐺(𝑥) ≈ ∑ 𝜃𝑘
′𝐾−1

𝑘=0 𝑇𝑘(L̃)𝑥                                                (12) 

According to Yu et al. (2018), the GCN model integrates both spatial and temporal 

domain features. For the input value 𝑥𝑙  of layer 𝑙, the prediction value 𝑥𝑙+1 is denoted by 

𝑥𝑙+1 = 𝐻1
𝑙 (𝑅𝑒𝐿𝑈 (𝐺𝑙𝐻0

𝑙 (𝑥𝑙)))                                            (13) 

In the process, the L2 loss function is adopted to train this model, 

𝐿(𝑛, �̂�) = 𝜔(𝜃)(�̂� − 𝑛)2                                                (14) 

where 𝜃 is trainable parameters, 𝑛 is the real data and �̂� is the prediction data. 

 

4 Modeling results 

4.1 Data source 

In the case study, the Similarity-based Principle Spatio-temporal Graph Convolutional 

Neural Network (SP-STGCNN) model predicts the demand for bicycle sharing. The 

ridership data are provided by Ford Go Bike, a regional public bicycle sharing program in 

the San Francisco. The data are collected hourly from April 1 to July 31, 2018, and 
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contain 87 weekdays and 35 weekend days. The area with 122 docking stations is 

selected for the research. The descriptive statistics for ridership data for each day in 

docking stations are presented in Table 2. Bicycle docking stations and geographic 

elements are used to demarcate the land-use zones, which are similar to traffic analysis 

zones (TAZ). Each zone has independent road network information and land-use 

characteristics and intensity based on the map. Three rules are applied in the delimitation. 

First, each zone has only one docking station for shared bicycles. Second, the zones are 

separated by geographical elements such as roads, railways, rivers. Finally, the study area 

(Figure 7) is completely covered by the zones, no space is left out. In addition, part of the 

road network information is depicted in Figure 8. 

 
Table 2. Descriptive statistics of ridership data 

 

 Weekday Weekend 

 Attraction Generation Attraction Generation 

Total 410008 277370 24689 84897 

Mean 3360.72 2273.53 202.37 695.88 

Std. Dev.  2772.74 2132.19 159.40 497.01 

Minimum 243 526 28 132 

25% Percentile 1637 1011 110 426 

Median 2587.5 1739 167.5 577.5 

75% Percentile 3813 2574 250 818 

Maximum 12681 11423 1133 3223 

Range 12438 10897 1105 3091 

 

 

Figure 7. Docking stations and land-use map (D-1) of bicycle sharing in the San Francisco 



                                        

 
127 Spatial-temporal deep learning model for dock shared bicycles ridership prediction 

 

Figure 8. The bikeway network and traffic signal in the study area 

4.2 Experimental results 

4.2.1 Geographic information results 

A general statistic summary of spatial geographic attributes-based activity data for 

two datasets and one road network information dataset is given in Table 3. The 

geographic attributes in dataset 1 are work, consumption, resident, and transit. For 

example, the work attribute indicates the work-related human activities within a zone. 

Land-use categories in dataset 2 are as follows: Cultural Institutional Educational (CIE), 

Medical (MED), Management Information Professional Services (MIP), Retail 

Entertainment (RETAIL), Production Distribution Repair Industrial (PDR), Residential 

(RES), and Hotels Visitor Services (VISITOR). The road network information in dataset 

3 is including bikeway network, street intersection, traffic signal, traffic stop and the 

number, type and length of road segment. 
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Table 3. Descriptive statistics of variables 

 

 

4.2.2 Parameters settings 

Pytorch is used to build the SAE model and the ST-GCN model. For the temporal 

module, contemporaneous historical data and short-term data are compressed by the SAE 

model. For the spatial module, three datasets are used to measure spatial correlation. 

These data are processed based on Python 3.7, ArcGIS 10.2, and MATLAB 2020b. All 

the experiments are conducted on a Windows server (IntelI CoITM) i5-7200U CPU 

@2.50GHz 2.71 GHz). Of the data, 70% are selected to train the model, 20% to validate 

the set, and the remaining 10% to test the set. In terms of the SAE model, the epoch is 

120, the batch size is 64, and the learning rate is 0.005. The encoder structure is 30-64-

32-6-32-64-30, and the activate function is RuLU. To find an optimal structure for the 

neural network, training algorithm ADAM and several key hyper-parameters are 

determined based on comparative experiments, where epoch is 160, the batch size is 64 in 

the hidden layers, the learning rate is 10-3. 

Variable Description Min Max Mean S.D. 

Dataset 1 – related variables 

Work 
The type of work-related human activities 

in each TAZ 
0 100 30.66  25.65  

Consumption 
The type of consumption-related human 

activities in each TAZ 
1.09  67.83  32.15  18.07  

Resident 
The type of resident-related human 

activities in each TAZ 
0.44  74.41  29.56  17.35  

Transit 
The type of transit-related human activities 

in each TAZ 
0 87.41  25.68  19.71  

Dataset 2 – related variables 

CIE index 
The type of cultural, institutional, and 

educational in each TAZ 

0 434782 48641.32 82964.95 

MED index The type of medicine in each TAZ 0 838225 20259.38 50785.60 

MIPS index 
The type of management, information, and 

professional services in each TAZ 

0 1979905 141318.83 200079.01 

PDR index 
The type of production, distribution, and 

repair in each TAZ 

0 515686 52926.50 85792.67 

RES index The type of residence in each TAZ 0 2371 371.59 322.71 

RETAIL index 
The type of retail, and entertainment in 

each TAZ 

0 656973 48562.81 54346.64 

VISITOR index 
The type of hotels and visitor services in 

each TAZ 

0 182184 4445.26 13475.95 

Dataset 3 – related variables 

Total roads Road segments count in each TAZ 0 92 20.27 15.85 

Total length Road segments length in each TAZ (ft) 0 60759.21 14268.84 8378.91 

Bikeway 

percentage 

Bikeway segments /total road segments in 0 

each TAZ (%) 

0 0.26 0.17 0.21 

Street percentage Street segments /total road segments in 0 

each TAZ (%) 

0 0.92 0.48 0.53 

Avenue 

percentage 

Avenue segments /total road segments in 0 

each TAZ (%) 

0 0.76 0.26 0.36 

Intersection The number of intersections in each TAZ 47 86 16.38 14.69 

Stop Total traffic stop/intersection in each 0 

TAZ (%) 

0 0.76 0.57 0.49 

Signal Total traffic signal/intersection in each 0 

TAZ (%) 

0 1 0.12 1.21 
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4.2.3 Temporal performance of SP-STGCNN  

This paper uses the dataset 1 to measure spatial correlation and shows the result of the 

temporal performance of the proposed model. Here, four docking stations, i.e., 

Mechanics Monument Plaza (ID 12), Valencia St at 21st St (ID 65), Townsend St at 7th 

St (ID 94), and S Park St at 3rd St (ID 118) are chosen to compare the prediction results. 

Figure 9 shows the predicted ridership on 24 July 2008 using different methods.  

Compared with baseline models (ARIMA, SVM, LSTM, and STGCNN), the 

proposed model has a better performance. For the conventional statistical, the average 

differences in MAE/RMSE between SP-STGCNN and ARIMA for the generation and 

attraction data are 39.59%/44.36% and 37.57%/34.21%, indicating that the proposed 

model increased the prediction accuracy by 38.58% when compared with the ARIMA 

model. For weekdays, the proposed model improved the prediction accuracy by 

12.73%/14.53%, 15.83%/15.86%, and 17.13%/17.56% when compared with the 

STGCNN, LSTM, and SVM. For weekends, the proposed model improved the prediction 

accuracy by 12.93%/14.65%, 15.26%/16.13%, and 16.48%/16.81% when compared with 

the STGCNN, LSTM, and SVM. The SP-STGCNN model captured the peak values with 

less delay and better accuracy when compared with the deep learning models due to the 

inclusion of long-term information and historical periodic data. Meanwhile, it can 

denoise and extract the key features and help traffic demand prediction in the real world. 
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Figure 9. Prediction of ridership on weekdays 

When different time intervals are applied in the SP-STGCNN model (Table 4), the 

model performance increased with the length of the time interval. As we have known, 

LSTM produces only one value of time granularity hence is suitable for short-term 

prediction. In this study, the sliding time window method is used to show the short-, 

medium-, and long-term prediction. The prediction accuracy improves when the interval 

shortens, with a good performance in the medium- and long-term predictions. 
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Table 4. The prediction errors for the different time interval 

 

 

4.2.4 Spatial performance of SP-STGCNN 

The study area is divided into 6 blocks according to the administrative region to 

analyze the effect of the spatial attributes on the proposed model and demonstrate the 

impacts of the different spatial correlations on the predict based dataset 1. The deeper the 

color (orange) is, the greater the prediction errors are. As shown in Figure 10, districts 1 

and 6 are strongly affected by the work attribute and the transit attribute. Districts 2, 3, 

and 4 are strongly influenced by the consumption attribute and the resident attribute. 

District 5 is deeply affected by the work attribute and the resident attribute. 

 

 

Figure 10. Prediction errors (MAE) of generation on weekdays 

Time Interval 

Weekdays Weekends 

Attraction Generation Attraction Generation 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

1 Hour 1.110 1.766 1.104 1.782 1.047 1.767 0.965 1.784 

2 Hour 1.112 1.837 1.108 1.804 1.013 1.783 1.089 1.798 

3 Hour 1.118 1.884 1.103 1.802 1.110 1.811 1.133 1.831 

4 Hour 1.127 1.881 1.141 1.836 1.141 1.854 1.158 1.836 

5 Hour 1.154 1.926 1.156 1.924 1.169 1.890 1.160 1.853 

6 Hour 1.169 1.984 1.167 1.905 1.188 1.907 1.167 1.871 
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The impact of spatial attributes on the prediction errors is shown in Figure 11. The 

darker the color (blue) is, the greater the prediction errors are. Compared with the 

distance attribute, the ABG-information synthesis attribute as the weighted adjacency 

matrix of the model produced better performance. When predicting trip generation and 

attraction on weekdays, the accuracy of the model using the ABG-information synthesis 

attribute has increased the model accuracy by 10.627% and 13.058% than using the 

distance attribute, respectively. When predicting trip generation and attraction on 

weekends, the increase is 10.179% and 12.962%, respectively. The key element of spatial 

association in the network is the human activities in the region, which reflect the lifestyle 

of the residents. Therefore, using the activity-based geographic information synthesis 

attribute as the adjacency matrix is more suitable for the demand predicting model. 

 

 

Figure 11. Different spatial correlations affect prediction results 

The best prediction results are produced when the transit attribute is applied because 

the bicycle-sharing program is mainly designed to serve the Central Business District 

(CBD) in San Francisco as a convenient travel choice. The city has many metro lines and 

bus routes, and a bicycle sharing program plays a vital role in connecting various 

transportation services.  

The prediction results for districts 5 and 6 are better on weekdays than on weekends 

(Figure 6). This fits with the general lifestyle because people travel between home and 

workplace on weekdays and carry out consumption (e.g., leisure and shopping) activities 

on weekends. Therefore, a more accurate prediction on weekdays is obtained when work 
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and residence attributes are applied, and the application of consumption attributes would 

improve the accuracy of predictions on weekends.  

Districts 3 and 4 are resident areas. For the same reason, the proposed model produced 

better prediction results when the residence attribute is considered instead of other ABG-

information attributes. Hence, the application of the dominant activity data as the spatial 

relationship matrix in the proposed model can improve performance and reduce errors. 

On the other hand, the prediction errors of trip generation are higher than that of trip 

attractions on weekends. This indicates that people tend to choose faster and less effort 

means of transportation for outbound trips and a healthier, greener, and cheaper means 

for inbound trips. However, when work attributes are applied, no significant differences 

between trip generation/attraction on weekdays are revealed. It suggests that these trips 

are more likely to be commuting journeys. Meanwhile, the application of the transit 

attribute does not produce a different prediction for trip generation/attraction on 

weekdays from that on weekends. Such results indicate that this proposed model has 

strong interpretability and reliability. 

4.2.5 Temporal similarity analysis of SP-STGCNN 

To reflect the performance of temporal similarity to the model, this paper designs the 

Stacked Autoencoder-Spatiotemporal Graph Convolution Neural Network (SAE-

STGCNN) model for comparison. The SAE-STGCN model compresses a period of 

historical data by SAE to demonstrate the effect of the similarity principle proposed in 

this paper. Specifically, the shared bicycle ridership data 𝑋𝑡
𝑛 contains long-term 

information and short-term information, which presents as 𝑋𝑡
𝑛 = [𝑋𝑙𝑡

𝑛 , 𝑋𝑠𝑡
𝑛]. The long-

term information 𝑋𝑙 𝑡
𝑛 contains a period of historical data, which can be defined as 𝑋𝑙 𝑡

𝑛 =

[𝑥𝑡−𝐿−𝑑
𝑛 , … , 𝑥𝑡−𝐿−3

𝑛 , 𝑥𝑡−𝐿−2
𝑛 , 𝑥𝑡−𝐿−1

𝑛 ], where 𝑑 means the historical time step. The SAE 

model is chosen to reduce the dimension of 𝑍𝑙𝑡
𝑛 to concentrate on the long-term 

information 𝑋𝑙𝑡
𝑛. The input data is presented as 𝑋𝑖𝑛𝑡

𝑛 = [𝑍𝑙𝑡
𝑛, 𝑋𝑠𝑡

𝑛]. The rest of the process 

is similar to Section 3. 

 
Table 5. Different temporal similarities affect prediction results 

 

 

The prediction results are as follows. For weekdays, the proposed model improved the 

prediction accuracy by 8.29%/8.74% (MAE/RMSE) and 10.73%/11.53% when compared 

with the SAE-STGCNN and STGCNN. For weekends, the proposed model improved the 

prediction accuracy by 9.32%/10.98% and 12.93%/14.65% when compared with the 

SAE-STGCNN and STGCNN. The ranking results of the prediction errors of the three 

models are as follows: SP-STGCNN < SAE-STGCNN < STGCNN. The prediction 

accuracy of the two models (SP-STGCNN and SAE-STGCNN) is better than that of 
STGCNN. Processing temporal information based on the principle of similarity can 

Spatial correlation 

Weekdays Weekends 

Attraction Generation Attraction Generation 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

STGCNN 1.243 1.951 1.231 1.958 1.159 1.975 1.091 1.943 

SAE-STGCNN 1.126 1.812 1.116 1.834 1.054 1.811 0.982 1.809 

SP-STGCNN 1.110 1.766 1.104 1.782 1.047 1.767 0.965 1.784 
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effectively improve the performance of the model and the higher the similarity of 

temporal information, the better the prediction accuracy. 

 

4.2.6 Spatial similarity analysis of SP-STGCNN 

The four datasets are used to describe the spatial correlations between different 

docking stations. The prediction errors of the SP-STGCNN model using different spatial 

correlations are as follows: SP-STGCNN based 𝑊1𝑎𝑏𝑔 < SP-STGCNN based 𝑊2𝑎𝑏𝑔 < 

SP-STGCNN based 𝑊𝑑𝑖𝑠  < SP-STGCNN based 𝑅𝑖𝑛𝑓𝑜. As the travel mode of the last 

kilometer, the demand for shared bicycles will be affected by the distance factor and road 

network characteristics (Guo et al., 2022; Jiao et al., 2021; Bai et al, 2021, El-Assi et al, 

2017). However, when using geographic information to describe the spatial similarity of 

different stations, the prediction accuracy is higher. Therefore, the main spatial factor 

affecting the demand for shared bicycles is the geographic information characteristics. On 

the other hand, Dataset 1 containing transit-related information such as transport level, 

transit lines, and station density outperforms Dataset 2, which lacks such specifics. The 

results emphasizing factors like road design and infrastructure could be crucial for 

accurately predicting micro-mobility demand. 

 

 
Table 6. Different spatial similarity correlations affect prediction results 

 

 

Spatial correlation 

Weekdays Weekends 

Attraction Generation Attraction Generation 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Road network 1.321 1.938 1.323 1.901 1.421 1.985 1.231 1.987 

Distance 1.313 1.932 1.321 1.898 1.342 1.963 1.202 1.906 

𝑊2𝑎𝑏𝑔 1.223 1.828 1.218 1.791 1.108 1.811 1.181 1.897 

𝑊1𝑎𝑏𝑔 
1.110 1.766 1.104 1.782 1.047 1.767 0.965 1.784 
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4.2.7 Interpretable analysis of SP-STGCNN 

 

Figure 12. PDPs of the land-use intensity  

Partial Dependence Plots (PDPs) are valuable tools for visualizing the overall 

marginal impact of features on predictions. This paper utilizes PDP analysis to indicate 

the influence of land-use variables on trips. Figure 12 in the paper illustrates PDPs 

depicting the correlation between land-use intensity and trips. In the figure, the x-axis 

represents land-use intensity distribution, with tick marks denoting varying levels. For 

brevity, we present results only for the top-performing model. The PDPs for land use 

reveal crucial insights into the relationships. 

Consumption and work with attraction showed positive associations, although most of 

their trends were not strictly monotonic but exhibited threshold effects. Specifically, they 

exhibited positive relationships within specific intervals but remained steady in other 

ranges. For instance, consumption intensity exhibited a positive connection only when 

surpassing 40, and work intensity displayed a positive association only between 30 and 

50. 

Resident and work with production presented negative relations with ridership. 

Similarly, these relationships were not strictly monotonic. For instance, resident intensity 

showed a negative relation only when below 30, and work intensity exhibited a negative 

relation between 50 and 70.  

Other variables, mainly transit with weekdays, presented more complex nonlinear 

relations with population inflow. For instance, transit intensity exhibited a downward 

parabolic pattern when situated between 20 and 30.  
Several noteworthy observations have been made. Firstly, there exists an intermediate 

phase of stagnation before reaching a plateau in the relationship between production 
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ridership and resident. These peculiar patterns are likely attributable to the 

interdependence of features, a phenomenon well-documented in previous studies 

employing PDP to delineate correlations (Molnar, 2020). Secondly, notable irregularities, 

such as abrupt drops or spikes, are discernible in specific relationships, such as that 

between attraction ridership and consumption. These deviations are likely influenced by 

outliers. Moreover, protracted plateaus, both preceding and following these irregularities, 

are consistently observed across most of these relationships. The origin of these plateaus, 

whether they stem from the presence of outliers or signify genuine threshold effects, 

remains a subject of uncertainty. 

 

5 Conclusions 

This study developed a Similarity-based Principle - Spatio-temporal Graph 

Convolutional Neural Network (SP-STGCNN) model to predict the ridership of shared 

bicycles using the deep learning approach. Data are provided by Ford Go Bike in the San 

Francisco. The Similarity-based feature extraction method is integrated with the activity-

based spatial geographic information to reflect human beings' daily lives and improve the 

spatial correlation of the model. The SAE method is employed to improve prediction 

accuracy and train efficiency by reducing the dimension of contemporaneous historical 

data and getting long-term traffic data information. 

Experimental results show that the proposed model can predict the bicycle sharing 

ridership generation and attraction citywide in the future. The distribution of the error 

terms can be used to analyze zones where the supply of shared bicycles may be exceeded 

or lacking. The comparison results suggest that the SP-STGCNN model provides higher 

prediction accuracy than commonly used statistical models and machine learning 

algorithms. Specifically, it is 12.83%, 15.53%, 16.31%, and 38.58% higher than that of 

the STGCNN, LSTM, SVM, and ARIMA, respectively. The spatial analyses are carried 

out using the activity-based dataset 1 for four categories: work, transportation, residence, 

and consumption. For the spatial weighted adjacency matrix, when the dominant human 

activities are selected accordingly (i.e., work or residence attributes on weekdays, and 

consumption attributes on weekends), the prediction error is reduced. Importantly, for the 

similarity of the temporal module, the performance of the proposed model is 10.31% and 

11.43% higher than that of the SAE-STGCNN, STGCNN. Periodic historical series, 

rather than a period, can better capture the long-term characteristics of data volatility. For 

the similarity of the spatial module, the model with the application of the ABG-

information attribute improved the performance by 13.26% and 11.63% when compared 

with the application of the road information attribute and the distance attribute. 

Moreover, this paper supplements the analysis of the results obtained by applying SP-

STGCNN to address the three gaps highlighted in the literature review. Firstly, by 

incorporating the SP method into the well-performing STGCN model, we observe a 

significant improvement of 12.83%. This enhancement highlights the effectiveness of the 

SP approach in optimizing model performance. Secondly, we utilize the integration of 

multi-source data with the temporal-spatial modules. To capture both short-term and 

long-term traffic data information, we employ the SAE method, resulting in a notable 

improvement of 10.31%. Furthermore, we apply activity-based data to measure spatial 

similarity, leading to a 6.7% improvement. Lastly, in the context of demand prediction, 

we introduce an innovative approach by constructing activity-based data, replacing the 

conventional distance-based data in flow prediction for graph network structure 

construction. This change also contributes to a 6.7% improvement, highlighting the 
advantages of this novel approach in demand prediction. Such results indicate that the 
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similarity-based principle is helpful in improving the performance of the Spatio-temporal 

model. 

While our research has primarily focused on addressing gaps in existing 

methodologies, it is crucial to emphasize the practical implications and benefits that SP-

STGCNN brings to the domain of urban planning and decision-making. By improving 

the accuracy of traffic prediction and modeling, our model equips urban planners and 

policymakers with a more robust understanding of traffic patterns, congestion dynamics, 

and demand fluctuations. This, in turn, enables better-informed decisions regarding 

infrastructure development, traffic management strategies, and resource allocation. 

Moreover, multi-source data integration, including activity-based data and the SAE 

method, contributes to a more comprehensive assessment of short-term and long-term 

traffic trends. This holistic view empowers urban planners to devise strategies that 

consider not only immediate traffic issues but also the long-range implications of their 

decisions. The innovative use of activity-based data for constructing graph network 

structures in demand prediction further enhances the accuracy of future traffic forecasts. 

This innovation is precious for urban planning, as it facilitates more precise estimations 

of transportation needs, optimizing resource allocation and investment in transportation 

infrastructure. In summary, our SP-STGCNN model addresses existing research gaps and 

offers a practical and impactful tool for urban planning decision-makers. By improving 

the accuracy and comprehensiveness of traffic analysis and prediction, this model 

contributes to more effective and informed planning strategies, ultimately leading to more 

efficient and sustainable urban development. 

In conclusion, the development and implementation of the SP-STGCNN model 

represent an improvement in addressing gaps within urban transportation prediction 

methodologies. While the model showcases promising predictive capabilities in 

forecasting bike-sharing ridership, several limitations and ethical considerations warrant 

attention for future research. The reliance on localized data from Ford Go Bike in San 

Francisco, although instrumental, limits the model's generalizability. Diversifying 

datasets encompassing various cities and bike-sharing systems would enhance their 

applicability and robustness. Additionally, the model's capacity to adapt to sudden shifts 

in user behavior or unforeseen events requires further exploration to bolster its real-time 

adaptability. Ethical implications surrounding biases in data and algorithmic fairness 

underscore the need for rigorous assessment and mitigation strategies. Future research 

avenues should focus on expanding datasets, enhancing real-time adaptability, addressing 

biases, and fostering interpretability. By incorporating these directions, the SP-STGCNN 

model can evolve into a more versatile, ethical, and reliable tool for urban planners and 

decision-makers, facilitating more informed and equitable urban development strategies. 
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