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Abstract: The recent COVID-19 pandemic has provided a renewed 

impetus for empirical research on slow and active modes of 

transportation, specifically bicycling and walking. Changes in modal 

choice appear to be sensitive to the actual quality of the environment, the 

attractive land use and built environment conditions, and the ultimate 

destination choice. This study examines and models the influence of 

cyclists’ health concerns during the pandemic on their spatial destination 

and route choices. Using a large real-time dataset on the individual daily 

mobility of cyclists in the province of Utrecht, the Netherlands, collected 

through GPS-linked sensors on bikes (VGI, or volunteered geographical 

information), the analysis employs spatial regression models, Shapley 

decomposition techniques, and spatial autocorrelation methods to unveil 

the backgrounds of changes in spatial behavior. The results reveal that 

the perceived wellbeing benefits of bicycling in green areas during the 

pandemic have significantly influenced cyclists’ choice behavior, in 

particular route and destination choice. 

 

Keywords: Slow motion, bicycles, COVID-19, volunteered geographical 

information, real-time probe data, sensors, spatial regression, Shapley 

decomposition, spatial autocorrelation 

 

 

Article history: 

Received: July 22, 2023  

Received in revised form: 

April 8, 2024 

Accepted: April 14, 2024 

Available online: 

November 11, 2024 

 

“A human on a bicycle is the most efficient traveler among all machines and animals.”  

     —Charles Montgomery, Happy City: Transforming Our Lives Through Urban Design (2013) 

 

 

1 Slow motion: A new mobility paradigm? 

During the corona crisis, we have observed a growing interest in sustainable, active 

and individual modes of transportation, particularly bicycling and walking. This study 

aims to investigate the changes in bicycle usage in relation to mobility choices during the 

pandemic. To provide a comprehensive understanding of our research, we will begin by 
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offering a brief overview of the historical development of “slow motion behavior.” 

Subsequently, we will delve into the specific research question addressed in this study. 

 

1.1 The context 

Slow modes of transport, in particular walking and cycling, have often been 

undervalued in transportation research. Apparently, pedestrians and cyclists have been 

“underdogs” in the world-wide interest in spatial mobility. In recent years however, we 

witness a rising interest in slow motion mobility, for various reasons: human (physical 

and mental) health, environmental quality, safety and sustainable land use in compact 

cities. In particular, the COVID-19 pandemic has encouraged the use of environmentally 

benign and social-distancing oriented modes of transport. In addition, the currently 

popular notion of the “15-minute city” (Moreno, 2020; Moreno et al., 2021) regards slow 

mobility modes as necessary spatial vehicles for achieving ambitious urban targets on 

sustainability, accessibility and speed in urban areas. Time and space have become two 

interconnected dimensions of the geography of our world. 

We note that speed has been a driving motive for human beings since early history. 

“Time is money” has, since ancient times, been a stimulus to increase average speed of 

movements, as is witnessed by the transition from horse-drawn carriages or barges to 

trains, cars or airplanes (Baaijens et al. 1998; Cross 1998). Despite the negative 

sustainability-related externalities of fast modes of transport, in particular environmental 

decay, resource depletion and fatalities, the need for fast modes of transport has shown an 

uninterrupted pace. Transport efficiency rise has no doubt been one of the major added 

values of rapid high-tech development in our world, as is reflected in the globalization 

trends over the past decades as well as in modern high-mobility societies at all scale 

levels (Urry, 1995; Waters, 1995). In the course of a few centuries, “empty spaces” have 

been filled with infrastructure, and countries and regions have become “smaller all the 

time” (Knippenberg & De Pater, 1988; Van der Woud, 1987). This structural trend of a 

“shrinking world” led more than half a century ago already to the concept of the “global 

village” (McLuhan, 1964). The French author Virilio (1977) argued even that speed 

became a competitive factor in and between nations; hyper-mobility became an economic 

success factor in the post-Industrial Revolution era (Van der Stoep, 1995). And 

consequently, the “homo mobilis” became a characteristic species—with a new 

perception of time—on our planet, in which a strong competition emerged between cars, 

trains and airplanes. As Nowotny (1994) wrote: “everything, above all time, becomes 

frantic motion: the new myth was speed” (p.84). 

1.2 Bicycles and speed 

It is surprising that—despite the mega-trend of speed acceleration over the past 

centuries—only one transport mode, viz. the bicycle, has kept a rather stable slow-motion 

position in the history of mobility. According to Lay (1992), in the year 1890 already 

more than 1 mln bicycles were produced in the USA, mainly for health reasons but also 

for convenience reasons. But also in other continents (Europe, Asia) bicycles became 

very popular transport vehicles, certainly for short to medium distances. The widespread 

use of the bicycle was the result of its travel ease: convenience, flexibility, reliability and 

low cost. Despite the “high-speed society,” bicycles remained in many countries (e.g., 

Denmark, The Netherlands, Belgium) rather popular, often not as a substitute, but as a 

complement to other transport modes (see e.g., Martens 2004; Pucher & Buehler 2009; 
Rietveld 2000). The joint use of cars, public transport and bicycles implied often a choice 

for an integrated transport package choice. This is also in agreement with Zahavi’s (1974) 
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concept of a given travel time budget implying that the average travel time with different 

modes in metropolitan areas tends to be rather stable; cars and public transport offer 

efficient transport opportunities over medium to long distances, while bicycles are more 

efficient for short distances (see also Hupkes, 1979).  

Clearly, the value of time is a critical factor in transport mode choice, but it ought to 

be recognized that speed is not the only choice criterion in a mobile society. In the 

decision to choose a bicycle as a travel vehicle, several arguments play a role: flexibility, 

convenience, speed, cost, environmental impact, safety, fresh air, health, recreation, 

mental well-being, and so forth. As a result of this portfolio of advantages the bicycle has 

over the past decades not only kept a rather stable position in many countries but has 

shown even an extension—and recently a rejuvenation—in many countries, not only in 

lower developed economies but also in developed nations. In several countries a 

bicycle—and in particular a luxury or electric bicycle—has even become a status symbol 

for a sustainable and healthy lifestyle (see Batabyal & Nijkamp, 2013). And the current 

debate on the 15-minute city assigns even a prominent position to the bicycle in a smart 

urban logistic system (Moreno et al., 2021). This re-positioning of bicycles as a potential 

key vehicle in urban mobility planning forms an important motivation for the present 

study. 

1.3 Bicycles in corona times 

The popularity of bicycles as a sustainable and healthy travel mode has recently—

with the outbreak of COVID-19—even significantly risen in many cities. Several 

metropolitan areas have in the meantime even adopted new intra-city travel plans so as to 

favor bike use. Examples are: Brussels, Paris, London and Milano. The re-discovery of 

the bicycle as a respected vehicle for many trip-makers has led to a significant increase in 

various types of bicycles (ranging from traditional bikes to speed pedelecs). The 

perceived individual and environmental effects of bicycles for home-to-work trips, 

shopping, social activities, and recreating are significant (Leyland, et al., 2019; Tortosa et 

al., 2021). The advantage of bicycle use is that—in the corona period of “social 

distancing” rules and facemasks requirements—it was possible to combine fresh air with 

physical movement, even in (small) social groups. So, the positive outside-air potential of 

bicycles during the corona time restrictions was a major advantage of this slow mode of 

transport. But did COVID-19 also exert a significant impact on the spatial choice 

behavior of cyclists? And from a major strategic perspective, does a bicycle-oriented city 

contribute to a healthier living environment? Are health arguments a driver for the 

cyclists’ choice of mobility patterns? To answer these questions, we need to undertake 

evidence-based research supported by data of cyclists’ movements to contribute to the 

achievement of livability objectives in cities. 

1.4 Aims and scope of the study 

In light of the previous observations, this paper aims to investigate the drivers of shifts 

in bicycle usage, in particular for leisure purposes, during the corona period, by 

comparing them to the pre-corona spatial behavioral patterns. Our analysis will not only 

focus on the increase in bicycle usage, but also, more importantly, on the alterations in 

travel patterns, such as route choice and length, in order to examine the specific impacts 

of the corona crisis on bicycle usage, particularly in terms of travel distance, destination, 

and route selection. Thus, this study aims to identify the factors and spatial consequences 

of changes in spatial bicycle mobility patterns since the onset of the pandemic in Spring 
2020, in comparison to the travel patterns of cyclists in the preceding year, using 

information from 2019 as the reference dataset.  
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This study utilizes a comprehensive online (real-time) database that incorporates GPS-

based space-time information on spatial bicycle patterns in the province of Utrecht, 

Netherlands. In a later stage these data were only comprehensively collected for the city 

of Utrecht which makes a full-scale time comparison more cumbersome. Our analysis 

aims to explore the potential influence of corona-related concerns and environmental 

motivations on the choice behavior of cyclists, specifically focusing on leisure trips in 

green areas inside and outside the urban areas. From this perspective, the study 

contributes to the emerging field of research examining the relationship between bicycle 

use and the COVID-19 pandemic, building upon relevant studies (Bouzouina et al., 2023) 

by Hu et al. (2021a, b), Jobe and Griffin (2021), and Teixeira and Lopes (2020). While 

these studies provide valuable insights into changes in cyclists’ behavior, they do not 

employ advanced spatial modeling techniques to map out the immediate adjustments in 

mobility patterns of cyclists, including daily weather effects. This paper aims to fill this 

gap, but it also seeks to get a more general and deeper understanding of the motives and 

constraints of cyclists’ behavior. 

The paper is structured as follows: Section 2 provides an overview of key findings 

from the literature on slow motion, with a specific focus on bicycling and its significance 

during the corona period. Section 3 presents the methodological framework and details 

about the employed database with real-time probe data. The statistical and econometric 

results of the spatial modeling experiments are presented in Section 4. Finally, the 

concluding section offers retrospective and prospective reflections. 

 

2 Slow motion as a traveler’s benefit  

2.1 Slow motion studies 

In light of the COVID-19 pandemic, there has been a significant surge in the 

popularity of bicycles. It is important to acknowledge that bicycles of various types 

(conventional bicycles, e-bikes, speed pedelecs) have been steadily growing in popularity 

for quite some time now, not only for commuting but also for recreational purposes such 

as leisure activities and shopping. In the past decade several studies have highlighted the 

advantages of bicycle use for everyday commuting (see e.g., Bühler, 2012; Bühler & 

Pucher, 2021b; Caulfield et al., 2012; Rodriguez-Valencia et al., 2021; Tengattini et al., 

2018), but—given the flexibility of bikes—also its advantage in a leisure context have 

received considerable attention (see e.g., Heinen et al., 2011). In a complex and digital-

oriented urban area (see e.g., Komninos 2021) bicycles appear to be in many cases very 

functional for short to medium distances. In addition, they are often seen as “health 

makers” and environmentally benign vehicles. As a consequence, bikes have seen a 

change in status, viz. from an old-fashioned transport vehicle (often for the poor) to a 

new status symbol (especially for the more expensive part of the bicycle market). Cyclists 

are sometimes even seen as the new “time pioneers” in urban areas (Baaijens & Nijkamp, 

1999), in particular since they provide the benefits of a zero-emission mobility in the 

context of the global drive toward sustainable transport (Massink et al., 2011). 

An informed publication on the advantages of bicycle use in cities (Yang et al., 2019) 

argues that physical active modes of transport contribute clearly to the sustainability of 

cities, in particular if the built environment and infrastructure are geared towards 

reducing traffic congestion and air pollution. The authors reviewed 39 empirical studies 

to identify the success factors of cycling-friendly cities, while addressing spatial factors 

such as short connectivity, commuting and recreation, land-use mix, availability of 

dedicated cycling-paths, and terrain slopes in cities. Most cities appear to have even a 

greater cycling-friendly potential than assumed.  
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A clear breakthrough in strategic thinking on bicycles and sustainable transport modes 

has arisen in the past years with the new concept of the 15-minute city (so-called “la ville 

du quart d’heure,” based on Moreno, 2020; Moreno et al. 2021). The 15-minute city idea 

is a practical and normative follow-up of previous notions on “car-free cities” introduced 

already a few decades ago. It ties in with recent planning concepts on walkability (and 

“bikeability”) of inner cities (see e.g., Leinberger, 2007; Szücs, et al. 2017; Wong et al., 

2019).  The contemporary planning concept of a 15-minute city aims to create a new 

foundation for a livable city. This would require in most cases active, nonmotorized trip 

behavior by either walking or using a bike. Such plans are already being implemented in 

Portland and Paris amongst others.  

In summary, there are many new and promising perspectives for the bicycle in an era 

of health crises and climate concerns. A sustainable and healthy lifestyle seems to rely 

increasingly on slow motion vehicles in urban transport, supported by active micro-

mobility (biking and walking). 

2.2 Fringe benefits of nonmotorized transport 

The remarkable transformation of the bicycle, shifting it from an overlooked mode of 

transportation to a trailblazing method of travel, is truly extraordinary. The bicycle is not 

regarded as a competitive mode for car driving, but rather as a sustainable 

complementary mode (Punzo et al., 2021); it is even not an “enemy” of electric cars or 

autonomous vehicles (Duarte & Ratti, 2018; Stewart et al., 2018). The bicycle is certainly 

a functional vehicle in an activity-based transportation system, while it comprises also 

various important fringe benefits, in particular green mobility, health benefits and relaxed 

active movement (see e.g., Cooper & Danzinger, 2016; Giles-Corti et al., 2010; Sieff & 

Weissman, 2016; Vale et al., 2016; Yang et al., 2019). Such benefits are the often 

unforeseen or unintended positive consequences of activity-based mobility; for instance, 

a shopping trip by bike may have environmental- and health-benign effects (cf. Hamidi, 

2021).  

The choice of slow-motion travel modes, such as a bicycle, opens up a range of 

flexible subsequent choice options, such as route choice, length of the trip, trip duration, 

use of dedicated bicycle infrastructure, or contribution to local environment quality 

conditions. In the abundant literature on this topic, often a distinction is made between 

objectively measurable factors (e.g., route safety conditions, annoyance by car traffic) 

and subjective perception factors (e.g., green attitudes, open space feelings). 

2.3 The broader wellbeing aspects of cycling 

In a recent study by Blitz (2021), an evidence-based impact study about the perceived 

local environment on cycling behavior and cycling attitudes has been undertaken, 

including socio-demographic factors and travel mode availability. It turns out that 

positive attitudes towards cycling (including safety and pleasure), presence of cycling 

infrastructure, common practice in a city to use a bicycle, and high car pressure are 

determining factors in shaping a positive attitude towards bicycle use. 

Meanwhile, various studies have clearly demonstrated that transport behavior is not 

only determined by functional activity-based motives, but should also be considered from 

a broader health, well-being and sustainability perspective (Bernardi et al., 2018; 

Delbosc, 2012). This argument holds certainly for nonmotorized trips. A rather 

comprehensive overview of the impact of cycling on daily life practices and health can be 

found in Götschi et al. (2015), who review both generalizable evidence for health effects 
and specific impact models that quantify lifestyle outcomes in concrete settings.  
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Clearly, in the recent past human mobility has changed as a response to COVID-19, 

and so has cycling. The mobility motives have significantly been influenced by perceived 

COVID-19 concerns, which have impacted on a broad range of trip behaviors. We may 

plausibly assume that the cyclists’ trip choice was subjected to healthy and ecological 

lifestyle drivers, but the pressing empirical question is: how and to what extent? The 

objective of our study is thus to identify the drivers that may impact the change in cycling 

behavior. 

2.4 Information needs 

A deeper analysis of direct and indirect travel choice motives calls for adequate and 

up-to-date databases and information systems, including statistical data, survey data, 

social media data, and electronic data from cell phones, GPS, sensors or camera’s (see 

Dial, 2000; Salim, 2012; Steenbruggen et al., 2017; Ton et al., 2018). Clearly, the study 

of viable pathways to healthy lifestyles, with a view to bicycle use in corona times—

characterized by serious health concerns— calls for detailed real-time information on 

individual trip behavior (e.g., travel mode, route choice, destination choice, trip length 

and duration, combined trip-motive choice) (see Azevedo, et al. 1993; Bühler & Pucher, 

2021a; Dial, 2000; Doubleday et al. 2021; Ghanayim & Bekhor, 2018) so as to test the 

proposition that in corona times health and environment priorities may prompt a change 

in the cyclists’ action space and impact on modal selection, route choice and trip 

length/duration of cyclists. 

In our empirical analysis we will analyze the pre-corona and during-corona travel 

patterns of cyclists in the Dutch province of Utrecht using individualized real-time probe 

data. The Netherlands has a long tradition as a bicycle country, and therefore it is 

plausible that the COVID-19 calamity—including also various types of lockdown 

measures—has led to a flexible adjustment of travel and destination choice of the people. 

The general information from the daily corona dashboard—which in its comprehensive 

form also includes daily mobility data from Google Mobility Reports (see for details 

Nijkamp & Kourtit 2022)—shows clearly a considerable shift in mobility in favor of 

nearby green environments (ranging from urban parks to green areas in the countryside). 

It also seems plausible that—with the generic discouragement of car use—bicycles 

become a popular travel mode for visiting green areas, in addition to a general rise in 

modal shift towards bicycles. This study aims to model specifically the daily spatial 

choice behavior of cyclists in corona times, not only for commuting purposes but also for 

leisure purposes. This research calls for both exploratory statistical analyses and cyclists’ 

choice modeling experiments.  

Our study employs detailed spatial data on mode and route choice of cyclists, 

including postal code neighborhood data, local socio-demographic data, detailed data on 

spatial trip patterns per bicycle (including origin and destination), and local presence of 

amenities (e.g., public transport hubs, neighborhood characteristics, green and blue 

amenities, etc.). Thus, in essence our database is an operational exemplification of the 

principles of individual space-time geography (Ellegärd, 2019; Hägerstrand, 1965; Ton et 

al., 2018). Such data allow also to examine whether all categories of cyclists (e.g., 

commuters, shoppers, leisure cyclists) are affected in the same way during corona times, 

in different phases of the pandemic, and with varying government intervention measures. 

It seems plausible to hypothesize that “lifestyle” cyclists will be inclined to choose 

traffic-calm and green routes in their trip choice, especially if they are leisure travelers. 

The above proposition is supported by some exploratory research in Sweden and the 

USA (respectively, in Gothenburg/Malmö and Portland) (see Clairvue Health, 2019). The 

general finding is even that biking—and, in general, active commuting—is not only good 
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for physical health, but also for well-being, happiness and sustainability. Our study will 

analyze in greater detail the spatial health and environmental aspects and determinants of 

cyclists’ behavior before and during the pandemic. The databases and methodology 

employed will be highlighted in Section 3. 

 

3 Databases and research design   

Our empirical study aims to investigate the factors, both related to COVID-19 and the 

environment, that contribute to changes in the cyclists’ choice behavior during the pre-

shock and initial stages of the corona crisis. The purposes are served by a big data 

collection, as well as the design and testing of a relevant econometric model. These steps 

will now systematically be described. 

3.1 Snifferbike dataset 

The primary dataset used in the analysis is derived from the so-called “snifferbike” 

system in the Netherlands. The snifferbikes are regular bicycles that are equipped with a 

mobile digital GPS sensor as a tool for measuring online air quality indicators in a local 

environment. The snifferbike dataset includes detailed spatial data (geocoded) on mode 

and route choice of cyclists and detailed information on spatial trip patterns per bicycle. 

From the information in the dataset, we are able to create fine gridded cyclists’ mobility 

maps including points of departure and destinations and also route choice.  In addition, 

postal code neighborhood information allows enriching the dataset with local socio-

demographic data, and also with data about the amenities close to origins, destinations 

and also cycling routes. Finally, since the “snifferbike” project was designed for 

measuring air quality indicators, the dataset informs about the air quality (with different 

components) and weather conditions on the day of trip-making. Thus, the entire dataset 

includes typical “big data.” We use cyclists as the unit of analysis for the period from 

May 2019 to October 2020, which contain both the pre-COVID period and the period 

during COVID-19, in the province of Utrecht in the Netherlands. In this way we can 

examine the significance of COVID-19 for slow motion behavior of road users.  

The “snifferbike” data system is an example of Volunteered Geographical Information 

(VGI), which embodies and presents geo-spatial content provided by non-professional 

volunteers, using online digital spatial information equipment (see also Coleman, et al. 

2009; Goodchild 2012). These real-time probe data allow us to obtain a very detailed 

online mapping (every ten seconds) of the geographic mobility behavior of cyclists. 

Clearly, there is an obvious limitation inherent in such micro data; given privacy 

regulations, it is not allowed to add personal data (e.g., age, gender, income) of the 

cyclists themselves to our database. However, since we know the place of origin of 

cyclists and hence the average socio-economic profile of the neighborhood concerned, a 

rough proxy of socio-economic features of cyclists might be obtained. 

3.2 OpenStreetMap dataset 

The route choice of cyclists in the “snifferbike” project is likely to be affected by 

changing preferences regarding natural and urban surroundings (see, for instance, Vedel 

et al., 2017). To construct a measure of natural and urban qualities around cycling routes, 

we extract land use data from the OpenStreetMap (OSM) database. The fraction of land 

use qualities is next calculated by first identifying a given amenity and then counting the 
share of its presence with respect to all qualities found around each cycling route from 

the “snifferbike” dataset. These include green surroundings (trees, grass, forest, camp site 

etc.), blue amenities (sea, lake, river, etc.), residential buildings and houses, industrial 
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areas and urban services (schools, shops etc.). We also include the distance from cyclists’ 

neighborhood of departure to the central train station of Utrecht, the capital city of the 

province of Utrecht. The treatment of the OSM data is of course conducted in a GIS 

environment.  

3.3 Mobility datasets 

To enhance our statistical analysis and employ a “big data” approach in our research, 

we incorporate Google COVID-19 Mobility Reports1 and Apple Mobility Trends 

Reports2. Google's data utilizes the median mobility from January 3 to February 6, 2020, 

as the reference mobility value, monitoring changes in visits to different locations. 

Apple's data records the number of requests made to Apple Maps by car, public transport, 

or walking, with January 10, 2020, serving as the baseline. The Google and Apple 

mobility datasets, introduced during the COVID-19 pandemic, have been instrumental in 

numerous research studies. Both datasets articulate percentage variations relative to a 

designated reference date or period. This mobility tracking capability has facilitated 

comprehensive investigations into the interplay between COVID-19 transmission and 

spatial mobility, serving various research purposes (see e.g. Cot et al., 2021; Hu et al., 

2021a, b). Both datasets are aligned, encompassing data from their respective initial 

available dates up to October 2020. This synchronization enables comparability with the 

temporal extent of the snifferbike dataset. We utilize mobility datasets to chart fluctuating 

patterns of mobility towards diverse destinations and across various modes of transport. 

This serves as a cornerstone for motivating our research on cyclists’ behavior. With the 

database now presented, we will outline our study's statistical-econometric modeling 

approach in Section 4. 

 

4 Research methodology  

4.1 Exploratory analysis of cycling 

In this section, we conduct our exploratory analysis for cyclists’ mobility, general 

human spatial mobility, and other modes of travel from the pre-COVID to COVID period 

in the province of Utrecht. As mentioned, we start by examining the daily trend of 

cyclists’ mobility starting from May 2019 to October 2020 by the snifferbike database, 

and overall human mobility, which registers daily changes from March 8, 2020, to 

October 4, 2020, by the Google and Apple mobility databases. The snifferbike dataset is 

employed in the subsequent regression analysis, whereas the Google and Apple datasets 

are exclusively utilized for exploratory analysis in the present section. Information 

regarding the means of transportation is exclusively sourced from the snifferbike 

database (for bicycles) and Apple mobility statistics (for cars, public transport, and 

walking). However, the specific purpose of mobility is only accessible in the Google 

dataset. To address this gap, in the regression analysis, cyclists routes are quantified as a 

proxy for potential travel purpose specifically for the snifferbike data. We will start with 

an exploratory analysis. 

Figure 1 illustrates the total daily average distance travelled by cyclists, whereas 

Figure 2 shows average duration of travel for the same period. The graphs show the 

decrease in the cyclists’ mobility in March 2020, and the subsequent recovery, especially 

 

 
 
1 https://www.google.com/covid19/mobility/ 
2 https://covid19.apple.com/mobility 
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in May 2020. The two graphs also indicate that, when entire pre-COVID and COVID 

periods are compared, the mean distance travelled increased in the COVID period, 

whereas the duration of travel has decreased on average compared to the pre-COVID 

period. This means that even though we observe a higher cyclist activity, the time spent 

on bicycles has decreased in the COVID period. Cyclists may have started to make lesser 

stops and—owing to low traffic—may have had a higher average speed. It is important to 

note here that seasonal fluctuations and temperature may have affected cyclists’ mobility 

from March onwards. Therefore, in our empirical model, we will control for temperature 

and humidity as a quantitative proxy for weather conditions.  

Figure 1. Cyclists’ mobility as measured by daily average distance travelled in meters (period: May 2019–

October 2020); dashed lines show moving averages of 30 days 

 

 

 

Figure 2. Cyclists’ mobility as measured by average duration of daily travel (period: May 2019–October 

2020); dashed lines show moving averages of 20 days 

4.2 General mobility trends in corona times 

Next, the spatial mobility trends are shown in Figure 3 and 4; they are extracted from 

Google analytics and Apple mobility data. These mobility figures indicate similar trends 

for cyclist’s mobility. Figure 3 shows that, while mobility to workplaces has decreased 

substantially during the pandemic, the mobility to parks/green areas and around 

residential areas have increased in the COVID period. This means that, while commuting 
has declined on the contrary, more recreational mobility has taken place in this period; 

the finding was also confirmed in another study on mobility changes in the Netherlands 
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during the corona times (Nijkamp & Kourtit, 2022). Clearly, the fact that several services 

have moved online, and that teleworking has become almost the default arrangement in 

many sectors, might have harmful consequences for human health, considering the 

decrease in physical movement (Tavares, 2017). However, as Figure 3 shows, the 

potential negative effects of teleworking may have been mitigated by visits to parks and 

physical activity around residential areas. This is an important observation, as it means 

that the overall mobility restrictions and teleworking opportunities might have boosted 

active travel for recreational purposes, which would have well-known positive effects on 

human health (Pucher et al., 2010).  

 

Figure 3. Percentage changes in spatial mobility to categorized places in Utrecht; baseline is median value 

from January 3 to February 6, 2020; dashed lines show moving averages of 20 days 

  

Figure 4 is next derived from Apple’s Mobility Trend Report, which allows analyzing 

mobility trajectories by transport choice in Utrecht. We observe from this graph that, 

beside an increased mobility to parks or green areas, the most preferred transport mode 

has been walking during the pandemic. From Figure 3 and the “new” mobility trends 

reported in Figure 4, it becomes clear that examining cyclists’ mobility behavior is of 

great importance not only from a general mobility perspective, but also from a health 

perspective. This health-driven motivation consists of two components: the overall 

tendency to replace cars or public transportation by bicycles, and the preference of 

cyclists for environmentally healthier routes. Our research will specifically focus on and 
model the latter proposition. More specifically, Figures 3 and 4 serve as informative 

reference tools illustrating the overall shift in mobility patterns during the pandemic. 
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Figure 3 depicts changes towards various destinations, while Figure 4 illustrates shifts in 

transportation modes. However, for a comprehensive analysis of route selection and 

cycling mobility patterns, we rely on individual-level data gathered through the user-

based snifferbike dataset. 

 

Figure 4. Percentage change in spatial mobility by transportation type in Utrecht; baseline is on January 13, 

2020; dashed lines show moving averages of 20 days 

 

4.3 Modeling cyclists’ modal choice 

We will now proceed with a causality analysis of spatial choices of cyclists in the 

Utrecht area. In this section, we introduce the empirical model employed in our 

econometric analysis, as well as the utilization of the Shapley method to assess the 

relative impact of each factor on cyclists’ overall mobility. The analyses are conducted in 

a comparative manner, referencing COVID-19 related crises.  

To assess the determinants of cyclists’ mobility behavior in the pre-COVID and in the 

COVID periods, we specify and estimate the following model based on the above 

mentioned conceptual and empirical backgrounds: 

 

𝑀𝑖𝑡 = 𝛽𝑖 + 𝛾𝑡 + 𝛼𝑊𝑖𝑡 + 𝛾𝑅𝑖𝑡 + 𝛿𝑆𝑖𝑡 + 𝜇𝐷𝑖𝑡 + 𝜀𝑖𝑡          (1) 

 

where 𝑀𝑖𝑡  is the logarithm of total distance travelled (or duration of travel) by cyclist 𝑖 
on day 𝑡, 𝛽𝑖  and 𝛾𝑡 are respectively, cyclist and day of the week fixed effects. The study 

leverages cyclists' IDs to track individual mobility, enabling the incorporation of cyclists’ 

fixed effects in our analysis. This utilization of cyclists’ IDs facilitates the application of 

a panel fixed effects model, providing a robust framework for examining the intricate 

dynamics of cyclists’ route choices over time. In our analysis of the day of the week, 

Monday serves as the reference category, forming the baseline against which the mobility 

patterns on the other six days of the week are compared. 𝑊𝑖𝑡 are covariates for weather 

conditions (temperature, humidity) and air-quality, 𝑅𝑖𝑡 indicate the composition of the 

road network in terms of land use such as fraction of green surroundings along the road 

network cyclists’ travel, 𝑆𝑖𝑡 are socioeconomic variables for the geographical departure 

neighborhoods defined per detailed postal code. Clearly, cyclists depart from different 
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spatial points during the study period, which imposes a considerable variability over time. 

Finally, 𝐷𝑖𝑡  is the distance to Utrecht central railway station, and 𝜀𝑖𝑡 is the error term. Eq. 

(1) is estimated by OLS for the pre-COVID and COVID periods separately with robust 

standard errors. The pre-COVID period includes daily mobility from May 27, 2019, to 

March 7, 2020. Next, we define the period from March 8, 2020, to October 4, 2020, as 

the COVID period, during which we may expect shocks in mobility behavior of cyclists. 

It should be noted here that individual data of cyclists on their health perceptions in 

making spatial choices cannot be included in our modeling experiments, due to privacy 

rules. But indirectly, a spatial focus on green areas may be interpreted as a rise in health 

and environmental awareness. The empirical results are reported and interpreted in 

Section 5. 

The changes in the cyclists’ behavior and the corresponding change in the 

determinants of the cyclists’ mobility are next further analyzed by employing the Shapley 

decomposition method (Shorrocks, 1999). The Shapley value approach permits obtaining 

an exact additive decomposition of the mobility into its constituents and contributing 

factors. The method can be applied to any functional form of the regression model, where 

the importance of each explanatory factor or groups of explanatory factors are explicitly 

estimated by decomposing the overall R2. In terms of mobility, the contribution of each 

variable to overall mobility can be examined as the difference in the model fit with and 

without a given relevant moderator factor. If we consider Equation 1, the Shapley 

decomposition method is conducted by estimating the full model and successively 

removing a regressor or a group of regressors from the empirical model. The contribution 

of the regressor is next assessed as the average of its marginal effects. It is plausible that 

the order in which the regressors are eliminated affects the overall contribution estimated. 

Therefore, the method involves averaging of the marginal effects over all possible 

permutations of the variables included in the full model. Both the OLS regression and the 

Shapley decomposition will be applied in our case.   

In the final stage of our analysis, we will perform spatial autocorrelation analyses, 

both global and local, on Equation 1, without incorporating spatial covariates. This 

approach will enable us to examine spatial variations in the determinants of cyclist 

mobility during the pre-COVID and COVID periods, both at the local and global scales. 

 

 

5 Empirical results  

This section is devoted to a general discussion of the empirical model outcomes on the 

differences in cyclists’ mobility behavior in the pre-COVID and the COVID periods. We 

start by introducing the regression outputs of the empirical model in Eq. (1) for the two 

successive periods in our study. The Shapley values will be presented thereafter for the 

models with fixed effects and for different groupings of the covariates determining spatial 

mobility of cyclists. 

5.1 Regression results 

The regression outputs from Equation 1 for pre-COVID and COVID periods are 

shown in Table 1. These findings will now concisely be interpreted. The results indicate 

that weather conditions and air quality statistically significantly affect mobility in both 

two periods, be it with a few interesting differences. While humidity is associated with 

shorter distances in both periods, air quality—as measured by pollutant levels—and air 

pressure have exerted negative effects on geographical mobility in the pre-COVID 

period; they have shown an opposite association with mobility during the COVID times. 
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This suggests that during the pandemic, while making longer trips (Figure 1), cyclists 

used new routes despite the possibly poor air quality. On the other hand, while 

temperature was not a significant predictor of cyclists’ mobility in the first period, in the 

COVID period longer distances were observed during warmer days (see also Shao et al., 

2021). The variation in the impact of temperature could be associated with seasonal 

differences between the pre-COVID and COVID periods. 

Table 1 shows that the urban landscape along the road network also influences the 

bicycle mobility. In both periods, cyclists take longer trips in green and blue areas, and—

as the variable “production” indicates—around workplaces. This means that cycling 

distance increases either around recreational activities or when commuting to work, and it 

decreases around residential areas. The latter is contrary to what Figure 3 shows for 

general human mobility around residential areas. Therefore, in both periods the Google’s 

Community Mobility Report is likely picking up also movements by different transport 

modes than bicycles (potentially, the walking mode). Additionally, as Figure 3 shows, 

while in the first months of the pandemic, the mobility to residential areas has 

substantially increased, the trend has started to converge to its normal levels in the 

subsequent months. The variable “productive function” is the second variable that 

suggests a contrasting direction compared to what Figure 3 depicts. We find that in both 

periods, cyclists travelled longer distances in places with a high concentration of 

productive activities. Nevertheless, this opposite finding might suggest that even though 

less commuting was observed during the pandemic as suggested by Google’s Community 

Mobility Report, according to our findings, more people used bicycles as a transit choice 

to travel to work. In order for this interpretation to hold, we should observe longer 

cycling distances in the COVID period than before. This is indeed the case, as Figure 1 

above illustrates. 

The distance to the Utrecht central railway station indicates that in the pre-COVID 

period centrally located neighborhoods show longer distances (residents of suburban 

locations might be using different transportation means). The same behavior is observed 

in the COVID period but at lesser degrees.  This indicates that bicycles have become a 

stronger transit choice for those who need to travel longer distances, which might 

partially explain the increased total distances on bikes in the COVID period and the 

slightly odd finding regarding air quality.  

While age composition of neighborhoods (60+ age) is not significant in both 

equations, the variable PPP (per capita purchasing power) shows a modest effect on 

mobility in both periods. Furthermore, while the cyclists’ mobility does not significantly 

correlate with high purchasing power per capita in the pre-COVID period, it indicates 

statistically significant and negative sign in the COVID period. This might be related to 

access to private cars in wealthy neighborhoods.   
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Table 1. Regression outputs of cyclists’ mobility behavior in pre-COVID and COVID periods  

 

 

 

 (1) (2) 

VARIABLES Fixed Effects Pre-COVID Fixed Effects COVID 

   

Humidity -0.005*** -0.010*** 

 (0.002) (0.002) 

Particulate Matter 1.0 -0.002*** 0.000 

 (0.001) (0.000) 

Air Pressure -0.001** 0.001 

 (0.000) (0.001) 

Temperature -0.000 0.029*** 

 (0.000) (0.004) 

Green Fraction  1.827*** 0.688*** 

 (0.218) (0.213) 

Residential Fraction -1.540*** -3.217*** 

 (0.180) (0.180) 

Production Fraction 4.781*** 2.104*** 

 (0.469) (0.348) 

Urban Services Fraction 1.035*** 0.067 

 (0.301) (0.303) 

Blue Fraction 3.322*** 1.508*** 

 (0.446) (0.380) 

Distance to Train 

Station -0.446*** -0.391*** 

 (0.047) (0.046) 

Purchasing Power Per 

Capita -0.227 -0.463** 

 (0.215) (0.221) 

Share of Age 60+ -0.167 0.324 

 (0.449) (0.395) 

   

Constant 18.075*** 13.646*** 

 (3.600) (2.627) 

   

Observations 14,766 17,399 

R-squared 0.259 0.330 

Number of id 565 505 

Individual FE YES  YES 

DoW FE YES 

 

YES 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Legend: Dependent variable is the total daily distance travelled by cyclists 
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5.2 Shapley decomposition results 

Next, will we discuss the results from our Shapley decomposition analysis described 

above. Table 2 reports the Shapley decomposition of the cyclists’ mobility model in pre-

COVID and COVID periods. The Shapley values suggest that the cyclists’ fixed effects 

and the land use around the cyclists’ routes explain most of the variation in the cyclists’ 

mobility in both periods. A considerable part of mobility is attributed to mobility around 

areas with a high green, blue and productive function. The Shapley values point to a 

similar contribution of the covariates in the COVID period.  Most of the variation is 

attributed to cyclists’ and time fixed effects, and the fraction of urban surroundings along 

the road network. Meanwhile, the marginal contribution of the variables regarding 

weather and air quality appear to be higher, while the marginal contribution of the time 

fixed effects is lower in the COVID period. Our overall results suggest that during the 

COVID period cyclists undertake more recreational visits, which often take place during 

fine weather (Brandenburgx, et al. 2007) and around green amenities. The Shapley 
decomposition values indicate also that the day of the week has relatively less effect on 

cyclists’ mobility during the latter period. Again, this might be the result of less 

commuting and more leisure time bicycle usage during the pandemic. 
 

 

Table 2. Shapley decomposition of cyclists’ mobility 

 

5.3 Spatial autocorrelation results 

The differences between pre-COVID and COVID time cycling behavior becomes 

even more pronounced in terms of spatial dependency effects, if we study the regression 

results (and residuals) using spatial clustering techniques. Therefore, we run Eq. (1) 

without spatial variables and conduct a spatial autocorrelation analysis. We exclude 

spatial covariates, to reveal spatial autocorrelation in the modeling framework where 

geography is not considered (as this offers us the opportunity to test to what extent spatial 

autocorrelation has changed from before and during the pandemic).  In Table 3, and in 

Figure 5, the results from global Moran’s I analyses (Table 3) and local Moran’s I (Figure 

5) are shown for regression predictions and residuals before and during the pandemic 

(Anselin, 1995; Moran, 1950). We find that global Moran’s I describes clustering and 

dispersion from the expected (estimated) distribution, where deviations are expressed 

with a magnitude of value Index, while the strength is underlined by the z-score and p-

value.  The results in Table 3 indicate that there is a substantial geographical clustering of 

cycling distances in the urban landscape during the pandemic (i.e., people are cycling 

differently in different locations), while the clustering of residuals is also indicating that 
there are unknown, spatially dependent factors affecting the cycling behavior in the study 

area. If however, we look at the clustering in the pre-COVID period, we see that the 

 

 Percentage Variation Explained 

 pre-COVID COVID 

Weather-air quality 0.62 4.27 

Land Use 26.28 31.86 

Distance to Central Station 0.20 0.71 

Socio-economic and 

demographic 

0.28 0.92 

ID Fixed 64.89 55.44 

Time Fixed 7.75 2.91 

   

Overall R2 0.26 0.33 
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regression model is performing rather well by also explaining the spatial variation. This 

suggests that during the pandemic, cycling is an activity that is not primarily guided by 

work/school commuting, but more by personal choice, and most likely more for 

recreational, health and environmental purposes.  

 
Table 3. Global Moran’s I indices for pre-COVID and COVID periods 

 

 

 

The spatial autocorrelation results from Table 3 are derived using a global Moran’s 

model. If we next re-run the clustering analyses on a local level using a local Moran’s I 

approach (LISA; see Anselin 1995), we can plot how predictions and residuals are 

distributed spatially before and during the pandemic. The patterns in Figure 5 clearly 

show that there are considerable differences in cycling behavior between the core and 

suburban areas before the pandemic. The pattern is typical for urban areas, where a 

substantial share of mobility is devoted to commuting. During the pandemic, a more 

fragmented pattern appears to emerge, where the pre-COVID pattern is still detectable, 

but where decisions on whether to cycle, and for how long, are related to other factors 

than geography and commuting, most likely in this case leisure and health motives, 

leading to more variability in route choices and distances. 

 

 Index Z-Score 

 

P-Value 

 

Aspatial Model-Residual (COVID) 

 

0.13 

 

74.99 

 

0.00 

Aspatial Model-Prediction (COVID) 0.22 

 

127.3 

 

0.00 

Aspatial Model-Residual (Pre) 

 

-1E-04 

 

-0.02185 

 

0.983 

 

Aspatil Model-Predictions (Pre) -2E-04 

 

-0.06598 

 

0.947 
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Figure 5. LISA (Local Indicators of Spatial Autocorrelation, Local Moran’s I) values for regression 

predictions and residuals for pre-COVID and COVID periods 

Legend: Lighter blue and pink colors indicate clusters of lower (blue) and higher (pink) regression estimates. 

Dark colored dots indicate spots with outlier values (compared to neighbors).  

 

6 Conclusion 

Our research aligns with a longstanding tradition in empirical transportation research 

of studying the advantages of slow modes of transport, driven by environmental, lifestyle, 

and health considerations. Additionally, it introduces novel digital research perspectives 

on space-time geography. The COVID-19 era has brought about new catalysts for 

changes in cyclists’ trip behavior. Our snifferbike database presents valuable prospects 

for analyzing real-time probe data on route choices, frequency of trips, and destination 

preferences among bike riders. Notably, conventional factors influencing geographical 

mobility via slow modes appear to assume a distinct role during the pandemic. COVID-

19 has shed light on the specific trip benefits associated with cycling. In particular, our 

research—both the modeling outcomes and the GIS findings—points at the following 

findings of cycle mobility in corona times: 

• Cyclists made longer trips during COVID-19 periods, while also exploring 

new routes in green areas. 

• Residents in remote neighborhoods from a central railway station appeared to 

choose more frequently bikes as a vehicle in the corona period. 
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• Temperature appeared to be a significant predictor of the cyclists’ mobility, in 

particular in the COVID period, while air quality appears to play a less 

important role in route change for commuting.  

• Bicycles have become a stronger transit vehicle for those who need to travel 

over relatively longer distances. 

• The Shapley decomposition results indicate that during the COVID period 

more recreational biking took place, in particular around green amenities. In 

contrast to the pre-COVID period, we observe less commuting travel and 

more leisure time use on bicycles. 

• Finally, spatial autocorrelation results indicate that there is a substantial 

geographical clustering of cycling distances in the urban landscape during the 

pandemic.  

Our findings clearly show a substantial impact of COVID-19 on the geographical 

choice pattern of cyclists. In line with general Google Mobility data, it turns out that 

green areas appeared to be attractive destinations for cyclists during the pandemic. In 

conclusion, perceived health and lifestyle motives are a significant contributor to active 

slow motion choice behavior in the corona period. Clearly, our research is subject to 

limitations arising from the specific snifferbike data utilized in our analysis. Specifically, 

we were unable to incorporate substitution effects (such as those related to public 

transport) and individual characteristics (such as gender and age) in our empirical 

investigation. Nonetheless, our quantitative study on changes in cyclists’ trips during the 

COVID-19 era has uncovered a plethora of fresh insights regarding the moderating 

influence of the pandemic. 
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