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Abstract: The impact of the built environment and weather conditions on travel 

behavior has been widely studied. However, limited studies have focused on 

better understanding such effects in medium-sized cities with bus-oriented 

transit systems, particularly from a separate perspective of travelers’ origins and 

destinations. We took Weinan, China, as a representative of second-tier cities in 

developing countries that concentrate on bus-oriented development strategies. 

New evidence of feature importance and nonlinear effects of crucial factors were 

revealed by an interpretable machine learning-based approach combining 

XGBoost and Shapley Additive Explanation (SHAP) with multi-source data. 

Most key factors were critical at both origins and destinations, such as the 

density of residential and commercial facilities. However, several important 

factors, such as road density and boarding time, had strong imbalanced effects 

on travel behavior. These findings provide novel insights and empirical 

implications to support urban planning strategies in medium-sized cities. 
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1 Introduction 

Urban transportation systems play a pivotal role in shaping the sustainability and 

livability of cities. In recent years, medium-sized cities have emerged as crucial focal 

points for urban development and transportation planning. Unlike large metropolitan 

areas, which often possess extensive metro transit networks, medium-sized cities 

typically lack such infrastructure and heavily rely on bus-oriented development 

strategies. Concurrently, road transport has become the leading contributor to CO2 

emissions and anthropogenic air pollutants, with transport-related CO2 emissions 

expected to increase by 57% globally between 2005 and 2030 far outstripping emissions 

from other sectors (Bongardt et al., 2010). The promotion of public transit has served as 

an effective strategy in contemporary society for achieving global climate goals 

(Agreement, 2015) and facilitating low-carbon green growth. However, the feasibility 

and sustainability of this strategy in medium-sized cities that adopt bus-based systems 

have not been thoroughly examined, including knowledge of the extent to which the 

external environment impacts travel behavior of bus riders, as well as the potential 

imbalanced effects at the locations of origin and destination. Therefore, understanding the 

built environment factors that influence travel behavior in these cities is of paramount 

importance for developing effective and sustainable planning and transportation policies. 

Promoting public transportation is crucial for mitigating traffic congestion, reducing 

greenhouse gas emissions, and improving overall urban mobility. Particularly, in 

medium-sized cities, where private car ownership may be lower, bus-oriented transit 

systems provide a cost-effective and adaptable solution, addressing the diverse 

transportation needs of growing populations. Bus-oriented transit systems serve as the 

most extensively employed form of public transportation and offer numerous advantages 

to social welfare. On a regional scale, buses are the least energy- and GHG-intensive 

modes compared with railways and aircraft (Schäfer & Yeh, 2020). On a community 

scale, developing bus transit can optimize citizens’ mobility patterns and alleviate 

congestion (Allen et al., 2019; Nguyen-Phuoc et al., 2018; Rong et al., 2022). Additional 

benefits include boosting profits and reducing operating costs (Matzler et al., 2003), 

which contribute significantly to social equity (Tuan et al., 2022). In light of the essential 

role of the bus transit system, it is necessary to enhance bus route rationalization and 

service performance to encourage more residents to opt for buses as their preferred mode 

of transportation. Thus, identifying key factors and analyzing the potential influences of 

the built environment on bus riders’ travel behavior can support local departments in 

proposing guidelines for transport mode shifting and developing optimal strategies for 

dynamic bus allocation in the long term. 

One critical determinant commonly used for comprehending travel patterns and 

mobility flow is “travel distance,” which pertains to the spatial separation between a pair 

of origin-destination (OD) locations. This factor not only serves as a revenue source for 

public transport operators but also offers insights into travel demand and travel behavior 

(Park et al., 2019). In the realm of mobility research, travel distance yields valuable 

information about what key factors conditioning riders’ decision-making processes when 

choosing whether to use a bus service and determining where to start or end their trips. 

Moreover, an in-depth comprehension of public-transport-travel behavioral patterns is 

required to uncover how travel distances vary across diverse locations, which may 

indicate imbalanced effects resulting from the variation in the built environment.  

The built environment, comprising various man-made surroundings created for human 

activities, plays a crucial role in shaping travel behavior. For medium-sized cities 

experiencing rapid urban sprawl, uneven regional planning and inadequate resources can 

lead to heterogeneity in the distribution of population hotspots and disparities in the 
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accessibility at origins and destinations. Consequently, the spatial distribution of land 

uses, transportation infrastructure, and urban form could disproportionately influence 

travel distances and travel mode choices (Ewing & Cervero, 2010; Handy et al., 2002). 

These imbalanced effects on travel behavior can create variation in accessibility, service 

quality, and ridership, potentially influencing people’s willingness to utilize public 

transportation. Recognizing the importance of this knowledge can facilitate the 

optimization of bus operating networks (Baumgarte et al., 2021) and the design of a more 

efficient and equitable transportation system that can attract more potential citizens adopt 

bus services. Yet, the unbalanced impacts of the built environment on travel behavior at 

origins and destinations have not been thoroughly investigated using quantitative 

methods and multi-source data. This study takes an approach by analyzing travel 

distances from the lens of splitting OD pairs, allowing an exploration of the potential 

imbalanced effects the built environment may exert on individuals’ choices regarding 

boarding and alighting. 

This study aims to fill in gaps and explores the impacts of the built environment at OD 

locations, together with weather conditions, on the travel distances of bus passengers. 

Weinan City (China) —a medium-sized city without a metro transit system that has 

implemented distinctive bus-oriented development strategies—was taken as a typical 

representative example. We collected multi-source data for the research, encompassing 

smart card transactions, bus GPS information, bus station details, road infrastructure, 

points-of-interest (POI) and weather data. The time series under investigation spans two 

consecutive weeks from 12 to 30 November 2018. The novel interpretable machine 

learning-based approach that combines XGBoost, and Shapley Additive Explanation 

(SHAP) in conjunction with spatial-temporal big data, was employed to investigate the 

importance of various impact factors, disentangle intricate nonlinear influences, and 

analyze heterogeneous interactions between the built environment and weather conditions 

on travel distances. The main contributions of this study can be summarized as follows. 

(1) We consider the combined effects of the built environment and dynamic weather 

conditions on bus passengers’ travel distances. More importantly, we differentiate the 

built environment, represented by POI data, at both origin and destination locations to 

explore the relationships between the spatial density of various POI types and travel 

distance. This study contributes novel insights into the potentially imbalanced influences 

of the built environment at origin and destination locations in different urban areas.  

(2) This paper applies an interpretable machine learning (IML) method that combines 

XGBoost and SHAP to disentangle the nonlinear influences and heterogeneous 

interactions of the built environment and weather conditions on travel distances.  

(3) Taking a bus-oriented medium-sized city in China as an illustrative case study, we 

present new empirical evidence to enhance our understanding of bus transit system 

development and urban planning for underdeveloped areas. Furthermore, our study 

provides inspiration for similar medium-sized cities in other regions or countries to 

improve the competitiveness of sustainable transport modes. 

 

2 Literature review 

Existing studies on passengers’ travel distance have widely investigated the intrinsic 

influencing characteristics of travel behavior, such as individual attributes (Dėdelė et al., 

2020; Ko et al., 2019; Mishra et al., 2017), and travel habits (Baumgarte et al., 2021). For 

example, with respect to individual attributes, research has shown that factors such as 
gender, age, and socio-economic status are important determinants of the frequency and 

distance of daily travel (Reichert et al., 2016). Abbasi et al. (2022) found that people in 
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their 50s travel longer distances, and women travel 1.4 kilometers more than men on 

average. Similarly, passengers with higher incomes and education levels travel longer 

distances more frequently than those with lower education levels (Holz-Rau et al., 2013). 

Travel habits constitute other intriguing aspects in understanding travel behavior, such as 

travel purposes, travel frequency, and preferences for specific modes of transportation. 

For instance, Baumgarte et al. (2021) found that the majority of passengers utilized 

shared cars at night as long-distance travelers. While these studies have provided 

valuable insights into individual-level factors affecting travel distances, they leave a 

notable gap in comprehending the role of urban built environment factors in shaping 

travel behavior. This is particularly relevant in the context of medium-sized cities 

undergoing rapid growth, characterized by the swift development and diversification of 

infrastructure. 

The exploration of the potential to influence travel demands through modifying the 

built environment has received considerable attention in urban planning research. 

Researchers have recognized the built environment as a pivotal element that shapes 
peoples’ travel behavior (Böcker et al., 2013; Ding et al., 2019; Yang et al., 2022; Yu et 

al., 2019). The most prevalent characterizations of the built environment are often 

associated with the "6Ds" indicators: Density, Diversity, Design, Destination 

accessibility, Distance to transit, and Demand management (Ao et al., 2018; Cervero & 

Kockelman, 1997; Ogra & Ndebele, 2014). In particular, Density, Diversity, and Design 

have been underscored in previous studies as some of the most significant influencers of 

travel behavior, especially in the context of medium-sized cities (Cao et al., 2009; Hu et 

al., 2018). These three dimensions, among others, are integral to urban vitality, 

encompassing aspects such as land use patterns, building density, traffic infrastructure, 

and road design (Jiang et al., 2022; Montgomery, 1998), which, in turn, impact the 

quality, quantity, and price of travel for human activities (Chatman, 2005). 

A comprehensive review found that travel distance is primarily a function of the built 

environment (Ewing & Cervero, 2010). When residential, employment, entertainment 

and living service facilities within a region are closely situated, residents’ travel distances 

can be greatly reduced (Yue et al., 2017). The integration of diverse land uses, including 

residential, employment, and recreational areas, contributes to the reduction in travel 

distances and fosters the use of public transport (Cervero & Duncan, 2006; Frank et al., 

2008). Leck (2011) found that residential density, employment density, and the degree of 

land-use mix are inversely related to vehicle miles traveled (VMT) through an evaluation 

of the statistical significance of relationships between travel distances and the built 

environment. Jain and Tiwari (2019) highlighted the importance of diversity in origins, 

positing that a dense and diverse area is likely to result in reduced travel distances. 

Recently, the causal relationships between travel behavior outcomes and the built 

environment factors have been subjected to considerable interest. However, qualitatively 

determining how changes in specific built environment factors lead to specific 

interventions, treatments, or actions influences remains challenging. In this study, we 

utilize POI data to characterize the built environment. POI data is a type of emerging 

large-scale big data (Wang et al., 2022), with each data point typically referring to a type 

of element of physical location entities on electronic maps associated with the urban 

economy and residents’ lives (Yan et al., 2021). The density and diversity of the built 

environment can be determined by measuring the number and degree of mixing of 

various POI types. 

With recognition that interactions of the built environment and weather conditions 

could potentially influence various environmental outcomes, researchers have yet to 
sufficiently examine their joint impacts on travel distances. Weather has been extensively 

discussed as a key determinant of individual travel choices (Bi et al., 2022; Böcker et al., 
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2013; Li et al., 2021; Liu et al., 2017). Adverse weather conditions, such as rainfall and 

humidity, can negatively impact traffic volume, transit bus performance, and even 

severely disrupt transit lines (Kamga & Yazıcı, 2014; Ma et al., 2019; Yin et al., 2016). 

Notably, bus riders are more vulnerable to outdoor environmental exposure and 

disruptions during transit compared to car drivers and metro users (Tang et al., 2020). In 

general, citizens’ travel behavior is adaptive to dynamic weather conditions in real-time. 

Concurrently, extreme weather events could also pose considerable risks to the built 

environment (Hallegatte et al., 2013). It is intriguing to determine the joint effects and 

ascertain if one factor exerts greater dominance than the other. Such granular information 

can support bus assignments, route optimization and long-term planning strategies. 

The nonlinear relationships between the density of the built environment and the 

intensity of weather conditions on human travel activities are widely acknowledged 

(Böcker et al., 2013; Yang et al., 2022; Yu et al., 2019). Traditional linear regression 

methods, which rely on linear or pre-determined nonlinear hypotheses, often fail to 

capture, or inaccurately estimate these intricate associations. Even when using state-of-

the-art machine learning (ML) techniques, many models struggle to identify threshold 

effects, establish causality, and investigate interactions (Koushik et al., 2020). Utilizing 

the data-driven mechanisms of machine learning algorithms and corresponding 

interpretation techniques enables the analysis of feature importance, interaction effects, 

and partial dependence graphs of variables (Gao et al., 2021; Tu et al., 2021; Wei, 2022; 

Yang et al., 2021). Interpretable machine learning (IML) methods offer increased 

confidence in model outcomes, delivering higher prediction accuracy and superior 

performance in elucidating complex relationships. In this study, IML methods were 

employed to gain valuable insights into the associations between various impact factors 

and travel distance, allowing for more informed decision-making as well as increased the 

reliability of results (Lundberg & Lee, 2017; Ribeiro et al., 2016). XGBoost model 

developed by Chen and Guestrin (2016) is based on the Gradient Lifting Decision Tree 

(GBDT) algorithm proposed by Friedman (2001). Key contributions of using XGBoost 

and SHAP in this research include the examination of feature importance, heterogeneous 

interaction effects, and nonlinear effects. Previous studies have demonstrated the distinct 

capabilities of XGBoost in addressing nonlinear relationship questions for spatial-

temporal travel behavior analyses. For instance, Ji et al. (2022) examined the nonlinear 

relationship and interaction effects between the built environment and cycling distance 

using XGBoost and SHAP, while Wu et al. (2022) employed XGBoost to analyze and 

predict the relationship between flight delays and meteorological conditions. 

Existing literature has primarily focused on large cities and failed to quantitatively 

reveal the intricate relationships between built environment factors and travel behavior, 

particularly, in the context of second-tier medium-sized cities (Ding et al., 2018, 2019; 

Durning & Townsend, 2015; Tao et al., 2020; Yu et al., 2019). In contrast to larger cities, 

medium-sized cities typically lack metro networks and heavily rely on bus-oriented 

development strategies. The role of these expanding, medium-sized urban areas in this 

field of research has been largely overlooked in the literature. Cities vary in size, 

population, road network, transit infrastructure and socioeconomic development level; 

thus, the built environment and travel demands in medium-sized and large cities are 

distinctively different (Li et al., 2020; Proboste et al., 2020). Owing to the relatively 

smaller population, less-developed traffic infrastructure, lower car ownership and limited 

financial revenue, residents’ mobility is constrained, and large-capacity public 

transport—such as the intra-city metro—is rarely available in medium-sized cities, where 

traditional bus transit systems play a backbone role in out-of-home trips. It is apparent 

that results and experiences from megacities can hardly provide appropriate guidance for 



428 

 

JOURNAL OF TRANSPORT AND LAND USE 17.1 

medium-sized cities. Another potential consequence is that travel behaviors in different 

urban areas have imbalanced effects as medium-sized cities are more unevenly 

developed. For example, a common feature in underdeveloped cities is the job-housing 

imbalance, which has been indicated as the major causative factor determining 

commuting time and vehicle miles traveled (Cervero, 1989; Sultana, 2002). This job-

housing relationship may subsequently result in an imbalanced impact on travel demands 

across different areas. However, no clear findings are available concerning the following 

questions: What is the nature of these imbalanced impacts? To what extent are they 

unbalanced?  

Based on the above literature review, three clear gaps can be identified as follows, and 

they are the key issues we address in this paper. 

(1) Previous studies have mainly emphasized the effects of individual attributes, travel 

habits and weather conditions on travel distance, besides, only concentrating on a limited 

set of factors. A more comprehensive factor analysis is required. studies exploring the 

combined effects of the built environment and weather conditions on travel distance—
especially from an imbalanced perspective that distinguishes the origins and destinations 

(OD) of travel—remain relatively underdeveloped.  

(2) The influence of these factors on bus travel distance in medium-sized cities may 

be nonlinear, with possible heterogeneous interactions between variables; nevertheless, 

the precise nature of nonlinear relationships among factors in such cases remain unclear.  

(3) While existing studies have provided abundant evidence concerning the analysis of 

travel distance and its influencing mechanisms within megacities worldwide, there 

persists an urgent need to further understand the ways in which urban density and other 

built environment factors affect the travel behavior of public transport users in the 

context of medium-sized self-contained cities in developing countries. 

 

3 Data and material 

3.1 Study area 

The case selected for this study is Weinan, a typical medium-sized prefecture-level 

city in Shaanxi Province, China, covering a total area of 13,134 km2 (Liu et al., 2020). 

The city lies in the eastern part of the Guanzhong Plain, adjacent to the southern edge of 

the Loess Plateau, and falls within the lower reaches of the Wei River. As one of the 

primary cradles of Chinese civilization, the city is a favorable agroecological zone in 

northwest China, characterized as the “root of China, source of culture, the holy land of 

rivers and mountains, and a city of humanity.” Weinan encompasses 2 municipal districts 

and 7 counties, among which the Linwei district serving as the economic and political 

center, being the most urbanized area of the city. 

Weinan has prioritized a bus-oriented public transportation system as its primary 

urban mobility strategy, actively developing a coordinated urban public transportation 

network (The People’s Government of Weinan City, 2023). By 2018, the city has 

operated 24 bus lines and 377 stops, with a service radius covering 35.10 km2 of the main 

districts (Li et al., 2020). Compared to other medium-sized Chinese cities lacking dense 

bus infrastructure, Weinan achieved 100% bus stop coverage within 500 meters of its 

main urban area by 2020 (The People’s Government of Linwei District, Weinan City, 

2020). In urban areas, bus operations commence around 6:10 am, with buses running at 

an average of 10-minute intervals. Service frequency also varies by time of day, 

dynamically adjusting to address rush hour fluctuations and seasonal variations based on 
real-time passenger flow data (Weinan City Transportation Bureau, 2020). From 2016 to 
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2018, the total annual bus passenger volume in Weinan City increased by 10.71%, while 

the national average of China decreased by 5.58% (Tianjin Kuangwei Company, 2019). 

In this study, the selected time frame from November 12th to 30th, 2018, avoids major 

holidays to minimize potential impacts on travel behavior. Our focus on the Linwei 

district, an area with a well-developed public transportation network, aims to provide 

targeted insights into the core urban travel patterns. Considering that the average distance 

between bus stations is approximately 500 meters, we have selected a 500-meter radius 

grid for research analysis. This grid size allows us to capture an appropriate number of 

relevant factors within the immediate vicinity of each bus station. The study regions and 

bus lines are depicted in Fig 1. Weinan’s primary districts are served by an 187.6 

kilometer bus network, yielding a density of 2.37 km/km2 and annual ridership of 50.18 

million. This extensive bus infrastructure and high utilization again underscores 

Weinan’s bus-oriented urban mobility focus. 

 

3.2 Data description 

The dataset for this research included bus smart card data, bus GPS data, bus station 

information, road information, points of interest (POI), and weather data. The Advanced 

Public Transportation Systems (ATS) data used in this research was provided by the 

Weinan City Bus Company (Chen & Yang, 2013). The dataset covered a period of two 

consecutive weeks, specifically from 12 to 30 November 2018. 

 

 
 

Figure 1. Weinan’s bus route network 

 

(1) Bus smart card data 

A sample of the bus smart card data is listed in Table A1. The bus smart card data 

contains information of bus users’ travel date, boarding swiping time, self-numbering, 

bus route, bus registration number, terminal number, and smart card number. These data 
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elements are commonly used for data filtering and association. The OD locations of trips 

are identified based on the boarding and alighting bus stations, respectively. It is 

important to note that due to the “one-ticket” operational nature of the bus system, where 

passengers are only required to swipe their cards upon boarding, no specific information 

regarding the alighting stations is available in the dataset. In the present study, the 

estimation of alighting stops was carried out using a methodology established in our 

previous research (Chen et al., 2018). A concise explanation and further details of this 

methodology can be found in Section 4.3 of the Methods. 

 

(2) Bus data 

A sample of the bus GPS data can be found in Table A2. All buses operating on the 

24 lines managed by the Weinan Bus Company are equipped with onboard GPS systems. 

The bus GPS data comprises information, such as the date, time, route, self-numbering, 

bus registration number, running mileage, instantaneous bus speed, as well as the 

longitude and latitude coordinates of the bus lines. Samples of bus station data is 
provided in Table A3. 

 

(3) Road information data 

Samples of road information data area is provided in Table A4. We employ road 

density as a representation of the "Design" component within the "6Ds" metrics for the 

built environment. Road density, to a considerable extent, reflects the diversity of internal 

connectivity choices, indicating the convenience of residents in traversing or reaching 

different areas. The calculation formula for road density is expressed as follows in 

Equation (1). 

𝑑 = ∑ 𝐿𝑛 𝐴⁄  (1) 

where d represents the road density (km/km2); Ln represents the length of the nth road 

in the region; A denotes the total area of the region. 

 

(4) Bus station POI data 

The original bus station POI data can be found in Table A5. In this study, we utilize 

the Amap open platform to collect POI data for bus stations (Amap open platform, 2022). 

The POI data are reclassified into five categories based on distinct varieties: commercial 

land, science, and education, residential, office, and life services. Taking the bus station 

as the center point and setting a 500-meter search radius, we gather data according to the 

POI coding rules. Ten feature values are selected, including the number of commercial, 

science and education, residential, office, and life service POIs. To characterize the urban 

built environment, we use density as the primary metric. Finally, these features are 

sequentially denoted as "origin business density, origin science and education density, 

origin residential density, origin office density, origin life service density, destination 

business density, destination science and education density, destination residential 

density, destination office density, and destination life service density." 

In this study, the degree of land use diversity is characterized by the density of 

commercial, science and education, residential, office, and life service sectors at both 

origins and destinations. The diversity at the origin/destination is calculated using 

Equation (2): 

𝐻𝑢 = −
∑ 𝑝tu 𝑙𝑛 𝑝tu

𝑇
𝑡=1

𝑙𝑛 𝑁𝑢
 (2) 

where Hu represents the land use mix in research unit u; Nu is the number of land use 

types within research unit u; Ptu is the proportion of land use type t within research unit 

u; and T is the total number of land use types. 
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(5) Weather data 

The original weather data is presented in Table A6. A Python-based web crawler was 

utilized to extract historical weather information on an hourly basis from 

(http://lishi.tianqi.com/weinan/201811.html), including temperature, humidity, 

precipitation, and visibility. These crawled weather fields function as indicators to 

characterize the dynamic weather conditions corresponding to the boarding swipe time of 

each individual travel record. 

 

3.3 Data pre-processing 

For the pre-processing stage of the analysis, we implemented a data fusion treatment. 

Smart card, bus GPS, and bus station data were linked based on relevant fields. The data-

association relationship is depicted in Fig 2. Subsequently, these parameters were 

integrated to estimate the travel distance of bus passengers. 

 
 

Figure 2. Data-association relationship 

 

The bus operating period in Weinan is from 6 am to 10 pm. Passengers’ smart card 

swiping records were sorted and matched with bus GPS data to ensure consistency 
between swiping time and bus GPS time. Based on the matching results, passenger 

boarding time and corresponding GPS coordinates were obtained. The bus GPS 

coordinates with the lowest instantaneous bus speed were considered when swiping, 

ensuring the most accurate coordinate selection. Besides, the misalignment distance was 

calculated using bus coordinates when swiping the card and bus station coordinates. The 

closest bus station is where the passenger boards the bus. It is important to note that 

round trips were filtered out and not considered in this study. Finally, the bus’s self-

numbering and route were determined by matching smart card data with bus station data. 

Based on the boarding station and station number, the bus’s running head direction 

(upline or downline) was identified. 

To enhance the computational efficiency while maintaining an acceptable level of 

accuracy, in this paper, we define the travel distance as the cumulative total of the 

Euclidean distances between each consecutive station within the trip’s origin (boarding) 

and destination (alighting) stations. This methodology is different from the conventional 

practice of directly computing the Euclidean distance between the boarding and alighting 

stations. Instead, we have chosen a stepwise approach of calculating distances between 
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successive stations, based on the understanding that urban transit routes are not straight 

lines, but rather, a series of connected segments between adjacent stations. Our approach 

is consistent with the ground-truth of the road network in Weinan, enabling a closer 

approximation of the actual bus route. Furthermore, a rigorous validation is conducted, 

and the results present that the discrepancies between our estimated travel distance with 

the actual bus travel distance less than 200 meters. Thus, here we calculate the travel 

distance as Equations (3)–(6): 

𝐷𝐿𝑛𝑔 = 𝐿𝑛𝑔2 − 𝐿𝑛𝑔1 (3) 

𝐷𝐿𝑎𝑡 = 𝐿𝑎𝑡2 − 𝐿𝑎𝑡1 (4) 

𝐷𝑖𝑠1 = 𝑎𝑟𝑐𝑠𝑖𝑛( √𝑠𝑖𝑛( 𝐷𝐿𝑎𝑡/2)2 + 𝑐𝑜𝑠( 𝑙𝑎𝑡 1) × cos(lat2)× 𝑠𝑖𝑛( 𝐷𝐿𝑛𝑔/2)2) (5) 

𝐷𝑖𝑠2 = 𝐷𝑖𝑠1 × 2 × 6731 (6) 

where 𝐷𝐿𝑛𝑔 represents the difference between the longitudes of two adjacent stations; 

𝐷𝐿𝑎𝑡 represents the latitude difference between the two adjacent stations; 𝐷𝑖𝑠1 denotes 

an intermediate variable for distance calculation, and 𝐷𝑖𝑠2 is the final distance between 

the two adjacent stations, calculated using the Earth’s average radius (6731 km). 

The collected data were normalized and processed through the following steps: (1) 

outlier processing for checking missing values and duplicate values; (2) text tagging for 

digitally translating the text information and labeling all character factors. Table 1 

presents the descriptive analysis of the basic data and brief definitions for each element. 

In this study, boarding time was selected during peak hours between 6am and 8am. The 

description of the variables and their correlation between variables was visualized using 

pair diagrams (Fig 3), with the diagonal line representing the distribution of the 

corresponding variable.  

 

 
 

Figure 3. Pair diagrams showing correlated variations between variables 
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Table 1. Descriptive statistics of variables 

 Variables Definitions 
O

bs 

Me

an 

Std

. 

M

in 

M

ax 

 Travel distance (m) 
The Euclidean distance between boarding 

and alighting stations. 

7,

82

2 

419

4.6

1 

213

6.3

9 

10

00 

11

50

0 

Weather 

Temperature (℃) 
The average temperature of one day 

within the study time frame. 

7,

82

2 

3.8

0 

2.4

2 

-

0.

8 

7.

9 

Humidity (%rh) 
Tthe average humidity of one day within 

the study time frame. 

7,

82

2 

75.

45 

15.

16 
44 98 

Precipitation (mm) 
The average precipitation of one day 

within the study time frame. 

7,

82

2 

0.0

1 

0.0

5 
0 

0.

3 

Visibility (m) 
The average visibility of one day within 

the study time frame. 

7,

82

2 

5.7

7 

6.0

9 
0 26 

Built 

environ-

ment 

(Density） 

Origin business density 

(pcs/500*500m2) 

The business land density in the area 

where a trip begins. 

7,

82

2 

550

.95 

471

.06 
1 

19

20 

Origin science and education 

density (pcs/500*500m4) 

The science and education land density in 

the area where a trip begins. 

7,

82

2 

55.

16 

45.

48 
1 

23

9 

Origin office density 

(pcs/500*500m2) 

The office land density in the area where a 

trip begins. 

7,

82

2 

70.

08 

48.

86 
1 

26

6 

Origin living density 

(pcs/500*500m2) 

The living service land density in the area 

where a trip begins. 

7,

82

2 

256

.03 

198

.26 
1 

92

1 

Origin residential density 

(pcs/500*500m2) 

The residential land density in the area 

where a trip begins. 

7,

82

2 

53.

68 

48.

65 
1 

49

7 

Destination business density 

(pcs/500*500m2) 

The business land density in the area 

where a trip ends. 

7,

82

2 

791

.92 

609

.04 
1 

19

20 

Destination science and 

education density 

(pcs/500*500m2) 

The science and education land density in 

the area where a trip ends. 

7,

82

2 

75.

89 

55.

78 
1 

19

4 

Destination office density 

(pcs/500*500m2) 

The office land density in the area where a 

trip ends. 

7,

82

2 

91.

43 

67.

18 
3 

26

6 

Destination living density 

(pcs/500*500m2) 

The living service land density in the area 

where a trip ends. 

7,

82

2 

359

.02 

259

.73 
1 

92

1 

Destination residential 

density (pcs/500*500m2) 

The residential land density in the area 

where a trip ends. 

7,

82

2 

73.

27 

58.

65 
1 

32

6 

Built 

environ-

ment 

(Diversity

） 

Origin diversity 
The degree of land mixing in the area 

where a trip begins. 

7,

82

2 

0.7

5 

0.0

9 

0.

38 

0.

98 

Destination diversity 
The degree of land mixing in the area 

where a trip ends. 

7,

82

2 

0.7

3 

0.0

9 

0.

38 

0.

96 

Built 

environ-

ment 

(Design） 

Origin road density 

(km/500*500m2) 

The road density in the area where a trip 

begins. 

7,

82

2 

4.1

2 

0.9

5 

0.

93 

10

.5

7 

Destination road density 

(km/500*500m2) 

The road density in the area where a trip 

ends. 

7,

82

2 

4.1

2 

0.9

5 

0.

93 

10

.5

7 
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4 Methods 

4.1 XGBoost 

XGBoost is a widely used machine learning algorithm, particularly in the field of 

transport, where it has been applied to predict future traffic flow on road sections (Dong 

et al., 2018), traffic speed considering weather effects (Du et al., 2020), and study 

macroscopic influences of traffic fatalities (Jiang et al., 2021). XGBoost offers 

advantages in accuracy, efficiency, scalability, and robustness, making it suitable for 

various machine learning tasks. The algorithm employs an adaptive gradient boosting 

framework for training and optimizing models, resulting in high accuracy. Its 

optimization techniques, multi-threading support, and distributed computing capabilities 

make it efficient and scalable. XGBoost effectively handles missing values and outliers, 

showcasing robustness. Additionally, it carries out feature selection and prevents 

overfitting, which enhances both model performance and interpretability. Consequently, 

XGBoost has demonstrated exceptional performance in practical applications. 

As introduced by Chen and Guestrin (2016), the XGBoost algorithm is a novel 

implementation for gradient-boosting machines, specifically designed for categorical 

regression trees. This technique is founded on the principle of “boosting,” which 

amalgamates several weak learners through supplementary training methodologies to 

construct strong learners (Fan et al., 2018). XGBoost effectively mitigates overfitting and 

optimizes the model’s computational capacity by minimizing the objective function, 

thereby facilitating the integration of prediction and regularization components while 

preserving the highest achievable processing velocity. During the training process, 

XGBoost automatically conducts similarity estimation. To address the limitations of 

weak learners, the initial learner is fit to the entirety of the input dataset, whereas the 

subsequent model is fit to the residuals. Fig 4 illustrates the XGBoost schematic. This 

iterative method is executed multiple times until the predetermined stopping condition is 

met. The summation of the predictions for each learner culminates in the final model 

prediction. The ensuing equation delineates the generic function for the phase prediction: 

(Alabdullah et al., 2022): 

𝑔𝑖
𝑛 = ∑ 𝑔𝑘(𝑥𝑖) = 𝑔𝑖

(𝑝−1)
+ 𝑔𝑖(𝑥𝑖)𝐾

𝑘=1                                     (7) 

where i represents the ith sample; k is the kth tree; 𝑔𝑝(x𝑖) is the learner at phase p, g𝑖
𝑝
 

and gi
𝑝−1

are the prediction at phases p and p-1, and xi is the input variable. 

To avoid overfitting while losing model computation, XGBoost created an analytical 

formulation to evaluate the “merits” of the original function-based model: 

Obj(𝑝) = ∑ ℓ(𝑦𝑖 , 𝑦𝑖) + ∑ σ(g𝑖)
p
k=1

n
𝑘=1                                 (8) 

where ℓ denotes the loss function; n indicates the number of observations; and σ 

represents the regularization term, which is described as follows. 

σ(g) = γT +
1

2
λ||ω||2                                             (9) 

where ω denotes the vector scores in the leaves; γ is the minimum loss necessary to 

further divide the leaf node, and λ represents the regularization parameters. Chen and 

Guestrin provide a detailed illustration of XGBoost (Chen & Guestrin, 2016).  
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Figure 4. Illustration of XGBoost regression 

 

The validity of the model hinges on an amalgamation of crucial features. To enhance 

performance and accuracy, the grid search method was employed for optimizing 

XGBoost hyperparameters. This approach evaluates the performance of all specified 

hyperparameters and each combination of their values, subsequently selecting the optimal 

hyperparameter value. During the grid search for hyperparameter optimization, a subset 

of data points is entirely concealed within the model as a “test set” to augment accuracy 

and mitigate potential overfitting. The models were appraised using several prevalent 

statistical indicators, including Mean Absolute Error (MAE), Mean Square Error (MSE), 

Root Mean Square Error (RMSE), Coefficient of determination (R²), Root Mean Squared 

Logarithmic Error (RMSLE), and Mean Absolute Percentage Error (MAPE). It is 

essential to note that the ideal values for R² are 1, while for MAE, MSE, RMSE, and 

RMSLE, the ideal values are 0. In this study, we constructed the XGBoost regression 

model utilizing the pycaret package 2.0 in Python 3.8. 
 

 

4.2 SHAP 

SHAP is a method for elucidating the performance of machine learning models and 

explaining individual predictions (Mangalathu et al., 2020), drawing upon the synthesis 

of game theory and the additive local interpretation (Lundberg & Lee, 2017). This 

approach can interpret feature importance scores derived from intricate training models 

and deliver an interpretable prediction for a test sample. For instance, inputs are regarded 

as participants, and predictions assume the role of expenses. SHAP calculates each 

player’s contribution to the game and creates the input value z after being simplified by 
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𝑟 = ℎ𝑟𝑧 mapping r to z. Based on z, the original model f(r) can be approximated by a 

linear function of binary variables (Wang et al., 2022), which is formulated as 

f(𝑟) = u(𝑧) = φ0 + ∑ φ𝑗z𝑗
M
𝑗=1                                            (10) 

where z = {0,1}M; M is the input feature number, φ0 = f(hr(0)); j is the jth feature, 

and 𝜑𝑗 is the feature attribute value (Wang et al., 2022): 

 φj = ∑
|S|!(M−|S|!−1)!

M!S∈F\{𝑗} [fr(S ∪ {𝑗}) − fr(S)]                               (11) 

 fr(𝑠) = f(hr
−1(z)) = E[f(r)|r𝑠]                                          (12) 

where F is the non-zero set of inputs in z, and S is the subset of F obtained after 

excluding the Mth feature from F. 𝜑𝑗 denotes a uniform measure of the additive feature 

attributes, referred to as the SHAP value. To date, SHAP is the only method possessing 

the properties of local accuracy, missingness, and consistency. As the exact computation 

of E[f(r)|rs] is quite challenging, several approximation methods have been developed, 

including the tree SHAP method used in this study. Considering the maximum depth of 

any tree D, the complexity of computing E[f(r)|rs] with tree SHAP is O(TLM2), which 

reduces the computational complexity from a high-order exponential to a quadratic level 

(Lundberg & Lee, 2017). 

Lundberg and Lee propose the SHAP value as a fundamental tool for developing an 

IML model (Lundberg & Lee, 2017). Briefly, SHAP is a method employed to 

demonstrate the relative contribution of each input variable in generating the final output 

variable. This notion bears resemblance to parametric analysis, where all other variables 

are held constant while one variable is altered to observe the impact of the changed 

variable on the target attribute (Ji et al., 2022). The SHAP method utilizes the SHAP 

value and variable independence, which is a numerical technique capable of calculating 

the contribution of each variable to the production of outcomes. For every sample model, 

a predicted value was generated, and a SHAP value was assigned to each feature in the 

sample. Consequently, SHAP not only supplies the magnitude of feature influence but 

also conveys the positive and negative aspects of feature influence in each sample. 

Moreover, SHAP can be applied to investigate the heterogeneous interaction effects 

between features and the nonlinear effects of features. The nonlinear effects of features 

on the model, also known as the partial dependence plot, offer a visualization of the 

relationship between the predicted outcome of a target model and multiple input features 

while maintaining other features constant. This plot reveals the impact of a feature on the 

model’s prediction as a function of another feature, thereby enabling the visualization of 

nonlinear relationships between features and an enhanced comprehension of how they 

interact to influence the model’s predictions. The nonlinear effects of features serve as a 

potent tool for feature engineering and can assist in gaining insights into the behavior of 

complex machine learning models.  

In this paper, we adopt two additional analytical tools from the SHAP analysis, 

namely the SHAP force diagram and SHAP heatmap, respectively. The global 

interpretation only provides the relative importance of the contributing variables and their 

effects on the target variables, such as how the impacts on the target variables change as 

each input factor increases or decreases. Individual interpretations in the form of SHAP 

are necessary to optimize the input variable values. 

SHAP force diagrams offer interpretability of single-sample predictions by converting 

SHAP values into forces, where each feature value acts as a force that increases or 

decreases the predicted value. In the SHAP force diagram, the predictions start from a 

baseline, a constant that represents the model, and the base value is the average of the 

model output and training data. Each attribute value is denoted by an arrow that increases 

or decreases the predicted value. The number below the arrow represents the feature 
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variable’s SHAP value in that instance. Features that push the predicted value higher to 

the right are displayed in red, while features that push the predicted value lower to the left 

are shown in blue. Longer arrows signify a greater impact on the feature output. The 

middle number represents the final predicted value for a single sample. SHAP force plots 

can be used for interpreting specific sample predictions and analyzing error samples. 

The SHAP heatmap is a method that employs supervised clustering to visualize the 

overall structure of a dataset using 2D heatmaps. Supervised clustering involves 

clustering data points not by their original attribute values but by their SHAP values. It 

groups samples together for the same reasons and with the same model output. When 

plotting, the SHAP value matrix is passed to the heatmap plotting functions. In the 

resulting graph, there are instances on the X-axis, model inputs on the Y-axis, and coded 

SHAP values on the color scale. Above the heatmap matrix are the predictions of the 

instance models, and the grey dashed line is the baseline, representing the average 

prediction for all instances. The black bars on the right also indicate the global 

importance of the model inputs. 

 

5 Results 

5.1 Model construction 

We established an XGBoost regression model using Pycaret 2.0, automates the 

process of removing multicollinearity between variables and selecting the optimal set of 

independent variables for modeling during training. The values of important parameters 

before and after hyperparameter tuning are presented in Table 2. Additionally, the 

performance of the two models was validated through a 5-fold cross-validation test, as 

shown in Table 3. The results indicate that the performance of the XGBoost model after 

hyperparameter tuning was significantly better than that before tuning.  

To further demonstrate the effectiveness of the XGBoost model, its performance was 

compared with that of other machine learning models, such as Random Forest, 

LightGBM, KNN, and Linear Regression, using the same dataset. The XGBoost model 

outperformed the other models in terms of accuracy and fitting performance, as shown in 

Table 4. Appendix B provides a detailed illustration of the generation process and 

prediction performance of the developed XGBoost model. The superior performance of 

the XGBoost model compared to other ML models highlights its effectiveness in this 

particular application, making it a suitable choice for further analysis and interpretation 

using techniques such as SHAP analysis. 

 

5.2 Variables interpretation 

Fig 5 displays the impact of the top 22 features on travel distances. The average 

SHAP value in all samples represents the overall impact of each variable on travel 

distance, indicating the average influence of each variable on the travel distance. The 

results show that the POI information at the locations of OD is of particular importance in 

determining travel distance. Fig 6 illustrates the interactions between the variables, 

demonstrating the heterogeneous influence of one variable on another in different 

directions. The nonlinear effects of the POI and weather variables on passengers’ travel 

distances were presented in Fig 7. 
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Table 2. Hyperparameter for XGBoost models 

 

Hyperparameter 
Value 

Before tuning After tuning 

base_score 0.5 0.5 

colsample_bytree 1 1 

enable_categorical False False 

gamma 0 0 

gpu_id -1 -1 

importance_type None None 

learning_rate* 0.3 0.4 

max_depth 6 6 

min_child_weight* 1 3 

missing Nan Nan 

monotone_constraints ( ) ( ) 

n_estimators* 100 270 

random_state 4774 4774 

reg_alpha* 0 2 

reg_lambda* 1 2 

scale_pos_weight* 1 22.0 

subsample* 1 0.9 

 

 
 

Table 3. Five-fold cross-validation result 

 

 

XGBoost 

models 

5-

Fold 
MAE MSE RMSE R² RMSLE MAPE 

Before 

tuning 

0 481.2239 828470.9375 910.2038 0.8202 0.2248 0.1434 

1 530.1092 957384.8125 978.4604 0.7956 0.2383 0.1475 

2 462.5461 738043.0625 859.0943 0.8293 0.2255 0.1424 

3 518.9788 1042089.6250 1020.8279 0.7688 0.2813 0.1802 

4 537.2076 1007047.5000 1003.5176 0.7890 0.2670 0.1751 

Mean 506.0131 914607.1875 954.4208 0.8006 0.2473 0.1578 

SD 29.0714 114211.4287 60.7299 0.0218 0.0228 0.0164 

After 

tuning 

0 450.3609 782173.3750 884.4056 0.8302 0.2329 0.1360 

1 488.8621 895203.8125 946.1521 0.8089 0.2320 0.1360 

2 437.5330 735868.7500 857.8279 0.8298 0.2296 0.1313 

3 480.8282 930493.0625 964.6207 0.7935 0.2757 0.1689 

4 486.2679 926501.1250 962.5493 0.8059 0.2574 0.1604 

Mean 468.7704 854048.0250 923.1111 0.8137 0.2455 0.1465 

SD 20.8323 79899.1873 43.7477 0.0143 0.0182 0.0151 
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Table 4. Comparison of five machine learning algorithms 

 
Model MAE MSE RMSE R² RMSLE MAPE 

XGBoost 468.7704 854048.0250 923.1111 0.8137 0.2455 0.1465 

RF 486.6732 921572.8431 958.9392 0.7990 0.2451 0.1505 

lightGBM 692.5497 1222969.0485 1105.1184 0.7329 0.2938 0.2203 

KNN 809.7348 2019067.4500 1418.3175 0.5593 0.3482 0.2394 

LR 1635.5589 4213722.2500 2052.4762 0.0796 0.5288 0.5364 

 

Among all variables investigated, destination residential density had the most 

significant effect on travel distance. (1) As residential density at destinations increases, 

travel distance correspondingly decreases. This relationship can be primarily attributed to 

the increased availability and accessibility of services and amenities in areas with higher 

residential density. In those areas, there is usually a greater concentration of infrastructure 
such as shops, schools, healthcare facilities, and public transit systems. Demands from a 

more populous environment often leads to a more compact urban form, which in turn 

enables individuals to fulfill their travel needs within shorter distances. The negative 

correlation between residential density and travel distance is further substantiated by the 

nonlinear variation diagram. This finding is also consistent with the research conducted 

by Levinson and Kumar (1997) on automobile commuters in U.S. cities. They indicated 

that the residential density in the vicinity of the tripmakers’ home as a critical 

determinant of travel distance, with higher densities correlating with shorter travel 

distances. This correlation might be even more pronounced in larger cities or megacities. 

(2) A heterogeneous interaction is observed between the residential density at 

destinations and the office density at origins when the SHAP value of destination 

residential density is below 200 (Fig 6a). In areas with high office density at the origin, 

when the destination residential density value is between 50 and 200, travel distance is 

greatly reduced. This may be attributed to office workers preferring to live close to their 

workplaces and being less likely to make long-distance journeys for recreational 

purposes. (3) Furthermore, when the destination residential density value is high, an 

increase in precipitation has a positive effect on travel distance (Fig 6j). This is possible 

because road congestion may become more severe as rainfall increases, and residents of 

medium-sized cities may give up bus and choose other modes of transportation at short 

distances, such as walking, which leads to a longer average distance traveled by buses on 

rainy days. 

Origin office density and destination business density are identified as the second- and 

third-most significant factors, respectively. (1) Both these factors exhibit negative 

impacts on travel distance, indicating a decrease in travel distance as their values 

increase. This trend could perhaps be attributed to the preference of individuals in 

medium-sized cities to work near their homes, thereby minimizing commuting time, 

which resonates with findings of Ding et al. (2017), which discovered that increasing 

employment opportunities in residential areas could effectively reduce travel distances. 

However, paradoxically, the sprawl of urban areas and the accumulation of capital could 

lead to lengthier and more time-consuming commuting behaviors (Engelfriet & Koomen, 

2018). This is a common issue in many of today's large cities that lack clear clusters of 

businesses and other facilities. (2) Travel distance sharply declines when the destination 

business density exceeds 1,500, indicating large commercial centers attract people living 

nearby. This observation is indeed sensible, as business development typically targets 

meeting the needs of the local community, which in turn attracts more individuals from 

the surrounding area. (3) the interaction between origin office density and destination 

business density (Fig 6c) shows that high value of origin office density positively impacts 
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travel distance. However, this positive effect diminishes as destination business density 

increases, becoming negative when the value of destination business density exceeds 

1,250. This could be because people finishing work are less likely to visit large 

commercial buildings far away, opting instead for nearby commercial clusters. 

 

 
 

Figure 5. The SHAP values of variables (Note that “Datetime_weekday_0” represents 

Monday, and “Datetime_weekday_6” represents Sunday) 
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Figure 6. Heterogeneous interactions between factor pairs 

  

Origin diversity, origin business density, origin residential density, and density of 

science and education at origin were found to have negative impacts on travel distance. 

Appropriately enhancing the values of these factors can result in shorter travel distances 

for travelers. (1) When the value of origin diversity is below 0.55, it has a strong 

inhibitory impact on travel distance. This effect peaks at a diversity value of 0.86. It is in 

line with Jain and Tiwari (2019) which suggests that origin diversity is a determining 

factor affecting travel distance. High origin diversity is often associated with mixed land-

use areas, allowing people to meet their needs locally and thus reducing travel distance. 

This finding is also true in the context of large cities, according to a study by Zhang and 

Zhao (2017), on Beijing, China found that high land-use diversity and a balanced jobs-
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housing ratio significantly reduced commuting travel. Similarly, Ding et al. (2017), in 

their study of the Baltimore metropolitan area, suggested that high diversity, though 

slightly insignificant, directly reduces car travel distance in large cities. However, they 

also noted that high diversity might increase the likelihood of forming travel chains for 

various activities, potentially leading to an overall increase in travel distance. (2) In 

contrast, origin business density does not exhibit a significant nonlinear effect on travel 

distance. (3) Origin residential density has a negative effect on travel distance. However, 

when the value of residential density is less than 20, which suggests people might live in 

relatively scattered areas, the demand for long-distance trips increases dramatically. (4) 

Analyses of heterogeneous interactions reveal that the density of science and education at 

destinations has unstable interaction effects with origin diversity (Fig 6d) and origin 

business density (Fig 6c). Additionally, the density of science and education at origins 

interacts with the origin’s residential density (Fig 6g). The negative effect is most 

prominent when the value of the density of science and education at origins reaches 100. 

This implies that individuals originating from areas with advanced science, education, 
and cultural facilities may exhibit a lower propensity to engage in long-distance travel 

primarily motivated by educational purposes. 

The effects of science and education density at destinations, destination diversity, and 

origin road density on travel distance are less pronounced than the previously analyzed 

variables. (1) For science and education density at destinations, the nonlinear plots (Fig 

7i) show that the negative effect of science and education density at destinations on travel 

distance initially strengthens and then weakens, and the inhibitory effect on travel 

distance is strongest when its value is between 75 and 125. Interestingly, its impact on 

travel distance is the greatest on Wednesdays (Fig 6m), and weekday_2 represents 

Wednesdays). (2) Regarding destination diversity (Fig 7k), when its value is below 0.5, 

the travel distance is relatively short. However, areas with rich features greatly attract 

people to travel when the corresponding diversity value is above 0.5. (3) Origin road 

density also plays an essential role in model predictions (Fig 7b). Well-connected road 

networks tend to facilitate shorter travel distances. As road network density increases, the 

probability of individuals opting for long-distance trips decreases. This is plausible given 

that denser networks usually provide more flexible and available travel routes. 

Conversely, in regions with underdeveloped road networks, individuals often face limited 

route choices and are forced to transfer at different stations. These findings are in line 

with observations from developed cities. For instance, a study conducted in Shanghai, 

China, revealed that destination road density has a negative correlation with commute 

distance by transit, but a positive correlation with cycling commute distance (Sun et al., 

2017). (4) Moreover, heterogeneous interactions exist between origin road density and 

temperature (Fig 6k). When the origin road density is high, travel distance increases as 

the temperature increases. This conclusion aligns with a survey conducted during winter. 

Weather-related variables had a relatively minor effect on travel distance compared to 

the built environment variables. (1) The most influential weather variable is humidity, 

followed by temperature. In contrast, the impact of visibility on travel distance is not 

particularly pronounced. (2) A heterogeneous interaction can be observed between 

precipitation and destination residential density (Fig 6j). When the destination residential 

density is high, an increase in precipitation leads to a longer travel distance. This 

relationship is also evident from the nonlinear plot (Fig 7a), which shows that travel 

distance increases with increasing precipitation. This trend may be attributed to the 

inclination of individuals to opt for public transport during rainy days for their long-

distance commutes. 
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Figure 7. Nonlinear effects of factors on travel distance 

 

Among all the time-series variables, the morning peaks at 6am, 7am and 8am 

(DateTime_hour_6, DateTime_hour_7, and DateTime_hour_8) had the most significant 

effect on travel distance. (1) The impact at 7 am is the greatest. This may be because 

commuting accounts for a large portion of people’s trips, and between 7 am and 8 am is 
the peak period for commuting to work and school, during which time travel distance 

remarkably increases. One possible reason for this is that long mandatory travel is 
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clustered in the morning peak hours, as opposed to other Irregular leisure trips, which 

have a low probability of being clustered at a specific time of the day. (2) During 

weekdays, the influence at peak times is more intense. Weekdays—especially from 

Tuesdays to Fridays—have a much more noticeable impact on travel distance than 

weekends. These results are intuitive, as there are mandatory travel purposes on 

weekdays, such as commuting to work, which leads to people taking buses more 

frequently. 

 

5.3  Individual SHAP interpretation and heatmap 

Fig 8 displays the SHAP force plot for the first three samples from the dataset of 

7,822 samples. Taking the first sample as an example, the base value of the model was 

4,196, and the output value of the travel distance was 3,586.38. The values of different 

variables in this sample are also shown in plot (Fig 8b), such as destination diversity (= 

0.74), origin office density (= 17.0), origin science and education density (=4.0), origin 

residual density (=5.0), destination residual density (=187.0), and origin diversity (= 

0.87). The red variables of the model, such as destination diversity, origin office density, 

origin science and education density, and origin residential density, push the predicted 

values to the right. In contrast, the blue variables, such as destination residential density 

and origin diversity, push the predicted values down to the left. Origin office density had 

the most significant impact on the prediction of this sample. Fig 9 illustrates the overall 

impact of the nine variables and the remaining 16 variables on the model output. Samples 

with large effects on destination residential density were grouped. The high predictive 

value on the right side of f(x) was mainly correlated with destination residential density 

and origin office density. 

 

6 Discussion and conclusion 

This study explores the impacts of the built environment at OD locations together 

with weather conditions on the travel distances of bus passengers, utilizing multi-source 

big data of public transport in Weinan, a bus-oriented medium-sized city in western 

China. A spatiotemporal database of bus travel was constructed by correlating and 

transferring the data hierarchy. The joint influential effects of the built environment and 

weather conditions on bus passengers’ travel behavior were analyzed using the XGBoost 

model and SHAP values. This research presents several novel implications for medium-

sized cities, with the main conclusions as follows. 
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Figure 8. Individual SHAP force plots 

  

 

 
Figure 9. SHAP heatmap 
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The factors associated with the origin location, ranked in order of their influencing 

strength, are found to be origin office density, origin diversity, origin business density, 

origin residential density, origin science and education density, and origin road density. 

On the other hand, the factors related to the destination location, ranked in terms of their 

importance, include destination residential density, destination business density, 

destination science and education density, and destination diversity. Notably, the analysis 

indicates that most factors associated with the built environment exert a more pronounced 

influence on travel behavior in comparison to weather features and temporal features. 

This finding underscores the substantial impact of the surrounding built environment on 

individuals’ travel choices and patterns. Additionally, the study reveals that the salient 

features of the built environment differ between origins and destinations, with distinct 

orders of importance. This indicates a clear imbalance in the effects of these factors. 

Understanding the varying impacts of the built environment on travel behavior at 

different locations can inform targeted interventions and policies aimed at optimizing 

transportation systems in medium-sized cities. By recognizing the specific factors that 
influence travel behavior at origins and destinations, urban planners and policymakers 

can develop tailored strategies to address the unique needs of different areas. This may 

include improving accessibility to public transport, enhancing connectivity between 

residential and commercial areas, or promoting mixed-use development to reduce travel 

distances and encourage sustainable transportation modes. Ultimately, such targeted 

interventions can contribute to more efficient, equitable, and environmentally friendly 

transportation systems in medium-sized cities. 

The heterogeneous and nonlinear results also provide several insights (1) Working 

people in medium-sized cities may prefer to work close to home, valuing comfort over 

lengthy commutes. For home-based travel, people prefer taking buses; therefore, bus 

companies can design bus routes that are more convenient for commuting between 

residential and office areas. (2) The development of regional businesses should prioritize 

the needs of neighborhood residents. For example, large-scale commercial buildings are 

more attractive to people. Appropriately improving origin diversity can effectively 

shorten travel distances. Constructing a mix of commercial, office, science, and education 

facilities would greatly enhance an area’s carrying capacity while reducing the likelihood 

of long-distance travel. (3) Individuals who originate from areas with advanced science, 

education, and cultural facilities will likely reduce their long-distance travel for 

education. Urban planners should consider these facilities when designing residential 

areas to minimize travel distances for educational purposes. (4) When the regional road 

network is underdeveloped, people have fewer travel routes to choose from and may not 

be able to select the shortest route for their trips. As the nearby road network becomes 

denser and road conditions improve, the probability of people choosing long-distance 

travel for outings will also increase. Bus companies can set up more bus lines in areas 

with a higher population density to meet the travel needs of residents. 

Given that the survey period took place during winter in China, it is observed that 

individuals are more inclined to undertake longer-distance trips as the temperature 

increases. Consequently, (5) in response to this pattern, the bus company can consider 

increasing the frequency of bus rides during periods of temperature rise in winter to 

satisfy the passengers’ travel demand. (6) Further, during weekday morning peak hours, 

specifically at 6 am, 7 am, and 8 am, there is a notable increase in public transport usage, 

primarily driven by mandatory commuting activities such as going to work or school. The 

peak impact on travel distance is observed between 7 am and 8 am. To alleviate 

congestion during this critical morning peak period, enhancing the frequency of bus 
services during these time slots would further enhance the attractiveness of the bus as a 

mode of transportation for commuters. 
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The application of POI data can indeed help promote integrated urban land-use 

planning in medium-sized cities in developing countries for the optimization of dynamic 

public transport management. For example, (7) Strive for a balance between jobs and 

housing in an area, which significantly reduces commuting distances. This can be 

achieved when residential density is between 50 and 200, and office density is between 

120 and 160. People living in medium-sized cities are more likely to prefer working close 

to dwellings rather than spending a lot of time commuting. (8) Encourage the 

construction of commercial complexes with a business density of more than 1,500 near 

high-density residential areas. This strategy can significantly shorten travel distances. (9) 

Establish areas with developed science and education facilities near high-density 

residential areas to reduce the waste of traffic resources caused by long-distance travel 

for educational purposes. This impact is most prominent when the origin education 

density reaches 100. Simultaneously, the establishment of areas with developed science 

and education near high-density residential areas will greatly reduce the waste of traffic 

resources caused by long-distance travel for educational purposes. (10) Increase origin 

diversity in urban land use to encourage more trips using public transport. When the 

value of origin diversity is between 0.7 and 0.85, travel distance decreases with the 

increase in origin diversity. Urban land use departments should consider setting up rich 

land use functions instead of relying on single-function land use clusters.These findings 

provide a comprehensive understanding of the multifaceted impacts of the built 

environment on passengers’ travel behavior at OD locations in the context of medium-

sized, bus-oriented cities. Historically, much of the existing research has neglected the 

asymmetrical effects of the built environment, thereby overlooking valuable information 

with significant implications for urban planning and land-use development. This research 

reveals that the imbalanced outcomes of pivotal factors influencing travel distance at OD 

locations likely reflect a deeper job-housing imbalance, a pervasive issue in numerous 

urban centers. It has been demonstrated that creating balanced job-housing opportunities 

can effectively reduce car usage and promote non-motorized travel (Wang & Zhou, 

2017). Similarly, increased mixed land-use, compact community development, and 

improved accessibility to residential, commercial, and job locations are associated with a 

decrease in personal travel (Auld & Zhang, 2013; Naess, 2010; Sun et al., 2017). The 

conclusions drawn from this study align with prior study conducted in larger cities, 

indicating that urban expansion into denser areas may precipitate an increase in long-

distance private trips (Tennøy, Gundersen, et al., 2022; Tennøy, Knapskog, et al., 2022). 

Consequently, it is of utmost importance for medium-sized cities to consider these 

factors, such as origin office density and destination business density, during their 

developmental phase. The deployment strategic spatial planning to create or retain 

distinct clusters of businesses and other facilities can contribute to a more efficient urban 

form and alleviate the adverse effects of job-housing imbalance. 

In light of these observations, transit-oriented development (TOD) emerges as a viable 

recommendation for the case city under investigation, considering its notable 

compatibility with high-density urban growth, contribution to affordable housing, and 

potential to mitigate automobile-reliant land-use patterns in medium-sized cities. 

Consequently, decision-makers are encouraged to adopt more proactive approaches, such 

as fostering behavioral shifts in urban residents through the meticulous design of land-use 

patterns and the promotion of TOD initiatives. 
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The comprehension of the interplay between the built environment, weather 

conditions, and bus passengers’ travel behavior is instrumental for improving public 

transit services, as well as devising more effective bus allocation and scheduling plans. 

However, it is crucial to recognize that citizens’ preferences for adopting public transit 

services are subject to continuous evolution. For example, shared bikes have emerged as 

a popular transportation mode among public transit users in China, expanding the options 

for shared mobility. In recent years, the shared mobility market has undergone significant 

transformations, with some companies, like EVCAR and Mobike, consolidating or facing 

bankruptcy. Concurrently, unpredictable increases in user fees could gradually diminish 

user satisfaction, making the long-term market share uncertain. Still in the post-pandemic 

era, we are yet to fully understand the lasting effects the pandemic will have on our travel 

behavior. Public transit users in medium-sized cities might be more sensitive to these 

dynamics due to the lack of diverse transportation options and the monotonous urban 

forms compared to large metropolitan areas. Medium-sized cities tend to have fewer 

alternative transit modes, and less variation in land use patterns across neighborhoods. 
This combination of limited choices and relative homogeneity in the built environment 

could amplify the influence of weather conditions and other factors on public transit use 

in these settings. Nonetheless, as Ding et al. (2022) suggest, the fundamental 

relationships between built environment features and transit use are not likely to change 

drastically. Therefore, the implications derived from this study should remain relevant for 

medium-sized cities over an extended period. 

We also acknowledge several limitations of this study that provide opportunities for 

future research. (1) Data period and update: The analysis was based on multi-source bus 

data for only 15 days in 2018. Expanding the dataset to include updated bus information 

across a longer timeframe would enable more robust analysis of factors influencing 

passengers’ travel distance in the future. (2) Residential proximity: The bus smart card 

data only records where passengers boarded, but this does not definitively indicate that 

they are residents living nearby. This limitation precludes accurately analyzing job-

housing relationships and connections between living conditions and bus usage patterns. 

(3) POI data: The bus station POI data used in this study represents the quantity and 

diversity of POIs within a 500-square meter radius of bus stops. However, it is the fact 

that the impact of POIs on travel behavior is not solely determined by their number, but 

also by their size. Our reliance on the count of POIs to characterize the built environment 

may cause representativeness issues. Future research should consider both dimensions—

quantity and size—of POIs when investigating the mechanisms of travel behavior 

influenced by the built environment. (4) Representativeness of the built environment: due 

to the characteristics of POIs data, our study specifically focuses on density, design, and 

diversity, three of the "6D" indicators of the built environment. However, there is an 

absence in the exploration of the remaining “6Ds” indicators, namely destination 

accessibility, distance to transit, and demand management. This presents an opportunity 

for future research to investigate and address these aspects, enabling a more 

comprehensive understanding of how the built environment influences travel behavior. 

(5) Socioeconomic and demographic profiles: In our examination of important factors 

influencing travel behavior and distance, we primarily considered variables benchmarked 

in weather and the built environment. Future studies should broaden this scope to explore 

a wider array of main effects and interactions, for instance, the intersection of 

socioeconomic and demographic profiles of travelers—information that can be gleaned 

from resources like Census or Origin-Destination zone data—and built environment 

factors could be a significant determinant of travel behavior and distance, thereby 
contributing to a more rounded understanding of travel behavior and distance. 
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