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Abstract: Long-range planning is an uncertain endeavor. This is 

especially true for urban regions, small ships in a global urban storm that 

are too small to influence macro policies and without the land-use powers 

of local governments. Exploratory scenarios, the established practice for 

planning under deep uncertainty, have inspired stakeholders to consider 

multiple futures but have fallen short of identifying robust and contingent 

policies. We need new tools to plan under conditions of deep uncertainty. 

Scenario discovery is a technique for using simulation models to explore 

the performance of policy options across uncertain scenarios. This paper 

presents an application of scenario discovery in land-use modeling and 

asks what this computationally intensive approach offers relative to a 

more circumscribed exploration of uncertainty space. The introduction of 

autonomous vehicles (AVs) and their associated impacts on land use 

provide a test case demonstrating this method, as well as a topic of 

substantive concern. This research concludes that scenario discovery is 

particularly valuable for identifying the conditions under which 

contingent policies are likely to succeed. In terms of AV policy, this 

research establishes that forward-thinking, transit-oriented-development 

strategies can mitigate spatial dispersion while also reducing overall 

housing costs. In addition, I find that AVs may blunt the impacts of some 

current policy tools if they extend the distance individuals are willing to 

travel to work. 
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1 Introduction 

The analytic processes deployed in long-range planning have long aided in masking 

uncertainty. Land Use Transportation Interaction (LUTI) models, a tool utilized by 

Metropolitan Planning Organizations (MPOs) according to the predict and prepare 

paradigm that has dominated long-range planning approaches. Modelers and planners 

often rely on point forecasts whose basic assumption is that the future will be largely 

similar to the present—just with more people (Marsden & McDonald, 2019). Planning 

professionals are just beginning to develop analytic frameworks that acknowledge future 

uncertainty in the application of these models. I thus examine scenario discovery and 

robust decision-making, a technique for using simulation models to explore the 

performance of policy options across uncertain scenarios (Lempert et al., 2006). Scenario 
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discovery has limited deployment in the regional planning context, including a handful of 

transportation applications (Lempert et al., 2020; Milkovits et al., 2019), and even fewer 

in Land Use Transportation Integrated (LUTI) modeling (Swartz & Zegras, 2013). At a 

larger scale scenario discovery has been applied as part of an integrated assessment 

model that included a cellular automata model land use/land cover change model, a 

different approach to simulating land-use change than explored in this paper (Jafino et al., 

2021; Jafino & Kwakkel, 2021)  

The primary goal of this paper is to demonstrate the application of scenario discovery 

for land-use modeling to the urban planning community. In doing so, I assess the 

usefulness of this approach relative to more circumscribed approaches to incorporating 

uncertainty into modeling. I compare the information gained for a large number of futures 

to a more limited sampling of uncertainty space. In focusing on only the outer edges of 

the uncertainty space, the more limited sampling is designed to resemble the results of an 

exploratory scenario exercise which develops and examines scenarios at the edges of 

plausibility.  I demonstrate scenario discovery by modeling the impacts of automated 

vehicles (AV) on land-use decisions. In doing so, I demonstrate how scenario discovery 

can allow us to draw policy insights regarding a deeply uncertain topic. I also draw 

conclusions regarding the potential land-use impacts of automated vehicles and policies 

to support desirable outcomes. 

My research seeks to provide insight on the following questions: 

• Q1: How well does scenario discovery within LUTI modeling perform in 

identifying robust and contingent planning strategies relative to exploratory 

scenarios? 

• Q2: What are the potential land-use outcomes from autonomous vehicle 

adoption and what policies can be put in place to support desirable outcomes? 

For the research questions, I hypothesize as follows: 

• H1A: Scenario discovery within LUTI modeling will be more precise in 

identifying robust strategies than exploratory scenarios because additional 

scenarios will support a finer-grain measure of robustness. Scenario discovery 

within LUTI modeling will be more accurate in identifying robust strategies 

because the sampling technique ensures more even coverage of the 

uncertainty space. 

• H1B: Scenario discovery will determine contingent policies, where more 

limited samples will be insufficient. 

• H2A: Automated vehicles will contribute to more dispersed land-use patterns, 

as was the case with previous transportation technologies that increased 

mobility speed and comfort (Wegener & Fuerst, 2004). The dispersal 

encouraging effects of decreased value of accessibility in residential location 

choice will be stronger than the concentration effect of opening up newly 

developable central land on former parking lots. 

• H2B: Policies that encourage more concentrated land use will be less 

impactful if automated vehicles change how people value accessibility in 

location choice.  

In answering these questions, this work seeks to contribute to the literatures on the 

application of uncertainty analysis in planning, LUTI applications, and the impacts of 

new transportation technologies. 
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2 Uncertainty in planning 

A primary tool for planning under uncertain conditions is “exploratory scenarios,” 

which are defined by asking What can Happen (Börjeson et al., 2006)? In this type of 

scenario planning, conveners work with stakeholders to tell several dissimilar, plausible 

stories about the future to prepare for whatever comes (Schwartz, 1991). This form of 

scenario adapted approaches that Herman Kahn developed for Cold War strategy to the 

business world (Wack, 1985), but has rapidly gained acceptance within urban planning in 

the past two decades (Avin & Dembner, 2000; Chakraborty & McMillan, 2015; Zegras et 

al., 2004). 

Deep uncertainty can be defined as a condition under which individuals know the 

potential outcomes but cannot define the distribution of key parameters (Kwakkel et al., 

2010). Exploratory scenarios have been preferred for deep uncertainty because of their 

focus on the conditions under which policies should be advanced, rather than determining 

the most likely or preferable outcome. One objective of such exercises is to select 

policies that are robust to a variety of futures and identify other, contingent, policies that 

should be implemented in limited circumstances (Avin, 2007). Depending on the goals 

and models available to planners, scenarios may also be run through urban systems 

models to understand potential impacts (Knaap et al., 2020). For narrative intelligibility, 

scenario planners recommend 3–5 scenarios. However, from the modeling standpoint, 

this is insufficient to consider policy robustness (Lempert et al., 2006). This does not 

necessarily obviate the organizational learning and collaborative action potential of 

scenarios (Bootz, 2010; Wack, 1985; Xiang & Clarke, 2003), though those outcomes 

have been tested elsewhere (Zegras & Rayle, 2012). 

Robust decision-making using scenario discovery could provide an analytics approach 

for considering deep uncertainties within LUTI models. In this approach, policies are 

modeled in an ensemble of hundreds or thousands of futures. Instead of asking which 

policies are likely to produce the highest expected value, scenario discovery asks what 

conditions under which policies perform well or poorly (Hall et al., 2012; Walker et al., 

2013). McPhail et al. (2020) investigate the impact of different sampling strategies on 

robustness and the rank order of policy choices using the stylized Lake problem, 

providing the first systematic examination of their relative performance. Examining both 

small and large samples using diverse, targeted, and uniform sampling strategies, the 

authors find that measures of robustness vary significantly across samples, but rank order 

often remains similar. My research builds on this study by examining how an ensemble 

of land-use modeling runs relative to more limited exploratory scenario approaches. This 

paper then seeks to determine if their results remain valid for models that are significant 

for urban planning rather than water resources management. 

 

3 Modeling automated vehicles and land use 

As AVs approach the marketplace, there is great uncertainty regarding their impacts 

on household location choice and associated land-use patterns. AVs may exacerbate 

sprawl by making longer commutes more comfortable or facilitate infill by making near-

to-destination parking obsolete. Though researchers have extensively modeled the travel 

demand impacts of AVs, few studies have utilized LUTI models or estimated second-

order impacts on land use (Papa & Ferreira, 2018; Soteropoulos et al., 2019), even though 

previous changes in transportation technology profoundly altered large-scale urban form 

(Wegener & Fuerst, 2004).  

Meyer et al. (2017) was one of the first studies to model the land-use impact of AVs. 

Using the Swiss national transport model,  they found accessibility declines in urban 
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areas associated with increased congestion but accessibility gains in suburban areas. The 

Swiss national transport model is a macroscopic travel demand model. This study used 

only the personal transport changes and no changes to freight. Because they only ran a 

transport model, the findings are gravity-based accessibility scores based on travel times 

on the network. They do not calculate resultant changes in land use. 

Two other studies confirm that AVs could encourage population dispersal; finding 

that the inner urban population decreased between 1–4% while outer suburbs in nonurban 

and rural regions increased between 1–3% (Gelauff et al., 2017; Thakur et al., 2016). 

Gelauff et al. (2017) use the Dutch spatial equilibrium model (LUCA). LUCA 

microscopically models four types of agents: three different educational attainment 

consumer groups and land owners. The consumers choose the location and size of their 

dwelling, their job location, and commute mode by considering locational characteristics 

and commuting costs. The simulation experiments consider the impacts of AVs on lower 

perceived cost of travel and additional roadway capacity. Thakur et al. (2016) use a 

bespoke LUTI model for the Melbourne area. This model has thirty-one radiating zones 

and is integrated with the Victoria Integrated Transportation Model. The population is 

redistributed according to a discrete choice model in which accessibility to employment 

is a key variable in location choice. The scenarios they consider examine changes to real 

and perceived in-vehicle and out-of-vehicle time. 

Though the aforementioned modeling indicated that AVs would encourage dispersal, 

a closer look into model results tells a more complex story. Distance to work could 

increase between 7–10% in Atlanta though retired households may move in closer 

(Zhang, 2017). The author develops an AV operations and dispatching model that 

integrates with UrbanSim's discrete choice residential and firm location model. The 

simulation experiments primarily consider behavioral adjustments associated with 

decreased disamenity of in-vehicle time and policies related to parking. Development 

may leapfrog the greenbelt in Seoul, South Korea, and become less clustered (Kim et al., 

2015). Kim also uses an agent-based discrete choice framework. The authors only present 

one automated vehicle scenario. In this scenario, they assume increased accessibility of 

distant regions and decreased preferences for proximity to goods and amenities. Several 

authors noted the increasing importance of amenities in location choice (Meyer et al., 

2017; Thakur et al., 2016). Specific results are difficult to compare because of the 

different contexts, models, and assumptions in each simulation. 

Looking into more neighborhood-specific applications of AVs, Basu and Ferreira 

(2020) utilized the SimMobility long-term model to examine the deployment of 

automated mobility in association with a car-lite pilot in Singapore. SimMobility is a 

state-of-the-art transportation model with three modular components: long-term land-use 

decisions, mid-term travel demand, and short-term network simulation. The long-term 

model simulates daily behaviors in the housing market, including the decision to search 

for housing, bidding, and developer behavior. Utilizing accessibility and property values 

as variables, they determine that car-lite policies, in conjunction with automated vehicles, 

have the potential to increase the incomes of households moving into the study area. In a 

different study, SimMobility is also used to simulate the impacts of automated mobility 

on demand (AMoD) on vehicle ownership and residential choices in Singapore. They 

examine a partial automation scenario, in which AMoD is introduced into only a specific 

study area of central Singapore, and a full automation scenario, in which only AMoD and 

public transit are allowed to operate, while private cars are banned from the study area. In 

their full automation scenario, the already high-demand study area has increased demand 

relative to the baseline. 

The SILO model, the microsimulation model used in this research, is used in two 

previous studies. Looking at two scenarios which decrease the value of time and increase 
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vehicle occupancy in Austin, AVs decrease core population between 5.3% and increase 

growth outside the core by 5.6% (Wellik & Kockelman, 2020). In Munich, six scenarios 

examine reduced value of time, the decision to purchase an AV, and lower parking 

penalty in the core. The additional urban sprawl induced by less burdensome commuting 

is largely compensated by the increased attractiveness of the already popular urban core 

(Llorca et al., 2022). 

Finally, the TRANSPACE model is used to examine the impact of roadway capacity 

and induced demand in the Bay of Santander (Cantabria, Spain). If AVs create new 

capacity without inducing demand, population growth increases by 2.1% outside the city, 

but if the capacity is consumed, growth could increase up to .7% in the central zone. 

Employment grew 1.6%  in the core with increased core capacity, but decreased -.85% 

with the assumed behavioral change (Cordera et al., 2021) 

Generally, these simulation experiments have estimated decentralizing behavior to 

have larger impacts on land-use outcomes than the reallocation of central land, however, 

that balance is not universal. Comparison across the current literature is difficult because 

the cases lack consistency in the selected models and variables. Even within individual 

experiments, the number of runs remains small and it’s difficult to determine whether 

their results are truly robust beyond their specific parameterization, except for some 

sensitivity testing. None of these modeling efforts examined more than six scenarios or 

systematically explored the uncertainty space—something that this paper seeks to 

introduce. 

 

4 Exploratory modeling in land use and transportation simulation 

Exploratory modeling is a computational approach with a variety of techniques to 

assist reasoning regarding a system when there is uncertainty. When modelers cannot 

take system dynamics for granted because of these uncertainties, exploratory modeling 

approaches perform hundreds, thousands, or even more runs to rapidly test how those 

uncertainties impact model dynamics (Bankes, 1993). In the past two decades, 

exploratory modeling approaches have increased in variety and application, as led by 

decision-making under deep uncertainty scholars in Europe (Kwakkel et al., 2016) and at 

RAND, a private research organization long associated with strategic analysis (Groves & 

Lempert, 2007). This paper utilizes one of those approaches, scenario discovery for 

robust decision-making (Bryant & Lempert, 2010; Lempert et al., 2006). 

Scenario discovery has found very limited application in LUTI modeling. Lempert et 

al. (2020) demonstrate robust decision-making using scenario discovery in travel demand 

modeling. Specifically, the authors work with the Sacramento Area Council of 

Government to determine the conditions under which their transportation plan 

simultaneously meets greenhouse gas emissions, local emissions, mobility, and equity 

goals. Using the PRIM algorithm, they determined that gas prices, fuel efficiency, 

employment growth, and vehicle miles traveled elasticity with respect to time were key 

drivers for meeting all the goals in 12% of the scenarios tested. They further determined 

that encouraging more rapid penetration of zero-emission vehicles would reduce the 

vulnerability of failing to meet one of their goals. 

Milkovits et al. (2019) developed the Travel Model Improvement Program 

Exploratory Modeling and Analysis Tool (TMIP-EMAT), a travel demand model-

oriented extension of the original Exploratory Modeling and Workbench (Kwakkel, 

2017), and deployed TMIP-EMAT using the Greater Buffalo-Niagara Regional 

Transportation Council regional travel demand. Concerning land use, Swartz and Zegras 
(2013) provided a demonstration of concept of land-use modeling using UrbanSim to 

examine future growth in Lisbon, Portugal. This paper is just the second instance, to my 
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knowledge, of exploratory modeling of land-use outcomes, and the first to compare 

scenario discovery results to more limited sampling approaches. 

Two papers on water climate adaptation in the Mekong River Delta apply scenario 

discovery to an integrated assessment model that includes a cellular automata land 

use/land cover change component (Jafino et al., 2021; Jafino & Kwakkel, 2021). Cellular 

automata models of land use/land cover change simulate land cover changes on a raster 

according to locational and proximity characteristics (White et al., 2015). These models 

can incorporate the behavior of land owners, as is the case in the Mekong River Delta 

study (van Delden et al., 2011). Agent-based micro-simulation, presented in my research, 

differs in capturing the individual decisions of agents regarding where to move. This 

class of model also remains the standard within urban planning for ease of integration 

with existing transportation models and for realistic simulation of housing markets. 

 

5 Research design and methods 

Scenario discovery is a simulation research technique with two phases: sampling and 

data mining (Figure 1 provides details as described below). Given that an exploration of 

all future states is impossible, Latin hypercube sampling (LHS)—which ensures the 

maximum difference between runs—is preferable to intuition-based approaches, which 

might ignore regions of uncertainty (Groves & Lempert, 2007). LHS divides the sample 

space into proportional segments and draws one sample from each segment, thus 

ensuring that no region of the uncertainty space is insufficiently sampled as may occur in 

random sampling (Mckay et al., 2000). Scenario discovery then utilizes data mining to 

explore the broader uncertainty space for regions in which a policy performs particularly 

well or poorly. I employ the Patient Rule Induction Method (PRIM), an algorithm that 

searches for lower dimensional boxes of concentration within higher dimensional space 

(Friedman & Fisher, 1999). Because each box edge is defined by a single variable, PRIM 

is easier to interpret than comparable methodologies (Lempert & Groves, 2010). For my 

analysis, I utilize the prim library in R. Please see the appendix for more on how PRIM 

identifies boxes. 
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Figure 1. The scenario discovery process utilized for analysis of AV land-use futures 

 

As all PRIM boxes are not equally informative. I selected to further investigate those 

boxes that performed above the median for density—the percentage of boxed futures that 

are failed futures - and coverage—the percentage of all failed futures covered by the box. 

I also excluded any boxes that were > 95% failures or successes because they provided 

insufficient information for determining clear regions of success and failure.  

Each uncertainty parameterization is a scenario.1 Each scenario is modeled with 

baseline parameters and with each policy intervention. For each completed run, or future, 

the simulation model generates select indicators. The indicators of each future are 

translated into regret—i.e., the difference between the highest-performing future for each 

 

 

 
1 

My use of the term “scenario” is in line with (Kwakkel et al., 2013) who uses scenario to describe the individual 

computational experiments. Other articles using similar approaches have used “scenario” to refer to the set of circumstances 

discovered through a PRIM box (Bryant & Lempert, 2010). I prefer the former definition as I find that it intuitively matches how 
scenarios are defined in the exploratory scenario as circumstances defined by unknown external forces. The latter definition 

conflates uncertainties and policy levers.
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scenario and the performance of the selected future. Regret allows for comparison across 

unlike scenarios. A failed future refers to one with greater-than-median regret amongst 

policies with regret greater than 0.2 Let robustness be the percentage of scenarios that 

succeed for any given policy. For any indicator, robustness is calculated as 𝑟 = 1 −
𝑁𝑓

𝑁
 

where 𝑟 is the robustness, where 𝑁 is the total number of futures, and 𝑁𝑓  is the number of 

failed futures. We can also call 
𝑁𝑓

𝑁
 the failure rate. Finally, the PRIM algorithm is 

deployed to search for the conditions under which policies tend to outperform others 

(Gross, 2018). 

A single PRIM run determines the conditions of policy success for one policy as 

measured against one indicator. Comparing multiple policies across several indicators 

requires generating PRIM boxes for each “policy/indicator” combination. PRIM 

iteratively separates regions of high regret; it generates a series of multi-dimensional 

boxes. Each of these solutions sits upon the Pareto optimum, trading off coverage—the 

rate at which the box captures the failed futures—for density—the proportion of futures 

in the box that meet failure criteria. From each PRIM solution set, I selected the box with 

the highest density of failure to maintain comparability between the 35 boxes for each 

combination of five policies and seven indicators that I introduce later in this section. 

These boxes also identify the more uncertainty conditions under which a policy might fail 

relative to boxes with greater coverage.   

The experiment is run using the Simple Integrated Land Use Orchestrator (SILO), an 

agent-based land-use model microsimulation that stochastically simulates household 

location choice decisions, designed to integrate with existing transportation models 

(Moeckel, 2016). SILO utilizes discrete choice models to simulate each household, 

person, and dwelling unit in a modeling region. See the appendix for more details on the 

model weights and references to model details. The model is designed primarily to 

determine location choice decisions and associated land-use patterns and can be readily 

integrated with existing transportation models. Relying in part on behavioral heuristics, 

such as maintaining a relatively fixed distance to work distribution, it is simpler to set up 

and calibrate than other microscopic land-use models.  

SILO is used to simulate the 2015–2030 timeframe in one-year increments. The model 

runs begin in the year 2015 because that is the year for which the model was initially 

built and validated. The observed effects of automated vehicles should not be much 

impacted by the start year.3 The simulation does not include the impacts of the Covid-19 

pandemic on the housing market. The model consists of four modules: synthetic 

population generation, demographic changes, real estate development, and household 

relocation. Household relocation is determined by three logit models that determine 

whether to move or stay, which region to move into, and which dwelling to move into 

within that region. Location choice factors include accessibility to jobs, travel time to 

work for working household members, and housing costs. In the calibration of the 

application of SILO to Maryland and reflecting decision-making of actual households in 

the region, the modelers added racial segregation preferences, as well as measures of 

crime and school quality (Knaap et al., 2020). The weight of individual factors in the 

logit model depends on household size, income, and race. 

 

 

 
2 Other rules can be used for determining regret including policy responsive tools where such a threshold officially exists.  

3 This simulation did not include the Covid-19 or the more recent run up in inflation. This experiment was designed to isolate 
policies designed for managing the land-use impacts of AV uncertainty. However, future research could explore regional 

uncertainties more comprehensively. 
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SILO maintains a synthetic population of all individuals and dwellings as well as 

households. The demographic model is essential in determining realistic location choice 

behaviors. In every annual simulation each individual ages one year. Markov transition 

rates determine life events—such as marriage, parenthood, and death—for individuals of 

a given gender and age. This is crucial because the residential location choice model 

accounts for the home and work locations of both workers in married households and 

school quality for households with children. The development model increases home 

values where units are highly occupied and decreases home values where many units 

remain vacant. Developers respond to these signals by preferring to add units where 

prices are high. A development capacity layer acts as a hard cap on total units. This layer 

was developed from an analysis of zoned capacity in each Maryland jurisdiction and 

estimates based on projected growth locations in other states. 

 

 

Figure 2. The SILO Modeling Region. Top map shows regional designation used for interpreting SILO 

results  

 

A couple of the limitations of this experiment accompany my selection of the SILO 

model. First, the SILO model takes the future employment distribution as a given. Our 

instantiation used employment projections from the Maryland Statewide Transportation 

Model (MSTM). These projections include the metropolitan planning organization 

employment forecasts for the Baltimore and Washington region expanded with forecasts 

from state agencies in rural areas (Tadayon & Shemer, 2013). Second, I was unable to 

integrate SILO with a transportation model at this time, so this experiment does not 

directly model feedback between land use and transportation. Travel times on the 

network are thus treated as an uncertainty, as explained further below. 

This instantiation simulates the Baltimore-Washington region (Figure 2), where SILO 

has already been exercised in exploratory scenarios and AV modeling (Knaap et al., 

2020). The Baltimore-Washington region is an older US region with two downtowns and 

several major suburban job centers. Many central areas and inner suburbs possess limited 

capacity to absorb new development under current land-use regulations, something that 

SILO accounts for. To track regional growth, all counties are either assigned as core, 

inner, outer, or beyond the region. Core jurisdictions are Baltimore and Washington, DC. 

Inner suburbs are those adjacent to the core jurisdictions and Howard County, which is 
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well suburbanized at this point. Outer jurisdictions include the remaining jurisdictions 

within the two metropolitan planning organizations. Beyond the region is largely rural 

but does include smaller population centers in Wilmington, DE, York and Lancaster PA, 

and Ocean City, MD. SILO does not model beach home development in Maryland and 

Delmarva. 

The uncertain parameters (Table 1) within the SILO model align with those 

uncertainties elevated in the literature on AVs and previous modeling (Llorca et al., 2022; 

Soteropoulos et al., 2019; Sperling, 2018). My use of “uncertain parameters” reflects that 

what is now uncertain in the model are fixed or stochastic parameters, such as the value 

of access or distance to work constraints. It is also consistent with the previous literature 

(Groves & Lempert, 2007). Uncertainty parameters include the auto operating cost, 

increased infill capacity due to lower parking demand, travel times, and three parameters 

reflecting changing values of accessibility: the value of access in location decisions, 

zonal accessibility score, and distance to work constraints (Table 1). The ranges were 

determined from estimates in the literature and previous AV modeling (Litman, 2018; 

Soteropoulos et al., 2019).  

Because this experiment was not integrated with a travel demand model, all the 

parameters are within the SILO location choice module. My uncertain parameter in this 

case then selects from two zone-to-zone travel time scenarios rather than modeling the 

full impact of vehicle automation and household relocation on travel times. In the first 

case, AVs use the road space as efficiently as human-driven cars—the 2030 baseline 

zone-to-zone travel times from the MSTM. In the second case, AVs use the road space 

more efficiently—2015 travel times are maintained throughout the simulation even as the 

population grows. This constitutes a 19.9% reduction of travel times relative to baseline, 

well within the results found in previous studies which found vehicle hours traveled 

changes from –41% to +25% according to a 2019 review of transportation modeling 

studies (Soteropoulos et al., 2019).  
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Table 1. Uncertain parameters 

 

 

Policy interventions (Table 2) include common approaches for encouraging 

concentrated land uses. Increasing transit-oriented development capacity is modeled via a 

25% increase in capacity, measured in allowable new dwelling units, in zones with transit 

stations. Without integration with a travel model, I assume that increasing the fuel tax by 

1 cent/mile decreases travel times over the network and household travel time to work by 

.5%. The 1 cent per mile increase is effectively a 1.2% increase on the baseline auto-

operating costs in the SILO model, which includes fuel costs and other mileage-

 

 

 
4 Estimated in previous modeling work; approximate for the purposes of this research 

Uncertain Parameter Impact of AVs Baseline value Sample range Sources for range 

 

Auto operating cost 

 

Increase with new 

technology; decrease 

with increased 

platooning and 

efficient driving 

 

 

8.4 cents/mile 

 

2.1 – 12.3 

cents per mile 

 

Reductions in energy and use 

intensity up to between -75% and 

+30% (Brown et al., 2014; Stephens 

et al., 2016) 

 

Infill capacity 

 

Allows for 

redevelopment of 

existing parking 

 

Set at zone 

level 

 

0-50% increase 

in capacity for 

new units 

 

Reduction in parking could be up to 

90% in high adoption scenarios. 

(Zhang et al., 2015; Zhang & 

Wang, 2020) 

 

 

Relative value of 

access in location 

choice 

 

Decreases value of 

access due to in-vehicle 

comfort 

 

Set by income 

group 

 

0-25% 

decrease 

 

Value of time reduction between 

18% and 50% for personal 

automated vehicles (Andrei et al., 

2022; Kolarova et al., 2019; Steck 

et al., 2018; Zhong et al., 2020) 

 

 

Distance to work 

constraint 

 

Willing to move further 

from work due to in-

vehicle comfort 

 

Travel times = 

Γ(k = 2, θ= 

17.2) 

 

θ in [17.2, 

34.4] 

 

Value of time reduction between 

18% and 50% for personal 

automated vehicles (Andrei et al., 

2022; Kolarova et al., 2019; Steck 

et al., 2018; Zhong et al., 2020) 

 

 

Zonal access to jobs 

beta – Hansen 

accessibility 

 

Decrease the overall 

value of proximity 

 

3 

 

β in [1.5,3] 

 

Value of time reduction between 

18% and 50% for personal 

automated vehicles (Andrei et al., 

2022; Kolarova et al., 2019; Steck 

et al., 2018; Zhong et al., 2020)   

  

 

Zone-to-zone travel 

times 

 

Decrease with AV 

efficient use of network 

 

2030 baseline 

travel times 

from MSTM 

 

Binary: {2030 

baseline travel 

times; 2015 

travel times (-

19% average 

travel time)4} 

 

 

Childress et al (2015) found 

between -41% and + 17% change in 

vehicle hours traveled.  
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dependent costs. A review of several of the literature found long-run VMT demand 

elasticities with respect to fuel cost as high as -.4, including in a recent (Litman, 2022). 

One of the recent studies that finds an elasticity of -.4 uses a microeconomic model to 

determine the fuel use impacts of AVs (Taiebat et al., 2019). The FHWA reports a one-

to-one relationship between VMT change and travel time changes nationwide (Brand, 

2009). This would translate to an effective .48% reduction in travel times.  

Each policy is examined twice: first starting at simulation year 0 and delaying each 

policy to start in year 6 (2021). In “delayed” policy runs, SILO is run with the baseline 

settings for year 0-5. This sets the groundwork for adaptive policy approaches (Walker et 

al., 2013). One hundred scenarios are sampled using the LHS, which is comparable with 

other scenario discovery experiments in terms of the density of the sample in the multi-

dimensional space (Swartz & Zegras, 2013).5 
 

Table 2. Policy alternatives modeled 

 

 

 

Finally, seven indicators (Table 3) capture additional points of comparison between 

the LHS sample and more limited scenario approaches. For instance, the results for a 

single indicator might indicate that the full LHS and the more limited sample produce a 

similar measure of policy robustness. However, comparing the robustness between LHS 

and a more limited sample across several indicators will help to determine whether the 

robustness measures are consistently similar or different.  

 

 

 
5 See methodological appendix for additional details on the selected number of scenarios 

Policy What is it? When is it 

implemented? 

How it is implemented in 

SILO? 

 

Baseline 

 

No additional policy action 

 

NA 

 

NA 

 

 

Transit-oriented 

development 

 

Expanded residential 

development capacity at heavy 

rail, light rail, and commuter 

rail 

 

 

2015 simulation 

year 

 

50% increase in residential 

unit capacity in zones with 

heavy rail, light rail, and 

commuter rail 

 

Delayed transit-

oriented 

development 

(year 6) 

 

Expanded residential 

development capacity at heavy 

rail, light rail, and commuter 

rail 

 

2021 simulation 

year 

 

50% increase in residential 

unit capacity in zones with 

heavy rail, light rail, and 

commuter rail 

 

 

Gas price 

increase 

 

Increase gas price by 1 cent 

per mile 

 

2015 simulation 

year 

 

.5% decrease in the zone-to-

zone travel times 

.5% decrease in travel times to 

work preferences  

 

 

Delayed gas price 

increase (year 6) 

 

Increase gas price by 1 cent 

per mile 

 

2021 simulation 

year 

 

.5% decrease in the zone-to-

zone travel times 

.5% decrease in travel times to 

work preferences 
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In providing multiple indicators for comparison, the results reflect different modules 

within the SILO model as well as different priorities for urban development. Core area 

households, inner suburban households, and high transit access households are all 

indicators associated with the concentration of households in already developed areas of 

the region. High transit-accessible households are those in zones that are 75th percentile 

or higher in access to employment via transit. This includes some zones that do not 

contain rail stops, such as zones near the core with high-frequency bus service, and 

excludes some zones with rail, such as outer suburban zones with infrequent commuter 

rail. Outer suburban households and households beyond the metro areas measure 

dispersion. Median housing cost track housing affordability. These indicators are also 

directly produced by the real estate development module rather than the household 

relocation module. Finally, households that are located in modeling zones that are higher 

than 75% targeted ecological area (TEA)6 are a proxy for environmental impacts. 

 

Table 3. Indicators 

 

 

 

 
 

 
6 Targeted ecological areas are watersheds in the top decile for protection, as designated by the Maryland Department of the 

Environment. 

Indicator Description Purpose Desired 

direction 

 

Core households 

 

Number of households located in 

Baltimore and Washington, DC 

 

Measure relative regional 

concentration 

 

 

Higher 

 

Inner Suburban  

 

Number of households located in 

inner suburban jurisdiction 

 

 

Measure relative regional 

concentration 

 

Higher 

 

Outer Suburban  

 

Number of households located in 

outer suburban jurisdiction 

 

Measure relative regional 

dispersion 

 

 

Lower 

 

Beyond Region  

 

Number of households located beyond 

the two regions as defined by MPO 

boundaries 

 

 

Measure relative regional 

dispersion 

 

Lower 

 

High transit 

accessibility  

 

Number of households located in 

zones that are 75th percental or higher 

in access to employment 

 

 

Measure growth in areas 

with high regional access 

via transit  

 

Higher 

 

Households in > 75% 

TEA  

 

Number of households that are located 

in zones that > 75% targeted 

ecological areas by land area 

 

Measure environmental 

impacts of development 

patterns 

 

 

Lower 

 

Median housing 

prices ($) 

 

Median housing price within the 

region 

 

Measure regional housing 

cost impacts 

 

 

Lower 
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To determine the information value of scenario discovery, I consider the sensitivity, 

the percentage of futures in the box that fail, and the precision, the percentage of all 

failing scenarios captured in the PRIM boxes. Additionally, I examine the results of the 

100 futures against two scenario sets that approximate exploratory scenarios. The first 

case is the convex hull of the LHS sample (9 scenarios) and the second case selects the 

eight extreme points from three uncertainty dimensions (8 scenarios). To limit the 

dimensionality, I eliminated the per-mile cost of the automobility parameter and set the 

three accessibility parameters to vary together, i.e., they are together set to either their 

highest or lowest values. Both of these sampling techniques examine only futures on the 

outer edge of the sampling space, designed to resemble exploratory scenarios that focus 

on the edge of plausibility. 

 

6 Results 

6.1 Baseline automated vehicle futures 

I begin with an examination of the 100 baseline futures. For every indicator, AV 

scenarios scored above and below the default, no-AV scenario (Table 4). On average, 

more households were located in the core (+1.4%), more households could access transit 

(1.3%), and fewer households were cost-burdened (-3.3%). More importantly, all the 

outputs differ considerably from scenario to scenario. They vary as much as 10.3% (outer 

suburban households) and as little as 5.7% (households in TEAs). This reiterates the 

importance of considering multiple scenarios. Though deep uncertainties cannot be 

validated against data, the range of simulations included growth outcomes similar to 

other modeling efforts (Soteropoulos et al., 2019). For instance, past modeling has found 

that core residential growth ranged from +.7% to -5.7% relative to the baseline. The same 

experiments found that residential growth outside the core increased between 1-5.7% 

(Gelauff et al., 2017; Thakur et al., 2016; Wellik & Kockelman, 2020). Our baseline 

futures also included outcomes beyond the previous finding, such as core household 

growth increasing by 6.1%. This is in part explained by the volume of futures examined 

in this experiment. Whereas the cited papers each examine less than ten scenarios, this 

experiment includes 100 baseline scenarios. We should expect some results beyond the 

bounds of previous experiments. Additionally, the Baltimore-Washington application 

case is in a different context from previous experiments. 
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Table 4. Baseline automated vehicles futures 

6.2 Robustness of policies in automated futures 

From the policy perspective, transit-oriented development (Figure 3: orange bars) is 

highly robust across the majority of indicators, with robustness greater than .9 for five of 

the indicators. It is never the worst-performing policy. Delaying transit-oriented 

development (Figure 3: gray bars), however, reduces robustness (or conversely increases 

regret) on nearly all indicators. Though increasing the price of gasoline (Figure 3: yellow 

bars) is the most robust with respect to core growth, it performs middling or poorly on all 

the other indicators. The low robustness with respect to inner household growth can 

partly be explained by the better performance within the core—the two regions often 

compete for residents. However, the lack of additional growth capacity also deflects a 

significant portion of growth to the outer suburban tier and beyond the region. 

Interestingly, the no-policy baseline often performed better than the studied interventions 

for several of the indicators. Similarly, all policies that perform well in encouraging inner 

suburban growth perform poorly in encouraging core growth. 

Housing unit prices are the best measure of equity within this experiment. All else 

equal, lower housing prices throughout the region will reduce the relative cost of housing 

most substantially for lower-income households. Transit-oriented development performs 

particularly well in lowering housing costs. The results speak to costs throughout the 

Indicator No AV Scenario Range 

(Relative to No-AV) 

Mean 

(Relative to No-

AV) 

Standard 

Deviation 

Core households (thousands) 833.09 (810.9, 884.0) 

-2.7%, 6.1%

844.9 

1.4% 

20.0 

Inner Suburban (thousands) 2,378.2 (2,324.9, 2,440.0) 

-2.2%, 2.6%

2,387.2 

0.1% 

28.0 

Outer Suburban (thousands) 603.8 (571.8, 631.0) 

-5.3%, 4.5%

602.3 

-0.2%

16.1 

Beyond Region (thousands) 1,895.4 (1,828.0, 1,928.6) 

-3.6%, 1.8%

1,878.4 

-0.9%

29.1 

High transit accessibility 

households (thousands) 

294.7 (285.9, 315.1) 

-3.0, 6.9%

298.6 

1.3% 

7.6 

Households in > 75% tea 

(thousands) 

358.1 (347.7, 367.7) 

-.3%, 2.7% 

357.9 

-0.0%

4.7 

Median housing prices ($) 709 (669, 726) 

-5.7%, 2.4%

708.8 

0.0% 

11.8 
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region that are relieved due to increased supply, not specifically costs close to the transit 

stations. Many areas near transit are among the most well-developed in the region and 

close to buildout capacity.7 They are also often in popular core and inner jurisdictions. 

Opening up capacity near these transit stations is valuable for creating more units and 

relieving prices where demand is high in almost all scenarios. This is further affirmed in 

the baseline runs—the infill capacity variable was by far the most important in lowering 

housing costs.  

While TOD reduces housing costs relative to other policies, its performance is 

middling in advancing other TOD goals, such as encouraging growth in high transit 

accessibility locations or reducing the impact on ecological areas. Rail service in the 

Baltimore-Washington region is relatively suburban-oriented. Opening all TOD areas 

only means opening up land in many car-oriented areas while maintaining restrictions on 

urban core areas that have great bus but no rail service. 

Figure 3. Policy robustness for each indicator 

6.2.1 Conditions for policy success 

The conditions for policy success are determined by the PRIM algorithm, which 

generates multidimensional boxes designed to capture high concentrations of failed 

7 Fully built out zones may be high or low density depending on their zoning. Increasing development capacity implies either 

relaxed zoning or regulations that are exempt from zoning  
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policy futures. Not all PRIM boxes performed equally well in identifying the conditions 

under which a policy performs well. PRIM generates several boxes for each 

policy/indicator combination along the density and coverage tradeoff. By increasingly 

further restricting the uncertain dimensions, PRIM changes the box containing failed 

futures, but any changes can either improve the density or coverage, usually at the 

expense of the other. These many boxes are often represented in the density/coverage 

tradeoff curve seen in many other studies such as Bryant and Lempert (2010). From these 

many boxes, I chose the box with the highest density because that box identifies the most 

uncertainties that could impact the success or failure of the outcome. 

Figure 4. Density and coverage of PRIM boxes for each policy/indicator combination

Nonetheless, many of the thirty-five policy/indicator boxes still appeared to be 

uninformative because of low overall density or coverage. The lower coverage was 

expected given the selection of the highest-density boxes. Surprisingly, several of these 

high-density boxes still contained more successes than failures. Given that limitation, I 

selected eight PRIM boxes that met my criteria for performance: performed above the 

median for density (>.615) and coverage (>.347), a robustness score between .05 and .95 

(Figure 2). These are additional thresholds not often applied in scenario discovery 

analysis but which I found useful when considering multiple indicators. The decision to 

only select those performing above the median was a professional judgment that reflects 

a commitment to only using the most informative PRIM results. Table 5 below presents 

the limiting dimensions for the eight selected PRIM boxes8 (red points in Figure 4). The 

limiting dimension of those uncertainties that best characterize the region of high regret. 

In testing the performance of a policy for any given indicator, only some of the 

uncertainties are influential in determining this region. The first two columns then 

indicate the eight PRIM boxes that were identified in the above analysis. The next 

column indicates the limiting dimensions. The final two columns indicate the range 

covers the region of high regret. All the uncertainty ranges are standardized from 0 to 1. 

8 The PRIM procedure sometimes determines boxes whose limits extend beyond allowable parameter values—less than zero 

or greater than one. For interpretation these values are no different from the true limit value.  
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For instance, the baseline policies perform worse in promoting core households when 

distances to work are shorter, the value of access is higher, and travel times are briefer. 

Markings on the limiting dimensions indicate whether high regret areas resemble default 

value (* in Table 5), more radical changes († in Table 5), or are ambiguously in between 

(unmarked).   

Table 5. Latin hyper-sample robustness contingent policy dimensions; markings on the limiting dimensions 

indicate whether high regret areas resemble default value (*), more radical changes (†), or are ambiguously in 

between (unmarked) 

The first thing that stands out is that there are often clear conditions under which the 

baseline policy is regretful. When the distance to work preferences and value of access 

preference are similar to the default values, the baseline does poorly in promoting core 

households. In such circumstances, higher gas prices are better at promoting core growth. 

While higher gas prices still encourage core growth when people are willing to live 

further from work and other daily activities, they are less effective relative to the 

baseline.  When households are willing to live further out because AVs have reduced the 

value of proximity, higher gas prices encourage households to locate in more central 

locations in the inner suburbs, rather than locating in the core. 

Similarly, when infill capacity, distance to work, and travel times are close to the 

defaults, the baseline scenario often fails to promote inner suburban growth relative to 

Policy Indicator Limiting Dimensions Low Limit High Limit 

Base Core households Distance to work* 

Value of access* 

Travel times† 

     NA 

.28 

     NA 

.45 

     NA 

.75 

Base Inner households Infill capacity* 

Distance to work* 

Travel times* 

.18 

.08 

.24 

.71 

.49 

     NA 

Base Beyond households Infill capacity† 

Value of access 

.35 

.21 

.92 

.80 

TOD Core households Distance to work* 

Value of access* 

     NA 

.26 

.65 

     NA 

Delay TOD Inner households Infill capacity* 

Distance to work* 

.18 

.07 

.78 

.47 

Delay TOD TEA development Infill capacity† 

Zonal access to jobs 

beta* 

Travel times† 

.20 

.44 

.06 

.90 

.97 

.73 

Gas Prices Housing unit prices Infill capacity† 

Distance to work* 

Value of access* 

Travel times* 

.21 

     NA 

.38 

.25 

.95 

.75 

.94 

     NA 

Delay Gas Prices TEA development Infill capacity 

Value of access† 

.25 

.13 

.77 

.74 
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TOD policies. Conversely, this means the no policy alternative is less regretful when 

AVs are most impactful: opening up parking lots for redevelopment, encouraging people 

to live further from work, and reducing travel times. In this case, the power of TOD to 

outperform the baseline is limited when AVs already open up significant capacity 

everywhere. However, this same infill capacity causes regret in baseline policies when 

attempting to discourage movement beyond the region. It seems that there is still some 

additional regional demand that TOD can soak up. 

As seen in the previous table on robustness, TOD does not always perform well in 

encouraging core growth because it opens up so much capacity in attractive inner 

suburbs. This tends to happen with values closer to the baseline parameter values: 

stronger preferences for work proximity and general access. In such cases, both the 

baseline and gas price scenarios perform better. If AVs loosen these preferences, fewer 

households choose the core in the baseline and gas price policy scenarios, generally 

weakening the relative power of these policies encouraging core growth relative to TOD. 

A similar pattern is noted for delayed TOD failing to encourage inner suburban growth. 

When infill capacity is increased from AVs, the delay in implementing TOD is less costly 

because those communities can already absorb the increased demand. 

Distance to work, the value of accessibility, and travel times determined regions of 

high regret in four or more of the selected policies. The results indicate that if AVs 

encourage longer commutes, our existing policies for encouraging core and inner 

suburban development are blunted. Across the indicators, AVs often reduce the 

difference between the best-performing and the worst-performing policies. An exception 

is the uncertainty regarding the infill capacity that AVs will open up. As central areas of 

the DC region are quite attractive, any additional capacity can aid in holding down 

housing prices. 

In terms of housing prices, the chosen equity indicator, gas prices are identified as a 

contingent policy. In general gas prices are a regretful policy whenever the draw to live in 

the center is already strongest. As gas prices encourage core living, the increased demand 

for limited core housing units can exacerbate housing costs. This is true when AV 

impacts are closer to baseline: lower distance to work, higher value of access, and lower 

travel times. Additionally, when AVs open up significant development capacity, higher 

gas prices steer households away from the inner suburbs where much of that capacity is 

available.  

6.2.2 Measuring the relative effectiveness of scenario discovery 

Table 6 provides the failure rate for the full LHS sample, the convex hull, and the 

exploratory scenarios. This is the proportion of all scenarios in which the policy produced 

a failed outcome. Color coding is used to indicate policies that perform particularly well 

or poorly (Green:  <.1; light green: <= .25, light yellow >= .75, gold > .9). For instance, 

increased gas prices are a robust policy in all samples for promoting core household 

growth, failing only 2% of the time in the LHS sample, 11% of the time in the convex 

hull sample, and 0% of the time in the extreme points sample. On the other hand, the 

failure rates for increasing gas prices with respect to median unit price differ substantially 

between the three sampling approaches. With the LHS sample, the gas price increase fails 

49% of the time; with the convex hull sample, the gas price increase fails 22% of the 

time; and with the extreme points sample, the gas price policy fails 75% of the time. This 

suggests that the sample does matter for measuring robustness and that the LHS sample 

might be preferable in some circumstances. 
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Table 6. Failure rates for all scenarios 

The robustness of each policy/indicator combination. Color coding is used to indicate policies that perform 

particularly well or poorly. Green:  <.1; light green: <= .25, light yellow >= .75, gold > .9 

To understand how the alternative approaches compared to scenario discovery, the 

binomial p-value compares the robustness scores for each scenario/policy pair. In this 

way, I sought to determine whether the robustness scores from the convex hull and the 

extreme points sample differed significantly from the robustness scores for the LHS 

sample. If the alternative samples produced similar results, on average, we should expect 

that the p-values should resemble those from 28 random subsamples—roughly evenly 

distributed between 0 and 1.  

The CDF of the p-values for each is in Figure 5. Assuming that the LHS sampled 

scenarios provide an accurate picture of the uncertainty space, these p-values indicate the 

Latin hyper-

sample 

Core 

Households 

Inner 

households 

Outer 

Households 

Beyond 

Households 

TEA 

Households 

High Access 

Households 

Median Unit 

Price 

Base .35 .24 .03 .11 .49 .81 .52 

TOD .50 .01 .03 .06 .56 .55 .06 

Delay TOD .63 .18 .31 .39 .15 .04 .32 

Gas Price .02 .95 .86 .71 .63 .58 .49 

Delay Gas Price .50 .62 .77 .73 .17 .02 .55 

Convex Hull 
Core 

Households 

Inner 

households 

Outer 

Households 

Beyond 

Households 

TEA 

Households 

High Access 

Households 

Median Unit 

Price 

Base .22 .11 .00 .00 .56 .78 .56 

TOD .44 .00 .00 .00 .44 .56 .22 

Delay TOD .67 .22 .33 .44 .11 .00 .56 

Gas Price .11 1.00 1.00 .78 .89 .67 .22 

Delay Gas Price .56 .67 .67 .78 .00 .00 .44 

Extreme Points 
Core 

Households 

Inner 

households 

Outer 

Households 

Beyond 

Households 

TEA 

Households 

High Access 

Households 

Median Unit 

Price 

Base .50 .50 .25 .50 .625 .75 .375 

TOD .75 .25 .25 .375 .625 .75 .00 

Delay TOD .50 .00 .25 .375 .25 .375 .375 

Gas Price .00 .50 .50 .25 .375 .125 .75 

Delay Gas Price .25 .625 .75 .50 .125 .00 .50 
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probability with which the alternative samplings would provide inaccurate estimates of 

robustness. The convex hull sampling performed relatively well, with all p-values higher 

than .2 and more than half greater than .8. While it is not a surprise that a subsample 

should resemble the overall sample; the performance of the convex hull is generally 

better than we should expect from even a true random sample of the LHS scenarios—all 

the p-values are greater than .2, whereas with a random sample we would expect roughly 

5 robustness scores less than .2. This might result from a sampling approach that will not 

incidentally overdraw from one region of the uncertainty space. We can then conclude 

that the convex hull provides a relatively accurate, albeit imprecise measure of 

robustness. Of course, all scenarios included were also in the LHS sample. Exploratory 

scenarios, however, can provide very misleading impressions of robustness. Several 

scenario/policy pairs have p-values less than .05. 

Of course, scenario discovery methods are also used to clarify the conditions under 

which a policy is likely to succeed. Both the convex hull and the extreme values 

samplings clearly cannot do this because they do not provide enough information about 

the center of the distributional range. Of course, even with the 100 LHS scenarios, not all 

PRIM boxes generated clearly identified parameters influencing the success of a policy. 

More than half the PRIM boxes captured over 80% of the failure futures, but often at the 

expense of including many successful futures. The majority of boxes were more than half 

successes. By the criteria listed above, one-quarter of the boxes produced clear policy 

suggestions. In practice, thresholds for density and coverage should be determined by the 

risk tolerance of decision-makers. 

Figure 5. CDF of p values for sampling alternatives 

6.2.3 Modeling resources 

On average, a single SILO run took 134 minutes to simulate fifteen years on a twenty-

core Windows server with dynamic memory up to 128G. Each processor was an Intel(R) 

Xeon(R) CPU E5-2667 v2 @ 3.30GHz. That means that the complete scenarios 

discovery run time was just over 1,133 hours of computer run time—more than 47 days. 

These run times are for the land-use model alone as it was not integrated with a 
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transportation model at this time. Any time stopping, starting, pre-processing, and post-

processing was trivial compared to the total run time. The model area is large by North 

American standards. SILO micro-simulates over 8,000,000 people and 5,000,000 

households. Nonetheless, such a similar experiment would still require days of runtime in 

a smaller region. The 500 runs require more than ten times the computer hours than the 

45 convex hull runs or 40 extreme points runs. This will remain true, even if modelers 

can reduce run times. 

Nonetheless, if run times are sufficiently reduced, the magnitude difference between 

the run time for scenario discovery run times and the run time for other approaches will 

no longer be an inhibiting factor. Several approaches could have sped up the overall time 

used. First, I could have reduced the number of uncertain parameters and policies. The 

latter would have had more of an influence. To maintain the same density of scenarios in 

multidimensional space, the number of runs needs to increase exponentially with the 

number of uncertain parameters (see methodological appendix). With only three 

uncertain parameters, I would have explored the same density of the space with just 10 

scenarios. Reducing the number of policies would also reduce the total run time, but only 

linearly. 

The second approach would be to reduce the scope of the experiment temporally or 

geographically. If SILO was run for fewer years clear impacts might have been evident 

with far less model time. Similarly, the SILO version for Baltimore-Washington contains 

significant population centers beyond the region, as explained in the methods. By cutting 

out areas east of the Chesapeake Bay and western areas of the model region, the micro-

simulated population would have been reduced by over 1,000,000 people. Simulations in 

smaller regions would have significantly smaller run times. 

The final approach to reducing the run time is to use faster servers. Of course, model 

complexity has tended to increase with computing power, so the modelers may want to 

maintain less complex models for exploratory approaches like this one. This is also in 

line with established practice in exploratory modeling—most authors recommend faster-

running, simpler models to increase exploration. 

7 Conclusions 

This research reinforces the need for urban modelers to increase the scenario count 

they use to explore the parameter space. The results of this analysis suggest that robust 

decision-making analysis using scenario discovery is a useful design for sorting through a 

high number of scenarios. My results indicate that full scenario discovery offers value 

over more limited explorations of uncertainty space in identifying contingent policies. 

Selecting limited scenarios at the edges of possibility can often overlook vast regions of 

robustness. Planners ought to be aware of extreme scenarios that break largely robust 

systems; however, they should also understand when the scenarios are rare outliers. 

Exploratory scenario exercises that incorporate modeling could easily give such false 

impressions. My results confirm the results of previous research, which indicates that 

sampling approaches significantly impact measures of robustness (McPhail et al., 2020). 

Additionally, utilizing large enough LHS samples also supports the deployment of PRIM 

to determine potential thresholds between policy options. 

If the modelers cannot dedicate computational resources to simulating an LHS 

sample, they should consider simulating the convex hull. In this experiment, the run time 

for the scenario discovery runs was greater than an order of magnitude longer than the 

convex hull. Nonetheless, the convex hull sample performed comparably in identifying 

the robustness of policies. Modelers may also wish to restrict the number of uncertain 
parameters, as they would be able to explore a similar density of scenarios in the multi-

dimensional space with far fewer model runs. Exploratory scenarios may initially be 
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easier to experiment with in smaller regions with fewer agents to micro-simulate. Those 

smaller regions can provide a testing ground while computational power increases 

sufficiently to run land-use models like SILO in far less time. 

Exploratory modelers might suggest a simpler modeling system to increase run times 

(Bankes, 1993). While there may be use cases for more aggregate modeling, the choice to 

use simpler models will depend on which indicators modelers choose to investigate. In 

particular, microsimulation models are better for estimating the distributional of 

outcomes between different populations, and thus more useful for studies of equity 

(Dawkins & Moeckel, 2016). Downsampling the microsimulation model may be an 

appropriate compromise when modelers can tolerate less precision and don’t plan on 

analyzing the microscopic output (Llorca et al., 2020). Combining scenario discovery 

with microsimulation could provide a helpful tool in determining robust policies for 

regional equity. 

The decision to use scenario discovery in urban planning depends on the goals of the 

planning process. If the primary goal of the planning is to inform key stakeholders about 

important uncertainties and consider how those uncertainties could play out, exploratory 

scenarios may still be the preferred approach. If the objective of planning is to determine 

robust and continent policies to include in long-range planning, scenario discovery has 

already exceeded the performance of many exploratory scenario exercises. For agencies 

that have the resources to conduct a rich stakeholder-driven process and execute several 

hundred simulations, there is great potential in combining the two approaches. 

In considering the land-use impacts of AVs, this experiment confirms some concerns 

regarding the influence of AVs on household location choice decisions. Should 

autonomous vehicles devalue accessible locations, households will move further out than 

they otherwise would. More surprisingly, however, if autonomous vehicles free up urban 

space dedicated to auxiliary vehicle uses, such as parking, it won’t always counteract 

core household dispersion. Rather, inner suburban communities possess a far vaster 

supply of easily redeveloped land, and, in the Baltimore-Washington Region, these 

communities are often among the most desirable places to live. On the other hand, when 

additional room is not provided in the inner suburbs, the core often benefits from 

households that prefer urban living with AV-enhanced access to the ring of suburban job 

centers. 

In increasing the distance households are willing to locate from work, AVs may dull 

the effectiveness of smart growth policies. The highest regret scenarios, for both baseline 

and TOD, are associated with travel distances to work and accessibility preferences 

similar to current levels. The relative advantage of opening up new room for development 

closer to the core is diminished by the de facto opening of land on the fringe. On the 

other hand, if AVs do not allow for the redevelopment of parking, early TOD is essential 

in ensuring that land near transit stops is not underutilized. 

This experiment also highlighted an understudied dimension of TOD policies that 

AVs are only bound to exacerbate. Not all TOD sites are created equally. Though TOD 

always performed well in preventing additional development on the margins of the study 

area, the development did not correspond to living in high accessibility areas. The 

Baltimore-Washington heavy rail and commuter rail network is suburban-oriented 

relative to older North American systems and context-insensitive TOD will likely open 

up significant development in locations that, despite their train stop, do not provide high 

regional transit accessibility. A resident in the non-rail Brightwood Park neighborhood in 

Washington is much more likely to drive less and live in a less energy-intensive home 

than a household living on the Reston Metro stop in suburban Virginia. 

In reality, the competition for TOD living between the core and suburbs will be far 

less than the 50% increase assumed within my scenario. Nonetheless, MPOs and states 
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would be wise to guide regional TOD strategies that prioritize sites that are currently, or 

will soon be, highly accessible via transit. Such an approach should not be used to 

preclude suburban or small-town TOD but to create an incentive structure to encourage 

transit-supporting context beyond the immediate site, such as more local bus routes of 

increased frequency. Specific sites might also be appropriate if they localized imbalanced 

regional travel patterns by providing a greater variety of opportunities in overwhelming 

residential areas.  

According to the modeling and analysis presented above, the potential for AVs to 

revolutionize where people are willing to live will not necessarily exacerbate sprawl and 

associated environmental impacts. Both increasing willingness to travel and 

redevelopment of parking areas will serve to decrease housing prices at a regional scale. 

Prices, however, may increase even more quickly in high amenity areas that are suddenly 

easily accessible to even more jobs than before. Quality of place will become even more 

critical than before as households are increasingly free to live wherever they choose. The 

most important amenities will be those that people cannot easily travel to access, such as 

school districts for community safety. 

This has important implications for planning policy. Though efforts to guide 

development, such as TOD, may be less effective overall, they will be all the more 

powerful in already desirable locations, such as the Baltimore-Washington inner suburbs. 

For some households, the most desirable place will be a house far away in the woods, but 

for many, the immediate appeal of specific neighborhoods, such as highly rated schools 

and low crime, will prevail if the prices are not too high. Though not included in this 

version of SILO, other quality-of-life factors may be crucial for location choice in some 

contexts. Though this experiment examined TOD policy specifically, AVs could provide 

the possibility for exciting, dense, walkable redevelopment anywhere with their ability to 

drop off passengers and depart to unseen locations. 

This experiment also found that AVs could have potential equity implications 

concerning the cost of housing. Most clearly, anything that opens up new development 

capacity supports more generally affordable housing. This is true for both AVs allowing 

for the redevelopment of parking lots and conventional TOD policies. This research, 

however, also found that increasing gas prices could increase housing costs in an AV 

future. In encouraging core growth, they also encourage growth in the most capacity-

constrained areas of the region. Gas prices are not a regretful policy when AVs have 

decreased the value of proximity and shortened travel times. But this is only because the 

gas price policy is no longer successful in centralizing growth.  

This experiment has several limitations that also open up pathways for future research. 

First, SILO only simulates residential location choices. Future employment is taken 

exogenously. While previous experiments with SILO in the Baltimore-Washington 

region have assumed different distributions (Knaap et al., 2020), I chose not to do that in 

this experiment. Directly simulating commercial and retail decisions would provide a 

much more complete sense of potential AV impacts. Historically, businesses responded 

to widespread car ownership by choosing more decentralized locations, which further 

encouraged the dispersion of households. The potential for such dynamics should be 

tested with a fully integrated LUTI model. 

A second limitation is the lack of full integration with a transportation model. In this 

experiment, I took travel times as an uncertain parameter, rather than simulating them in 

response to land-use changes. Though the overall pattern of households in the model was 

similar enough from run to run, it is unlikely to significantly change travel patterns, 

household agents were nonetheless unable to respond to travel time changes dynamically. 

Because I did not run a travel demand model, I was also unable to gauge the impact that 
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the full integration would have on run times, but prior experience indicates that it would 

have surely inflated the already long run times. 

This is also just a single experiment comparing scenario discovery to the convex hull 

and extreme points. While my results regarding different robustness scores conform with 

a previous experiment in a different domain (McPhail et al., 2020), I cannot be certain 

that the results are peculiar to the SILO model as instantiated in this region and the 

unique LHS sample. Additionally, I selected to examine the highest density box to 

capture all relevant uncertainties. Future experiments should test whether these results 

hold with different models, contexts, indicators, box selection, and sampling procedures. 

Providing practitioners with procedures to determine what sample to use in their case 

would be even more valuable. 

Finally, this experiment remains a largely technical exercise in scenario discovery. I 

compare the results of a scenario discovery experiment to more limited approaches, but 

this work has not yet been translated to decision makers such as MPO board members 

selecting from various investment profiles. While the language of robust and contingent 

policies has already entered the discourse via exploratory scenarios, I cannot conclude 

whether these model results can be usefully applied. There are two potential challenges in 

that regard. First, the results of scenario discovery might be too technical for translation. 

Second, regional decision-makers might not possess the policy agility to apply adaptive 

policies, particularly when those policies, such as regional TOD, would require multi-

party collaboration. Determining the value of exploratory scenarios to regional modeling 

and planning practice will thus require research that directly engages decision-makers.   

Data availability 

Project code is available on Github:  

https://github.com/dengelberg/JTLU_ScenarioDiscovery.git. 

Data from the Silo runs is stored on Google Drive: 

https://drive.google.com/drive/folders/1sqoT_Grl9lcVE124mP5VbhcErX1qRzUp?usp=s

haring. 

Appendix 

Appendix available as a supplemental file at https://doi.org/10.5198/jtlu.2024.2401. 
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