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Abstract: This study investigates household residential relocation 

timing, an aspect vital for transport and urban planning. Analyzing a 

high-dimensional dataset from 1,024 relocations in Sydney, Australia, 

the research contrasts ten machine learning survival techniques with 

three classical survival models. Results indicate that when classical 

models are paired with tree-based automated feature selectors, they 

align closely with machine learning outcomes. Notably, the GBM, 

XGBoost, and Random Forest models emerge as standout performers. 

The study provides a comprehensive comparison between automatic and 

manual feature selection, shedding light on variables influencing 

households’ duration of stay. While stacked ensemble modeling, which 

leverages predictions from various models, is used to enhance accuracy, 

the improvements are marginal, underscoring inherent modeling 

challenges, particularly the recurring issue of misclassifying specific 

pairs of households in the concordance index measure. A thorough 

feature analysis highlights homeownership as the foremost predictor, 

underscoring the importance of recent life events and accessibility 

features in relocation decisions. The research emphasizes the importance 

of considering the accessibility of both current and future homes in 

relocation models, with 20% feature significance in model outcomes. 

Building on these foundational insights, the study paves the way for a 

deeper understanding of individual decision-making processes in 

sustainable urban planning. 
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1 Introduction 

The decision of residential mobility is one of the most significant choices households 

make multiple times throughout their lives. This decision typically involves several sub-

decisions, including the decision to leave the current home, choosing the new home’s 

suburb and characteristics, determining the relocation timing, and more (Rashidi & 

https://jtlu.org/index.php/jtlu
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Ghasri, 2017). While these decisions occur at the household level, collectively they shape 

the housing market, neighborhood dynamics, city environment, and broader policies 

(Lerman, 1975). Consequently, residential relocation has captivated researchers across 

various fields such as transport planning (Aditjandra et al., 2016), geography (Buckle, 

2017), and economics (Sánchez & Andrews, 2011) for decades. 

From a transport planning viewpoint, understanding how households make residential 

decisions and how these relate to their transport attitudes and trip generation attributes is 

crucial. However, modeling residential mobility behavior in a single study presents 

challenges due to its complexity. Among all sub-topics of residential mobility, this 

research zeroes in on the topic of residential relocation duration. Understanding this 

duration is essential for grasping residential mobility, where the timing of households’ 

relocations is modeled in light of various factors, such as socio-demographic attributes, 

financial status, homeownership, and life-course events (Thomas et al., 2016; Tran et al., 

2016), among others. This study seeks to elucidate the relationship between transport-

related attitudes and residential mobility behavior, incorporating three key topics: 

accessibility, daily trip travel-time, and residential self-selection. 

Accessibility is an influential feature in home selection (Schirmer et al., 2014). Three 

main accessibility measures have been employed in this study: 1) Households’ Daily Trip 

Accessibility: This primarily considers the household’s daily trips, not necessarily the 

accessibility of the home or neighborhood. Previous research has highlighted the strong 

correlation between households’ residential relocation dynamics and their daily trip-

making behavior (De Vos & Ettema, 2020). Hence, average travel times to work and 

school by households, as the two main reasons for daily trips (Cervero, 2003), have been 

estimated and used in the models. 2) Home 30-Minute Accessibility: Centered on home 

location, this metric counts the number of jobs within a 30-minute range, a recognized 

accessibility indicator (Levinson, 2019; Srour et al., 2002). This measure not only 

provides an estimate of the available job opportunities to an individual but also serves as 

an approximation of the number of jobs accessible for their service. 3) Suburb Land-Use: 

This reflects the relationship between residence location choice and suburb land-use 

patterns (Tran et al., 2016). 

All these accessibility measures pertain to the current home’s situation. This research 

hypothesizes that both the current and the anticipated next home’s accessibility metrics 

play a significant role in relocation timing. A key contribution of this research is its 

exploration of households’ tendencies to increase or decrease their home accessibility. 

Supported by a dataset that includes two locations per household, this study predicts the 

accessibility of the intended home, factoring in both current accessibility and socio-

demographic attributes. Yet, this model may be susceptible to endogeneity bias due to 

residential self-selection. 

Residential self-selection endogeneity bias has been extensively studied in the field of 

transport (Zhang, 2014). The bias is particularly prominent in studies examining the 

relationships between travel behavior and built environment features (Frank et al., 2006). 

While neighborhood characteristics clearly correlate with an individual’s travel behavior, 

they don’t necessarily cause these behaviors (Hedman & van Ham, 2012). An essential 

factor to consider is an individual’s deliberate choice of a neighborhood. Failing to 

account for this intentional selection can lead to endogeneity bias in studies, especially 

when observed and unobserved explanatory variables are correlated (Mokhtarian & Cao, 

2008). This self-selection bias is a well-recognized form of endogeneity bias in 

residential mobility research. 

One acknowledged methodology for mitigating such bias is direct questioning, which 

evaluates the extent to which respondents’ preferences and attitudes influence their 

choice of suburb. This study addresses the self-selection bias using this approach. 
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Specifically, we’ve included the households’ reported preferences regarding proximity to 

amenities such as shops, public transport, and workplaces. Consequently, the accessibility 

of the next home for every household is predicted based on both their stated residential 

preferences and their current home’s accessibility, factored alongside socio-demographic 

attributes. 

Methodologically, this research employs both classical survival analysis tools and ten 

machine learning survival approaches, given their proficiency in handling censored data. 

Machine learning, a subset of artificial intelligence, has become a powerful toolset for 

data analysis in recent decades. Over the years, machine learning has garnered significant 

attention from both theoretical and applied research communities, elevating its 

importance and application range. One of the most notable advancements in this domain 

has been the evolution of algorithms tailored to time-to-event or survival data (Gordon & 

Olshen, 1985; Sarkar et al., 2021). These advancements present a unique opportunity to 

enhance classical survival models and maximize the potential of heterogeneous and high-

dimensional residential relocation data. Moreover, these models offer the ability to 

identify non-linear relationships (Kern et al., 2019), automate some challenging modeling 

steps such as feature selection (Liu et al., 2015), and shed light on the significance of 

different features. Although machine learning has seen widespread use in transport (Ding 

et al., 2018; Pineda-Jaramillo & Arbeláez-Arenas, 2022; Xue & Yao, 2022), its 

application to residential relocation duration remains uncharted. This research endeavors 

to benchmark machine learning approaches against classical survival models. These 

results are further juxtaposed with three classical parametric and semi-parametric survival 

models. In an added layer of analysis, the classical survival models are synergized with 

the feature selection models to gauge their combined potential. 

Additionally, this study undertakes a comprehensive comparison of manual and 

automatic feature selection methods using ANOVA and bootstrap analysis. We also delve 

into ensemble models with the aim of enhancing predictive capability. Furthermore, an 

in-depth analysis of the concordant and discordant pairs within the concordance index of 

multiple models is conducted to elucidate the nuanced differences between these pairs. 

 

2 Literature review 

2.1 Residential relocation 

The history of residential mobility research is vast and comprehensive. Rossi (1955) 

early work highlighted the significance of perceiving households as decision-making 

entities and understanding their motivations (Dieleman, 2001). This insight paved the 

way for the emphasis on disaggregated residence mobility modeling, contrasting with the 

traditional aggregated housing models. Residential relocation has been explored from 

several practical perspectives. These critical aspects are as follows: firstly, the interplay 

between residential relocation and travel behavior investigates the influence of moving 

residences on travel patterns (Lin et al., 2018; Scheiner & Holz-Rau, 2013). Secondly, the 

relationship between residential relocation and the dynamics of household life-course 

events (Clark, 2013; Prillwitz et al., 2007) delves into events like job transitions, 

educational milestones, vehicle transactions, family additions, or household shifts, 

assessing their potential impact on residential moves. Thirdly, research on relocation 

timing (Rashidi et al., 2011; Thomas et al., 2016) concentrates on the duration of 

household relocations and their relation to home and household attributes. Fourthly, the 

connection between residential relocation and accessibility studies the influence of 

essential service proximity on relocation choices (Srour et al., 2002; Zhou et al., 2021). 
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Lastly, residential self-selection (Cao et al., 2009; Mokhtarian & Cao, 2008) addresses 

often-neglected aspects of home choice and its environmental implications. 

2.2 Residential relocation duration 

Understanding the duration of residential relocations is pivotal in grasping the 

dynamics of individual residence mobility. The literature on this topic is replete with 

studies exploring a myriad of explanatory variables and methodological approaches. 

Concerning explanatory variables, several have been identified as significant in 

determining the length of residence durations. Among these, socio-demographic 

attributes, financial status, homeownership, home payment, and life-course events such as 

job transitions and educational milestones stand out as the most influential (Bostanara et 

al., 2023; Bostanara et al., 2021; Rashidi & Ghasri, 2017; Thomas et al., 2016; Tran et 

al., 2016). From a methodological standpoint, a variety of parametric, semi-parametric, 

and non-parametric classical survival analysis tools are prevalent, given their efficacy in 

managing censored data. This study primarily centers on modeling residence duration. 

2.3 Residential relocation, accessibility, and self-selection bias 

When deciding to relocate, individuals typically weigh various aspects of a potential 

home. Foremost among these considerations are transport-related attributes and 

accessibility (Kim et al., 2005) — topics well-documented in existing literature. Evidence 

suggests that the dynamics of household residential relocations and daily trip-making 

behaviors are intricately linked (De Vos & Ettema, 2020). Proximity or travel time to 

workplaces (Sprumont & Viti, 2018) and educational institutions are vital factors in home 

location decisions, with preferences leaning towards minimized travel (Habib & Miller, 

2009; Zhou & Kockelman, 2008). Some studies emphasize automobile travel times 

exclusively (Zolfaghari et al., 2012), while others underscore the importance of both car 

and public transport durations (Kim et al., 2005). Although accessibility stands out as a 

pivotal factor in home selection, its measurement is perceived as intricate (Miller, 2018). 

Accordingly, scholars have proposed a variety of accessibility metrics, ranging from 

classic methodologies like the Lowry model (Lowry, 1964) to contemporary measures 

such as the total number of accessible jobs within specified time or distance thresholds 

(Wachs & Kumagai, 1973). Srour et al. (2002) conducted a comparative analysis and 

determined that the latter measure provides the most robust and understandable indicator 

of accessibility. 

This research delves into the correlation between the accessibility of individuals’ 

current homes and that of their previous residences. The dependency of a present home’s 

attributes on those of a former dwelling is an established subject in scholarly discussions. 

Notably, prior research reveals a pronounced correlation between past and present 

residential locations (Axhausen et al., 2004; Habib & Miller, 2009). Additionally, 

numerous studies indicate a tendency for individuals to relocate within proximity to their 

existing residence (de Palma et al., 2007; Zondag & Pieters, 2005). 

Self-selection bias is a recognized form of endogeneity bias in the field of relocation. 

It occurs when an individual’s neighborhood selection is overlooked while modeling 

travel behavior based on neighborhood characteristics (Hedman & van Ham, 2012). 

Mokhtarian and Cao (2008) provide a comprehensive overview of seven methodologies 

to address this bias, which include direct questioning, statistical control, joint discrete 

choice models, and instrumental variables models. The direct questioning method is 

particularly potent, as it garners insights directly from respondents regarding their 
environmental inclinations (Colabianchi, 2009). Earlier research, including work by 



                                        

 

373 Sydney’s residential relocation landscape 

Handy and Clifton (2001), has employed this method, affirming that transport-related 

attitudes play a pivotal role in neighborhood selection for prospective homes. 

2.4 Machine learning in transport research 

Numerous machine learning approaches have been employed in transport-related 

research areas, including travel mode choice (Li et al., 2020; Pineda-Jaramillo & 

Arbeláez-Arenas, 2022), accessibility satisfaction (Cheng et al., 2020), ride-sourcing 

(Aghaabbasi et al., 2020), parking management (Parmar et al., 2021), land-use (Xu et al., 

2019), and transportation safety (Cai et al., 2019). However, there is a scarcity of 

research in the domain of residential relocation that harnesses machine learning 

techniques. Notably, Xue and Yao (2022) leveraged a random forest model to discern and 

quantify the primary drivers of residential relocation. Yi and Kim (2018) examined 

residential relocation distances using a decision-tree algorithm and juxtaposed their 

findings with least squares regression results. Scheuer et al. (2021) probed residential 

location choices employing a random forest model. To the author’s knowledge, there 

hasn’t been a prior study that has integrated machine learning algorithms to explore the 

duration of residential relocations, particularly considering accessibility factors 

influencing such decisions. 

2.5 Contribution aspects 

The main contributions of this research are threefold. Firstly, this study is the first in 

the field to utilize machine learning algorithms to model residential relocation duration. 

Machine learning algorithms are employed to model the households’ duration of stay in 

their home for high dimensional residential data collected from Sydney, Australia, 

metropolitan area residents. Secondly, this study evaluates and compares the performance 

of multiple machine learning and feature selection algorithms against the classical 

methods typically used in modeling residential relocation duration. Additionally, it offers 

valuable insights into the variables that influence household residential relocations. The 

research delves into ensemble models and provides an in-depth exploration of the c-index 

measure, shedding light on how different household features shape this metric. Thirdly, 

the future home accessibility model results allow the evaluation of urban planning 

policies that would be interesting for policymakers. 

 

3 Data 

The primary dataset used in this research was extracted from a retrospective survey on 

residential relocation conducted in Sydney, Australia. In 2019, 512 residents from the 

metropolitan area participated in this survey, representing a subset of the population of 

4,823,991 (based on the 2016 Australian Bureau of Statistics (Australian Bureau of 

Statistics 2016). The survey, as reported by (Ghasri et al., 2022), aimed to gather 

information about the participants’ current and past residential relocations within Sydney, 

with a primary focus on understanding the dynamics of household residential relocations 

and their correlation with life-course events. 

The survey incorporated an adaptive observation time window for each household, 

encompassing both historical and current residence location information. The dataset 

includes cases of observed move-out dates (failures) as well as cases with non-observed 

move-out dates (censored data), all of which are utilized in this study. In addition to 
relocation history, participants were also queried about various socio-demographic 

factors, such as age, vehicle ownership (including transaction times), occupational 
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records (contract start dates and income), and education history (commencement and 

graduation dates). 

 
Table 1. Mean and standard deviation of some of the features 

 Feature Feature description Mean 

Standard 

Deviation 

1 duration Residing duration 8.61 9.28 

2 event Relocation observed? 0.50 0.50 

3 isOwner Is owner? 0.51 0.50 

4 under18 Number of under 18 years old members 1.16 1.31 

5 hhIncomeInStart Household income at the time of relocation 1.31 1.35 

6 jobFromHomeSum Any working from home member? 0.15 0.36 

7 jobIsProfessionalSum Number of members with professional jobs 0.22 0.42 

8 commute_drive Is driving the main commute mode? 0.44 0.50 

9 driveLicense Does own a driver’s license? 0.87 0.33 

10 driving_main Is driving the main trip mode? 0.43 0.50 

11 public_main Is public transport the main trip mode? 0.14 0.34 

12 last2YearStartJob A member started a job in last two years? 0.25 0.43 

13 last2YearLeftJob A member left a job in last two years? 0.17 0.37 

14 last2YearStartEdu A member started an education in last two years? 0.06 0.25 

15 last2YearLeftEdu A member completed his/her studies in last two years? 0.06 0.24 

16 last2YearStartVeh A member bought a vehicle in last two years? 0.09 0.29 

17 last2YearLeftVeh A member sold a vehicle in last two years? 0.03 0.16 

18 last2YearNewChild A child was added to the household in last two years? 0.07 0.25 

19 tt_work_car_mean Travel time to work by car in minute 18.55 39.90 

20 tt_edu_car_mean Travel time to school by car in minute 0.70 6.84 

21 tt_work_pt_mean Travel time to work by public transport in minute 138.56 126.69 

22 tt_edu_pt_mean Travel time to school by public transport in minute 112.65 63.54 

23 commercial_per Suburb commercial land-use% 0.06 0.10 

24 education_per Suburb educational land-use% 0.03 0.04 

25 parkland_per Suburb parkland land-use% 0.17 0.15 

26 residential_per Suburb residential land-use% 0.62 0.23 

27 transport_per Suburb transport land-use% 0.02 0.05 

28 water_per Suburb water land-use% 0.002 0.016 

29 industrial_per Suburb industrial land-use% 0.05 0.11 

30 hospital_medical_per Suburb medical land-use% 0.01 0.03 

31 acc1 Accessibility in 30 minutes of home by driving 10.65 5.73 

32 accessibility_pt Accessibility in 30 mins of home by public transport 0.38 0.86 

33 acc2_pred 
Predicted accessibility in 30 mins of next home by 

driving 
10.24 4.47 

 

Furthermore, the survey captured data related to household trip generation activities, 

intra-household decision-making behavior, and attitudes toward residential location 

selection. Due to the dataset’s richness, it contains numerous variables (features) that 

cannot all be included in this report’s main body. However, a selection of key variables, 
along with their mean and standard deviation values, is provided in Table 1, rows 1-18. 

For a comprehensive list of variables and further details on the data, please refer to 

Bostanara et al. (2023). Additionally, Ghasri et al. (2022) provides information on data 



                                        

 

375 Sydney’s residential relocation landscape 

representativeness within the population. Figure 1 visually depicts the spatial distribution 

of sampled home and job locations for households within the Sydney metropolitan area. 

In relation to land-use features, we extracted information about the suburbs’ land use 

from the 2016 Australian Bureau of Statistics dataset (Australian Bureau of Statistics 

2016). This dataset provides the percentage/area of land in each suburb allocated for 

specific purposes, including commercial, educational, residential, parkland, transport, 

water, industrial, and medical sections. To estimate the land-use status of residential 

neighborhoods, we used the suburb and postcode of each household’s home location. 

Table 1, rows 23-30, displays the average percentage of land use for each purpose within 

the surveyed areas. 

For daily trip accessibility, we calculated travel times to work and school for each 

household member, assuming a departure time of 8:00 AM on weekdays. These travel 

times were estimated based on home, work, and school postcodes, considering both 

vehicle and multi-modal public transport options using the r5r package (Pereira et al., 

2021). We then averaged the travel times for household members and incorporated this 

variable as a predictor in our models. Table 1 rows 19-22, presents statistics related to 

the mean travel time variables. 

 

 

Figure 1. The spatial distribution of A) home locations and B) job locations in Sydney 
metropolitan area-the numbers in the legend are the number of respondents 

One of the accessibility measures utilized in this study is the count of accessible jobs 

within a 30-minute travel time by car and public transport. These accessibility measures 

were computed for each suburb in Sydney using the r5r package. Figure 2 depicts a 

heatmap of accessibility measures for both car and public transport, illustrating that 

accessibility is highest in and around the CBD area and gradually diminishes with 

distance from the CBD. Clearly, there are significant differences between car and public 

transport accessibility. Table 1 rows 31-33, provides statistics related to the mean 
accessibility measure variables. 
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Figure 2. Heatmap of suburbs’ accessibility to jobs within 30-minutes using A) car and B) public 
transport in Sydney metropolitan area—the numbers in the legend are the number of accessible 
jobs within 30 minutes 

 

 Table 2. Frequency of importance rank of each home attributes to households  

 
The survey also included questions about the households’ attitudes toward residential 

location selection. Respondents ranked the importance of 16 home attributes on a scale 

 RESIDENTIAL ATTITUDE 

1 
Very 

Unimportant 

2 
 

Unimportant 

3 
 

Neutral 

4 
 

Important 

5 
Very 

Important 

rB1 Close to family and friends 150 108 260 274 232 

rB2 Close to leisure activities 128 160 304 286 146 

rB3 Close to public transportation 106 72 206 304 336 

rB4 Close to shops, groceries 56 72 206 370 320 

rB5 Close to work 176 100 252 290 206 

rB6 Frequent contact with neighbors 300 194 248 164 118 

rB7 Good contact with neighbors 192 152 280 258 142 

rB8 Neatness and tidiness 80 80 258 352 254 

rB9 Appearance of buildings/architecture 74 92 278 364 216 

rB10 Presence of bike paths 412 150 192 142 128 

rB11 Presence of green areas 136 96 272 292 228 

rB12 presence of footpaths 136 148 288 280 172 

rB13 Quietness 60 76 258 342 288 

rB14 Social Safety, low crime 62 76 192 338 356 

rB15 Sufficient parking 104 102 216 314 288 

rB16 Traffic safety 102 116 276 318 212 
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from “very unimportant” to “very important” when choosing a new home. Table 2 

displays the frequency of respondents’ importance rankings for these attributes. Notably, 

attributes such as “presence of bike paths” and “frequent contact with neighbors” were 

rated as the least important factors. Conversely, “social safety, low crime,” “proximity to 

public transport,” and “proximity to shops and groceries” emerged as the top three most 

essential home attributes. 

 

4 Methodology 

4.1 Survival analysis 

Hazard-based modeling, also known as survival analysis, is a well-established field in 

statistics that focuses on studying the duration between entering a specific state and a 

subsequent event. In the context of residential relocation, a household enters the 

“resident” state when they move into a new home location and exits this state when they 

relocate to a different place. The duration of their stay in a particular location is the 

primary variable of interest. However, it’s important to note that not all households in the 

dataset will experience the event of moving out. This is often due to the nature of 

residential stay durations, which tend to be long, while data collection periods are 

typically shorter. As a result, the residential relocation dataset can contain both “failed” 

records (where move-out is observed) and “censored” records (where move-out is not 

observed). Consequently, residential relocation data is often subject to censorship, 

making survival analysis an ideal tool for analyzing such datasets. Survival analysis deals 

with a positive dependent variable and can effectively handle censored data. 

In all survival analysis approaches, three main functions are considered: the failure 

function (usually denoted as 𝑓(𝑡), representing the probability of failure over time), the 

survival function (usually denoted as 𝑆(𝑡), representing the probability of surviving over 

time), and the hazard function (usually denoted as ℎ(𝑡), representing the probability of 

failure at a specific time, given survival up to that point) (Jenkins, 2005). 

Classical survival models have a long history and can generally be categorized into 

three main types: parametric, semi-parametric, and non-parametric models. In this study, 

we primarily utilize the semi-parametric Cox Proportional Hazard (Cox-PH) model, a 

representative of classical semi-parametric survival models. Additionally, we employ the 

Weibull- and Lognormal-based Accelerated Failure Time (AFT) models, which represent 

classical parametric survival models. Please refer to the appendix for further information. 

4.2 Machine learning 

Machine learning is a subset of Artificial Intelligence (AI) in which machines are 

designed to learn and model non-linear, complex relationships between one or more 

independent variables and a dependent variable using a set of training data. The learned 

model is then applied to make predictions on a new set of data, known as the test set. In 

recent years, the field of machine learning has made significant progress, establishing 

itself as a prominent area of interest in both theoretical and practical research 

communities. One notable expansion within this field is the development of various 

learning algorithms tailored for survival data. These advancements present a valuable 

opportunity for enhancing survival models and leveraging the diverse and high-

dimensional residential relocation data. 

This study employs ten machine learning algorithms (referred to as “learners”) and six 

feature selection algorithms (referred to as “feature selectors”), all designed to work with 

censored data. Brief introductions to these algorithms are provided below. Due to the 
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intricacies and unique features of each algorithm, we are unable to provide a 

comprehensive introduction within this article. However, interested readers can find 

thorough reviews of machine learning algorithms for survival analysis in previous studies 

(Bender et al., 2021; Sonabend et al., 2021; Wang et al., 2019), which offer additional 

information. 

4.2.1 Learners 

a. Cross-validation regularized cox proportional-hazards models (cv.glmnet) 

This learner is a penalized maximum likelihood version of the classical Cox-

PH model. It is a cross-validated regularized Cox-PH model (Hastie & Qian, 

2014). Three main regularized options are available for this learner. 

b. Ridge regularization in which coefficients of the correlated features tend to 

shrink towards each other. 

c. Lasso regularization in which only one of the correlated features tends to stay 

in the model. 

d. Elastic net regularization which is a combination of the aforementioned 

regularization methods. 

e. Gradient boosting methods 

Gradient boosting learners is a family of powerful models that are based on an 

ensemble of weak models (Hothorn et al., 2006) and generate a strong model 

which often outperforms other models. Some of the learners from this family 

are listed below. 

f. Survival gradient boosting model (GBM). 

g. Boosted generalized linear survival model (GLMBoost). 

h. Extreme gradient boosting survival model (Tree-based)-also listed in d. 

i. Extreme gradient boosting survival model (Linear based) (Chen et al., 2015). 

j. Survival tree model 

The decision tree is one of the most straightforward learners in machine 

learning. These learners are usually improved via ensemble and boosting 

methods (Gordon & Olshen, 1985). 

k. rpart (Therneau et al., 2015). 

l. Extreme gradient boosting survival model (Tree-based)-also listed in b. 

m. Random forest models 

Decision random forest models are simply ensemble tree learners, which are 

very powerful (Breiman, 2001). 

n. Survival random forest SRC (RFSRC) (Kogalur, 2022). 

o. Ranger survival model (Wright & Ziegler, 2015). 

4.2.2 Feature selectors 

One of the complex stages in modeling is the selection of model features. This process 

becomes even more challenging when dealing with high-dimensional datasets, as noted 

by (Spooner et al., 2020). Machine learning algorithms offer valuable assistance in 

feature selection by identifying a subset of data features that optimize model 

performance. Feature selection brings several advantages, including enhanced 

interpretability and computational efficiency, both of which are crucial (Chandrashekar & 

Sahin, 2014). 

Within machine learning, filter methods represent a primary category of feature 

selectors. These methods employ specific algorithms to assess and rank all available 
features. Subsequently, a subset of features is chosen based on a predefined threshold, 

which can be established for various criteria, such as the number of features, a percentage 
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of features (as utilized in this study), or feature selection performance. Following feature 

selection, the model is executed using the chosen features. In this study, we have 

employed the following filter feature selectors. 

1. The univariate model score which is based on the univariate statistical tests 

(UNI) (Jović et al., 2015). 

2. Minimum redundancy, maximum relevance (MRMR) is based on selecting the 

most correlated features with the response variable and least correlated with each 

other (Radovic et al., 2017). 

3. Random Forest feature importance (IMP) (Kogalur, 2022). 

4. Random Forest minimal depth (DEPTH) (Kogalur, 2022). 

5. Random Forest feature hunting (HUNT) (Kogalur, 2022). 

6. Random Forest ranger impurity (RANGER) (Wright & Ziegler, 2015). 

In addition, we evaluate the performance of all learners without employing any 

external feature selector to establish a baseline for comparison. 

4.2.3 Evaluation metric 

In this study, we employ Harrell’s estimator of the Concordance Index (C-Index) to 

assess the performance of our survival machine learning models. The C-Index excels in 

quantifying the correlation between hazard predictions and observed event times, 

effectively consolidating the three crucial aspects of a survival model—hazard, event, 

and time—into a single metric, as described by (Longato et al., 2020). 

To calculate the C-Index, each relevant pair of cases in the dataset is examined. These 

pairs consist of cases where at least one is not censored, and the duration of the failed 

case is shorter than that of the censored case. The C-Index assesses whether the predicted 

order of survival times aligns with the observed order. Pairs that align are termed 

“concordant,” while those that do not are termed "discordant." The index then reports the 

percentage of concordant pairs relative to the total number of relevant pairs. A higher C-

Index value signifies a superior model, with a C-Index of 1 indicating a perfect model 

where all predictions are correctly ordered. 

Furthermore, this metric is utilized to select the best-tuned parameter sets during the 

inner-resampling iterations, and the average C-Index value across all outer-resampling 

iterations serves as the model’s comprehensive performance measure. 

4.2.4 Future accessibility model 

Residential relocation hinges on two decisions: leaving the current home and choosing 

a future one. Both these locations significantly influence the relocation process. Our 

research emphasizes the role of accessibility in residential relocation timing, raising 

questions like 1) which location’s accessibility holds greater significance in the relocation 

decision, the current home or the future home? 2) how can we estimate the accessibility 

of the future home? and 3) is there a correlation between the accessibility of the future 

home and that of the current home? Our hypothesis suggests that accessibility of both 

present and future homes greatly affects relocation timing. While current home 

accessibility is directly measurable, future accessibility is elusive. Our approach estimates 

it using data from the current home and household behavior predictions. To address the 

third question, we test whether current home accessibility can serve as a determining 

factor for future home accessibility. 

In this study, we model the increase or decrease in accessibility from the current home 

to the future home as a function of their respective previous home accessibility and 
certain socio-demographic attributes. Such a model inherently contains self-selection bias 

(endogeneity bias) because families may choose to move to a more accessible location 



380 

 
380 JOURNAL OF TRANSPORT AND LAND USE 17.1 

based on their preferences and choices, rather than socio-demographics and future home 

features (see Figure 3). 

Self-selection bias is a recognized form of endogeneity bias in the field of residential 

mobility. It occurs when the influence of a household’s home selection is not considered 

when modeling their subsequent behavior in the new living environment. In other words, 

individuals may intentionally change their behavior, such as seeking greater accessibility, 

because it aligns with their preferences, rather than it being solely a result of their new 

circumstances and environment. 

One of the widely accepted methodologies to address this bias is direct questioning, 

which, in this study, involves directly asking households about the attributes they 

prioritize in a new home. Some of these attributes reveal the households’ inclination 

toward residing in a more or less accessible location. Therefore, we have included 

households’ attitudes toward residential attributes (introduced in the Data section) in our 

study. 

The dataset used in this study contains information about two locations per household, 

enabling us to calculate pre (𝐴𝐻𝑜𝑚𝑒1) and post (𝐴𝐻𝑜𝑚𝑒2) relocation home accessibility. 

Accessibility is defined as the number of accessible jobs within a 30-minute car ride. To 

comprehend households’ intentions to increase or decrease their accessibility, we model 

accessibility change, which is calculated as the accessibility of the second home minus 

that of the first (𝐴𝐻𝑜𝑚𝑒2 − 𝐴𝐻𝑜𝑚𝑒1). This change is modeled as a linear function of the 

previous home’s accessibility (𝐴𝐻𝑜𝑚𝑒1), households’ reported attitudes toward residential 

attributes (𝐴𝑇𝑖, where 𝑖 = 1, 2,… , 16), and some other explanatory variables (𝑋𝑖). The 

final model takes the form of (𝐴𝐻𝑜𝑚𝑒2 − 𝐴𝐻𝑜𝑚𝑒1)~𝑓(𝐴𝐻𝑜𝑚𝑒1, 𝐴𝑇𝑖 , 𝑋𝑗). Subsequently, 

the model coefficients are used to estimate the future home accessibility for all locations 

in the dataset. 

 

 
 

Figure 3. Addressing self-selection bias by the direct questioning method 

 

4.2.5 The machine learning pipeline 

This study’s machine learning pipeline comprises the following primary steps, as 

illustrated in Figure 4 and elaborated below: 

 

A. Data Preparation Steps: 

A1. Extract the life-course dataset from the residential relocation survey. 

A2. Create an inter-city travel time matrix. 

A3. Compile a table of suburbs’ land-use structures. 

A4. Generate 30-minute accessibility tables for car and public transport travel 

between all suburbs in the study area. 
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A5. Estimate households’ future home accessibility based on their current 

accessibility, socio-demographic attributes, and home selection attitudes 

using the future accessibility model. 

A6. Combine the cleaned and prepared life-course dataset with the travel time, 

land-use, and accessibility datasets. The final dataset comprises 163 

features (explanatory variables). 

B. Cross-Validation Resampling Setup: Preparing a five-fold cross-validation 

resampling instance to execute all models five times. This involves randomly 

dividing the dataset into training and test sets five times iteratively (outer-

resampling). 

C. Model and Feature Selector Selection: 

C1. Listing all ten learners, three classical survival models, and the six feature 

selectors. 

C2. Creating a benchmark matrix of 13 models by pairing each learner with 

each feature selector (13x6 models in total). 

D. Model Execution and Evaluation: Execute all 78 models across all five 

resampling sets and report the aggregate C-Index against the benchmark. 

D1. Preparing five-fold cross-validation resampling instances within the 

outer-resampling training sets to fine-tune all learners five times. This 

entails randomly splitting each training dataset into training and test sets 

five times iteratively (inner-resampling). 

D2. Performing parameter tuning for the hyper parameters of the learner and 

feature selector using inner-resampling sets and a predefined grid 

resolution based on the C-Index measure. 

D3. Apply the chosen feature selectors. 

D4. Execute the learning process and report the sub-C-Index. 
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Figure 4. The machine learning pipeline 
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4.3 Implementation details 

R is the primary programming language employed for all tasks in this research, 

including data preparation, manipulation, analysis, and machine learning modeling. To 

maintain a reproducible workflow, the “targets” package, as detailed by (Landau, 2021), 

is utilized. Additionally, the calculation of travel times and accessibility measures is 

accomplished using the “r5r” package, as introduced by Pereira et al. (2021). For 

machine learning modeling, the “MLR” package, outlined by Bischl et al. (2016), is 

employed. The entire code workflow utilized in this study is openly accessible via 

GitHub1. However, it’s important to note that the residential relocation data cannot be 

publicly disclosed due to confidentiality agreements. 

 

5 Results 

5.1 Future accessibility model 

The outcomes of the linear model analyzing the 30-minute accessibility change from 

one home to another are summarized in Table 3. These findings unveil overarching 

trends and patterns in households’ relocation behavior, which hold valuable implications 

for policy evaluation and strategy formulation. Notably, all variables exhibit significance, 

with a minimum threshold of 10%. 

Foremost, the accessibility of the initial home emerges as the most pivotal factor 

contributing to accessibility changes. Higher household income and an increased number 

of children correlate with relocations to areas with lower accessibility. Additionally, 

individuals who commute via car tend to relocate to less accessible locations, suggesting 

a preference for quieter environments and an ability to accommodate longer daily travel 

times. Furthermore, holding a professional job significantly contributes to increased 

accessibility, while households with longer travel times to work tend to opt for areas with 

higher accessibility. 

In terms of home selection attitudes, it becomes evident that individuals who prioritize 

proximity to public transport tend to experience a notable increase in accessibility. 

Conversely, those with a medium to high preference for proximity to shops and groceries 

tend to gravitate away from highly accessible areas. This observation aligns with the even 

distribution of shops, especially grocery stores, across Sydney, making it unnecessary for 

individuals to relocate to highly accessible regions, such as the CBD, solely for grocery 

convenience. Similarly, households that assign medium to high importance to proximity 

to their workplaces tend to migrate toward more accessible suburbs. Conversely, those 

inclined towards green spaces and peaceful environments tend to move to less accessible 

locations. Lastly, individuals who consider the presence of footpaths crucial in their 

choice of residence are inclined to move to more accessible suburbs. 

These findings collectively indicate that individuals who can accommodate longer car 

travel times tend to settle in less accessible and potentially quieter areas, a seemingly 

prudent household decision. However, when aggregated, such choices contribute to 

extended car travel times, impacting the city’s environment. On the contrary, those whose 

primary mode of transportation relies on public transport and individuals who value well-

developed footpaths tend to relocate to more accessible and potentially busier regions. 

Public transport accessibility typically aligns with more densely populated areas, 

 

 

 
1 https://github.com/UNSW-rCITI/Survival-ML 
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necessitating such moves for individuals reliant on public transportation, regardless of 

their preference for busier areas. Additionally, well-maintained footpaths, a crucial 

feature for active modes of transportation, are typically found in central districts, further 

attracting individuals to accessible regions. 

 
Table 3. Future accessibility model 

 

Feature Importance rank Estimate Pr(>|t|)  

(Intercept) - 32.78 0.00 *** 

acc1 - 0.68 0.00 *** 

hhIncomeInStart - -2.77 0.08 . 

jobIsProfessionalSum - 8.02 0.09 . 

under18 - -2.31 0.10 . 

commute_drive - -7.68 0.04 * 

tt_work_car_mean - 0.10 0.03 * 

rB3-Close to public transportation Important 14.64 0.01 ** 

rB3-Close to public transportation Very important 18.44 0.00 ** 

rB4-Close to shops, groceries Neutral -20.95 0.00 ** 

rB4-Close to shops, groceries Important -26.65 0.00 *** 

rB4-Close to shops, groceries Very important -23.00 0.01 ** 

rB5-Close to work Neutral 11.24 0.03 * 

rB5-Close to work Important 12.01 0.02 * 

rB5-Close to work Very important 16.06 0.01 ** 

rB11-Presence of green areas Very important -14.40 0.01 ** 

rB12-Presence of footpaths Neutral 11.63 0.02 * 

rB12-Presence of footpaths Important 15.10 0.01 ** 

rB12-Presence of footpaths Very important 13.48 0.06 . 

rB13-Quietness Very important -12.69 0.01 ** 

Significance level: ‘***’ ~ 0.001, ‘**’ ~ 0.01, ‘*’ ~ 0.05, ‘.’ ~ 0.1 

 

Furthermore, a significant portion of the population (73%) with a medium to high 

preference for proximity to their workplaces tends to migrate to areas with greater job 

opportunities. This poses concerns, particularly when job opportunities are not evenly 

distributed within the city. Such patterns are neither environmentally sustainable nor 

conducive to overall well-being (Shen, 2001). This underscores the importance of 

implementing policies such as: 1) Ensuring public transport equity within the city to 

allow individuals to remain in their preferred locations without being compelled to move 

to more accessible areas. This should be accompanied by efforts to enhance the quality of 

public transport, encouraging car users to transition to public transportation. 2) Promoting 

the concept of “30-minute cities” to alleviate congestion in neighborhoods and distribute 

job opportunities more evenly throughout the city. 3) Initiating incentives and programs 

aimed at reducing private car use. 4) Enhancing footpaths and green spaces across the 

city to support active modes of transportation and enhance overall citizen well-being. 

These policy initiatives are essential for fostering a more sustainable urban environment 

and promoting the well-being of residents. 
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5.2 Residential relocation model results 

The benchmark results and the number of features selected in each model are 

comprehensively presented in Table 4 and Table 5, respectively. In Table 4, the cell 

values depict the average C-Index performance measures across five-fold resampling 

sets, obtained from running each pair of learners (rows) and feature selectors (columns). 

Table 5 outlines the mean count of features selected and utilized within each model for 

every pair. In these tables, the first column showcases the learners’ performance without 

the involvement of any external feature selectors. It’s worth noting that some learners 

come equipped with their internal feature selectors, while others do not. This distinction 

elucidates the varying number of selected features in the initial column of Table 5.  

 
Table 4. Average learner and feature selector C-Index performance measure in a five-fold 

resampling 
     None UNI MRMR IMP DEPTH HUNT RANGER   

     Cox-PH 0.491 0.757 0.704 0.765 0.765 0.762 0.767   

Classical    AFT-Log-normal 0.502 0.759 0.710 0.763 0.766 0.764 0.763   

     AFT-Weibull 0.516 0.751 0.707 0.763 0.765 0.752 0.766  0.4 

      Ridge 0.732 0.746 0.711 0.753 0.752 0.751 0.752  0.45 

Regularized Cox-PH  Elastic Net 0.752 0.748 0.726 0.757 0.756 0.757 0.753  0.5 

      Lasso 0.746 0.744 0.716 0.752 0.757 0.750 0.744  0.55 

      GBM 0.773 0.772 0.723 0.771 0.768 0.772 0.775  0.6 

Gradient boosting 

  Glmboost 0.739 0.739 0.724 0.736 0.739 0.738 0.737  0.65 

   Xgboost lm 0.720 0.725 0.687 0.721 0.727 0.730 0.724  0.7 

Tree-based 
    Xgboost tree 0.760 0.766 0.773 0.756 0.760 0.760 0.759  0.75 

   Rpart 0.696 0.707 0.700 0.716 0.715 0.716 0.713  0.8 

Random Forest 
    Random Forest SRC 0.759 0.758 0.771 0.759 0.754 0.753 0.759   

   Ranger 0.740 0.750 0.747 0.757 0.750 0.749 0.753   

 
 

Table 5. Average number of features selected in each model across a five-fold resampling  
     None UNI MRMR IMP DEPTH HUNT RANGER   

     Cox-PH 0 47.6 56.6 37.6 40.4 26.2 46.4   

Classical    AFT-Log-

normal 
0 43.2 62.2 31.8 33.2 37.6 37.4   

     AFT-Weibull 0 47.8 58.0 33.4 31.8 42.0 38.8  0 

      Ridge 163 56.4 58.0 37.6 42.0 33.2 32.0  20 

Regularized Cox-PH  Elastic Net 72 49.0 63.6 41.8 46.2 46.2 49.4  40 

      Lasso 42.6 53.6 62.2 43.2 46.0 43.2 50.6  60 

      GBM 0 49.0 60.8 43.6 34.8 36.2 53.6  80 

Gradient boosting 

  Glmboost 14.6 57.8 62.2 21.8 27.4 30.4 36.0  100 

   Xgboost lm 163 52.0 52.4 37.6 42.0 40.4 40.6  120 

Tree-based 
    Xgboost tree 31 78.6 147.0 84.6 71.8 74.8 68.6  140 

   Rpart 39.4 22.8 133.6 45.6 42.2 39.2 25.8  160 

Random Forest 
    Random Forest SRC 163 52.4 147.0 84.6 55.4 65.0 72.0   

   Ranger 163 49.0 147.0 33.0 22.8 26.2 26.2   
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The first three rows denote the three classical survival models included as a 

benchmark. When operating without any feature selectors, these classical models exhibit 

the lowest accuracy based on the C-Index measures, hovering around the 50% mark. This 

suggests that they can predict only half of the test data accurately, owing to the absence 

of intra-feature selection methods (i.e., no features are selected). 

Nearly all other models surpass the classical models when executed without external 

feature selectors. Among the feature selectors, the MRMR algorithm emerges as the least 

potent, albeit generally selecting a larger number of features. Excluding this feature 

selector, the GBM learner slightly outperforms all other learners. Notably, there appears 

to be minimal disparity in the performance of the various feature selectors. 

An intriguing observation is that tree-based models, such as XGBoost and Random 

Forest SRC models, outperform all other tree-based models and maintain strong 

performance irrespective of their feature selector (even with MRMR). Tree-based models 

are renowned for their capacity to identify non-linear relationships within data. 

Consequently, the remarkable performance of tree-based models underscores the 

significance of considering such non-linear relationships. 

A particularly noteworthy revelation in the results is the impressive performance of 

classical models when paired with tree-based feature selectors, as elucidated in the first 

three rows of Table 4. This underscores the efficacy of tree-based feature selectors, 

particularly when coupled with classical methods. This result is significant, 

demonstrating that we can closely replicate machine learning results by pairing feature 

selection algorithms with classical models, thereby retaining the advantages of classical 

models such as interpretability. 

5.3 Feature importance 

In this research, the dataset consisted of 163 features. Each feature had the potential to 

be selected 451 times, given that it could be chosen five times for each combination of 

learner (13 learners in total) and feature selector (6 external feature selectors plus one 

intra-learner feature selector), excluding the models with zero features (4 models). Table 

6 illustrates the importance of a selection of these features, while Figure 5 presents a 

word cloud map highlighting the most predictive ones. 

The feature importance analysis, derived from benchmarking several machine 

learning and feature selection algorithms, yields intriguing insights across multiple 

dimensions. Homeownership emerges as crucial, underscored by the “Is owner?” feature, 

which achieves an importance score of 0.98. This dominance underscores the pivotal role 

homeownership plays in predictions across the tested algorithms. Delving into life-course 

events, transformative household changes like “Childbirth during the last two years” and 

“Purchasing a new vehicle during the last two years” are especially prominent, both 

achieving scores above 0.90. 

Accessibility features also stand out: “Average of travel time to work by public 

transport” clocks in at 0.87, whereas features denoting “30-minute accessibility” by car or 

public transport to one's current and expected next home show varied importance, with 

public transport accessibility consistently scoring higher. In the household realm, the 

count and age dynamics of household members play a discernible role, with both 

“Number of under 18” and “Number of over 18” features and their squared values 

holding significant importance. The student category reveals that the model has a 

heightened focus on “Number of secondary students in the household,” signaling the 

significance of this demographic. 

From an attitudinal perspective, while the importance scores aren’t as high as in other 

categories, nuances like “Being close to public transport” and proximity to shops or 
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groceries still find representation, showcasing a consistent trend of value placed on 

convenience and accessibility. Moreover, in the sphere of intra-household decision-

making, features suggest a balance, with shared decisions on various daily and significant 

aspects holding close importance values, underlining the potential influence of collective 

household decisions on outcomes. 

Lastly, in the financial domain, dynamic changes in “Household income” and 

especially the squared value of its annual increase/decrease achieve prominence, 

capturing the model’s sensitivity to shifts in household financial dynamics. In sum, the 

benchmark analysis underscores an intertwined interplay of homeownership, major life-

course events, demographic details, accessibility, and collective household decisions as 

driving forces across the tested models. 

 
Table 6. Feature importance of some selected features  

 

 
 

5.4 Comparison between machine-learning feature selector and manual feature selection 

In this section, we utilized two different approaches for feature selection: manual 

selection and automatic machine learning-based selection, applying them to a log-normal 

AFT model. The manual method leverages an updated set of features used in a prior 

study (Bostanara et al., 2021), a selection that the authors reported required considerable 

time and effort to optimize. The comparison is presented in Table 7. Interestingly, both 

models share many common features, yet they differ in some that are not necessarily 

statistically significant. Additionally, the signs of the parameter estimates are consistent 

between the two models, indicating agreement on whether specific features accelerate or 

decelerate the rate of relocation. A positive coefficient implies that as the predictor 

increases, there’s a deceleration in the time to the event (i.e., longer survival time), while 

a negative coefficient indicates an acceleration in the time to the event (i.e., shorter 

survival time). Both models identify statistically significant predictors that elucidate the 
reasons and timings for residential relocations. For example, in the manually selected 

model, variables like “Is house?,” “Number of secondary students,” and “Purchasing a 

Fea t u re Im port a nce Fea t u re Im port a nce

Nu m ber  of u n der  1 8 0.5 0 A v er a g e of tr a v el t im e to w or k by  ca r 0.6 0

(Nu m ber  of u n der  1 8 ) 2 0.3 9 A v er a g e of tr a v el t im e to w or k by  pu blic tr a n spor t 0.8 7

Nu m ber  of ov er  1 8 0.7 3 A v er a g e of tr a v el t im e to sch ool by  ca r 0.2 5

(Nu m ber  of ov er  1 8 ) 2 0.7 1 A v er a g e of tr a v el t im e to sch ool by  pu blic tr a n spor t 0.8 6

Ma x  a g e in  h ou seh old 0.4 0 Cu r r en t  h om e 3 0-m in u te a ccessibility  by  ca r 0.2 0

(Ma x  a g e in  h ou seh old) 2 0.3 0 Cu r r en t  h om e 3 0-m in u te a ccessibility  by  pu blic tr a n spor t 0.5 3

Nu m ber  of fem a le m em ber s 0.3 3 Ex pected n ex t  h om e 3 0-m in u te a ccessibility  by  ca r 0.1 6

Is ow n er ? 0.9 8 Hou seh old in com e 0.5 5

Is h ou se? 0.8 1 Hou seh old in com e in cr ea se/decr ea se ov er  a  y ea r 0.8 5

Room s less th a n  tw o 0.7 4 (Hou seh old in com e in cr ea se/decr ea se ov er  a  y ea r ) 2 0.8 8

Hou seh old r en t  pa y m en t 0.8 3 Nu m ber  of jobs in cr ea se/decr ea se ov er  a  y ea r 0.8 3

(Hou seh old r en t  pa y m en t) 2 0.8 2 Str u ctu r e of h ou seh old is cou ple w ith ou t  ch ildr en 0.3 9

Hou seh old m or tg a g e pa y m en t 0.6 2 Nu m ber  of m em ber s w ith  job fr om  h om e 0.3 9

(Hou seh old m or tg a g e pa y m en t) 2 0.6 3 Nu m ber  of m em ber s w ith  pr ofession a l job 0.3 6

Ch ild bir th  du r in g  la st  y ea r 0.8 9 Nu m ber  of m em ber s w ith  m a n a g er ia l job 0.2 6

Ch ild bir th  du r in g  la st  tw o y ea r s 0.9 3 Nu m ber  of m em ber s w ith  a dm in istr a t iv e job 0.3 2

Sta r t in g  a  n ew  job du r in g  la st  y ea r 0.8 8 (Nu m ber  of v eh icles in  h ou seh old) 2 0.2 7

Sta r t in g  a  n ew  job du r in g  la st  tw o y ea r s 0.8 7 Bein g  close to pu blic tr a n spor t  is v er y  im por ta n t 0.1 6

Lea v in g  a  job du r in g  la st  y ea r 0.2 8 Bein g  close to pu blic tr a n spor t  is im por ta n t 0.1 4

Lea v in g  a  job du r in g  la st  tw o y ea r s 0.3 3 Bein g  close to sh ops, g r ocer ies is v er y  im por ta n t 0.1 5

Pu r ch a sin g  a  n ew  v eh icle du r in g  la st  y ea r 0.5 3 Bein g  close to sh ops, g r ocer ies is im por ta n t 0.1 5

Pu r ch a sin g  a  n ew  v eh icle du r in g  la st  tw o y ea r s 0.9 5 Hom e select ion  a tt itu de-situ a t ion  bein g  im por ta n t 0.2 0

Sellin g  a  v eh icle du r in g  la st  tw o y ea r s 0.4 5 %Residen tia l la n d-u se in  th e h om e su bu r b 0.2 7

Com en cin g  a  n ew  stu dy  du r in g  la st  tw o y ea r s 0.8 7 %Edu ca tion  la n d-u se in  th e h om e su bu r b 0.5 0

Com en cin g  a  n ew  stu dy  du r in g  la st  tw o y ea r s 0.9 7 %In du str ia l la n d-u se in  th e h om e su bu r b 0.3 6

Gr a du a tin g  a  stu dy  du r in g  la st  y ea r 0.5 3 %Com m er cia l la n d-u se in  th e h om e su bu r b 0.1 9

Gr a du a tin g  a  stu dy  du r in g  la st  tw o y ea r s 0.9 7 %Hospita l/m edica l la n d-u se in  th e h om e su bu r b 0.2 2

Nu m ber  of pr im a r y  stu den ts in  h ou seh old 0.8 4 %Pa r kla n d la n d-u se in  th e h om e su bu r b 0.2 4

Nu m ber  of secon da r y  stu den ts in  h ou seh old 0.9 0 %Tr a n spor t  la n d-u se in  th e h om e su bu r b 0.3 9

Nu m ber  of ter t ia r y  stu den ts in  h ou seh old 0.5 0 Com pon en t  1  in  PCA  of in tr a -h ou seh old decision -m a kin g 0.2 6

(Nu m ber  of pr im a r y  stu den ts in  h ou seh old) 2 0.8 1 Decision  on  da y -to-da y  spen din g  is sh a r ed 0.2 5

(Nu m ber  of secon da r y  stu den ts in  h ou seh old) 2 0.8 4 Decision  on  la r g e h ou seh old pu r ch a ses is sh a r ed 0.2 8

(Nu m ber  of ter t ia r y  stu den ts in  h ou seh old) 2 0.4 2 Decision  on  h ou r s spen t  on  pa id w or k is sh a r ed 0.2 5

Nu m ber  of stu den ts in  h ou seh old 0.4 8 Decision  on  sa v in g s a n d in v estm en sts is sh a r ed 0.2 7

(Nu m ber  of stu den ts in  h ou seh old) 2 0.4 6 Decision  on  socia l life a n d leisu r e a ct iv it ies is sh a r ed 0.2 4
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new vehicle during last year” are significantly influential but are either absent or 

insignificant in the automatic model. Conversely, the automatic model includes unique 

variables such as “Average of travel time to work by public transport” and “Starting a 

new job during the last two years,” along with polynomial terms. 

 

 

Figure 5. A word cloud map representing the most predictive features (the larger a variable 

name is, the more time it is picked by a feature selector) 
 

In terms of results interpretation, in summary, homeowners are less likely to relocate, 

while higher rents accelerate this decision. Recent life changes, such as starting a new job 

or study, increase the speed of relocation. Longer car commutes to work decrease 

relocation chances. Moreover, a higher proportion of educational land-use in one’s 

suburb notably increases the likelihood of moving, highlighting the impact of 

neighborhood characteristics on relocation. 

Intriguingly, the automatic model exhibits a slightly lower Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC), suggesting a superior model 

fit. This underscores the efficacy of automatic feature selectors, which, while considering 

similar features, are able to identify subtler, more potent variables (e.g., polynomial 

terms) that enhance model fit. To assess the statistical significance of the differences 

between the two models, we conducted further tests, as detailed below. 

5.4.1 ANOVA model comparison 

An Analysis of Variance (ANOVA) test was conducted to statistically compare the 

performance of the two models. The residual degrees of freedom were 993 for the manual 

feature selection model and 997 for the automatic feature selection model. The test 

yielded a deviance of -118 and an extremely significant p-value (1.47E-24), indicating 

that the models are statistically different. This suggests that the variables selected by the 

automatic feature selection method do, in fact, contribute to the explanation of residential 

relocation in Sydney in a way that is significantly different from the manual selection 

model. 
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Table 7. Manual feature selection versus automatic feature selection models’ comparison  

 
  Manual Feature Selection Automatic Feature Selection  
 Variable Coefficient p-value  Coefficient p-value   

 Intercept 2.191 1.8E-13 *** 1.541 2.5E-16 ***  

 Max age in household 0.015 6.9E-01      

 Number of under 18 -0.045 2.8E-01      

 Number of over 18    0.189 6.9E-02 *  

 (Number of over 18)2 -0.055 1.2E-07 *** -0.081 9.7E-05 ***  

 Is owner? 0.786 8.1E-11 *** 0.531 1.3E-05 ***  

 Is house? 0.203 7.7E-02 * 0.129 2.2E-01   

 Rooms less than two -0.224 5.1E-02 * -0.178 9.5E-02 *  

 Household rent payment -0.109 3.2E-02 ** -0.215 4.1E-02 **  

 (Household rent payment)2    0.023 3.3E-01   

 Household income    -0.035 4.0E-01   

 Household income increase/decrease over a year -0.015 7.6E-01  -0.293 3.2E-03 ***  

 (Household income increase/decrease over a 

year)2 
   0.112 3.2E-06 ***  

 Intra-household decision-making being shared -0.032 5.8E-01      

 Number of primary students in household 0.221 2.4E-03 *** 0.067 6.6E-01   

 Number of secondary students in household 0.140 8.2E-02 ** 0.170 3.0E-01   

 Number of tertiary students in household 0.263 1.1E-03 ***     

 (Number of primary students in household)2    0.005 9.1E-01   

 (Number of secondary students in household)2    -0.008 8.9E-01   

 (Number of tertiary students in household)2    0.081 2.4E-02 **  

 Number of administrative job workers 0.101 4.4E-01      

 Number of working from home workers 0.109 4.2E-01      

 Number of jobs changed over a year    0.171 9.1E-02 *  

 Use of public transport for study trips -0.144 2.4E-01      

 Use of private car for commute trips -0.002 9.9E-01      

 Home selection attitude-situation being important -0.494 6.6E-02 *     

 Childbirth during last year -0.497 2.1E-02 ** -0.091 7.9E-01   

 Childbirth during last two years    -0.439 1.3E-01 .  

 Starting a new job during last year -0.660 8.4E-07 *** -0.257 1.4E-01 .  

 Starting a new job during last two years    -0.562 1.7E-04 ***  

 Commencing a new study during last year -0.883 5.6E-05 *** -0.091 7.5E-01   

 Commencing a new study during last two years    -0.765 8.6E-04 ***  

 Graduating a study during last two years    -0.623 2.7E-04 ***  

 Purchasing a new vehicle during last year -0.552 2.4E-03 ***     

 Purchasing a new vehicle during last two years    -0.643 1.3E-06 ***  

 Average of travel time to work by car -0.004 5.0E-04 *** -0.007 6.8E-08 ***  

 Average of travel time to work by public transport    0.001 5.6E-11 ***  

 Average of travel time to school by car 0.001 8.0E-06 *** 0.001 8.0E-10 ***  

 %Commercial land-use in the home suburb -0.429 3.5E-01  -0.311 4.7E-01   

 %Education land-use in the home suburb -2.102 3.4E-02 ** -2.307 1.2E-02 **  

 Log(scale) 0.200 4.5E-10 *** 0.1203 1.6E-04   

 Loglikelihood  -1775   -1716   

 AIC  3557   3440   

 BIC  3577   3459   

ANOVA  

 Residual Degrees of Freedom  993   997   

 -2 Log-Likelihood (-2*LL)  3432   3549   

 Deviance -118  

 p-value (Pr(>Chi)) 1.47E-24  

Bootstrap Analysis: Comparative Evaluation of C-Index Values using Welch Two Sample t-test 
 Mean C-index  0.7555   0.7909   

 t-statistic (t) 85.668  

 Degrees of Freedom (df) 1953.2  

 p-value < 2.2e-16  

 95% Confidence Interval 0.0347 - 0.0363  

alternative hypothesis: true difference in means is not equal to 0 
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5.4.2 Bootstrap analysis for C-index comparison 

A bootstrap analysis using the Welch Two Sample t-test compared the concordance 

index (C-index) values of the two models. The mean C-index was 0.7555 for the manual 

feature selection model and 0.7909 for the automatic feature selection model. The t-

statistic was calculated to be 85.668 with degrees of freedom at 1953.2, and the p-value 

was significantly less than 2.2e-16. This result strongly indicates that the model built with 

automatic feature selection offers superior predictive accuracy in understanding the 

factors that influence residential relocations in Sydney. 

5.4.3 Characteristics of concordant and discordant pairs 

In this section, we utilized the results from the machine learning feature selection 

model to extract both concordant and discordant pairs. We then conducted a descriptive 

analysis to discern potential differences in the characteristics of these pairs, aiming to 

identify patterns among those not accurately estimated. Table 8 presents features with the 

most significant differences between discordant and concordant pairs. For the majority of 

variables, the mean differences between these pairs range from -0.03 to 0.03. Notably, 

discordant pairs feature 11% more households that experienced home relocation (event = 

1), indicating the model’s reduced proficiency in estimating failure cases (relocated 

pairs). The model appears better equipped to predict the relocation timing of homeowners 

as opposed to renters. Additionally, the model indicates that households with shared 

intra-household decision-making variables are more likely to be estimated concordantly. 

 

 
Table 8. Comparison between concordant and discordant pairs in automatic feature selection 

model  
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Event 0 1 1 0.82 0.38 0.71 0.45 0.11 0.11 

Rooms less than two 0 1 1 0.41 0.49 0.38 0.49 0.03 0.03 

Is house? 0 1 1 0.59 0.49 0.61 0.49 -0.02 -0.02 

Being close to shops, groceries is very important 0 1 1 0.30 0.46 0.32 0.47 -0.02 -0.02 

Average of travel time to work by public transport 0 1200 1200 339 353 368 356 -29 -0.02 

Decision on day-to-day spending is shared 0 1 1 0.23 0.42 0.25 0.43 -0.03 -0.03 

Decision on savings and investments is shared 0 1 1 0.29 0.45 0.31 0.46 -0.03 -0.03 

Decision on social life and leisure activities is shared 0 1 1 0.32 0.47 0.34 0.47 -0.03 -0.03 

First component in PCA (Principal component) of intra-

household decision-making 
0 2 2 0.61 0.81 0.68 0.83 -0.06 -0.03 

Average of travel time to school by public transport 0 1200 1200 780 482 818 455 -38 -0.03 

Household structure: couple with/without children 0 1 1 0.55 0.50 0.59 0.49 -0.04 -0.04 

Decision on large household purchases is shared 0 1 1 0.31 0.46 0.35 0.48 -0.04 -0.04 

Is owner? 0 1 1 0.43 0.50 0.48 0.50 -0.05 -0.05 
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5.4.4 Pairs’ concordance improvement through automatic feature selection 

In this section, we utilized results from both the manual and machine learning feature 

selection models to extract the concordant and discordant pairs from each model. We 

listed the pairs that were discordant in the manual feature selection model but concordant 

in the automatic feature selection model. Additionally, pairs that were concordant in both 

models were also enumerated. A subsequent descriptive analysis aimed to identify 

potential differences in the characteristics of these pairs, emphasizing trends that the 

automatic feature selection could estimate accurately. Table 9 displays features with the 

most significant differences between the pairs. Notably, the automatic feature selection 

model proved more effective in accurately predicting the relocation timing of individuals 

who had relocated (event = 1). Moreover, the automatic model seems better suited for 

predicting the relocation timing of those who had experienced a life-course event in the 

past two years. 

 
Table 9. Comparison between improved concordant pairs with automatic feature selection model 
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Event 0 1 1 0.76 0.43 0.70 0.46 0.06 0.06 

Purchasing a new vehicle during last two years 0 1 1 0.16 0.37 0.12 0.33 0.04 0.04 

Average of travel time to work by public transport 0 1200 1200 406 370 363 354 42 0.04 

Graduating a study during last two years 0 1 1 0.11 0.32 0.09 0.28 0.03 0.03 

Commencing a new study during last year 0 1 1 0.03 0.18 0.06 0.23 -0.02 -0.02 

Being close to public transport is very important 0 1 1 0.31 0.46 0.34 0.47 -0.03 -0.03 

Being close to shops, groceries is very important 0 1 1 0.29 0.45 0.33 0.47 -0.04 -0.04 

Starting a new job during last year 0 1 1 0.12 0.32 0.16 0.37 -0.05 -0.05 

 

5.4.5 Ensemble model of classical models 

Building upon previous research, classical models equipped with automated feature 

selection mechanisms showcased performance levels comparable to machine learning 

approaches, whilst preserving the intrinsic benefits of the traditional paradigms. To 

advance accuracy metrics, ensemble methods were engaged, specifically stacking 

ensemble models, a practice that incorporates predictions from multiple models (base 

models) to train a higher-level algorithm (meta-model). The semi-parametric model, Cox-

PH, was incorporated alongside an array of parametric models, including Weibull, 

Exponential, Gaussian, Logistic, Log-normal, and Log-logistic, serving as the foundation 

or base models. These predictions then informed the explanatory variables of a 

subsequent meta-model. Despite rigorous experimentation with linear regression and 

finely tuned XG-boost algorithms as potential meta-models, no significant improvement 

in outcome metrics was observed. As evidenced in Table 10, the c-index measures of 

individual models oscillated around 0.77, with the ensemble model barely nudging to 

0.78. 
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Digging deeper into these outcomes, we shifted our focus to the C-index metric. An 

analytical exploration was embarked upon to identify patterns in the distribution of 

concordant and discordant pairs derived from model predictions. Our primary objective 

was to discern whether different models encountered challenges with similar pairs of 

observations. Consequently, we scrutinized the overlap of discordant pairs across various 

models. As delineated in Table 10, a significant 64% of discordant pairs were consistent 

across all models, and an additional 21% were shared amongst three to six models. This 

consistency suggests that regardless of the model employed, there’s a recurring pattern in 

which pairs are correctly classified. 

 
Table 10. Measures of the base models in the ensemble model 

 
Count of concordant/discordant pairs 

   
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Average 

   
Weibull Exponential Gaussian Logistic Log-normal Log-logistic COX-PH - 

  
Number of relevant 280167 280167 280167 280167 280167 280167 280167 280167 

  
Number of concordant pairs 216148 216216 214568 214962 217612 217615 216364 216212 

  
Number of discordant pairs 64019 63951 65599 65205 62555 62552 63803 63955 

  
C-Index 0.77 0.77 0.77 0.77 0.78 0.78 0.77 0.77 

Difference between the duration of the pairs 

 Discordant pairs 

  
Average duration 7.33 7.36 7.34 7.40 7.67 7.60 7.36  

  
Average duration difference 5.74 5.81 5.98 6.02 6.02 5.96 5.76  

 Concordant pairs 

 
 Average duration 8.70 8.69 8.71 8.69 8.60 8.62 8.69  

 
 Average duration difference 10.34 10.31 10.30 10.28 10.23 10.24 10.33  

 All pairs 

 
 Average duration 8.61        

 
 Average duration difference 9.27        

Shared discordant pairs between models 

 
 Count 4409 7207 3635 3343 5850 3695 50452  

 
 Percent 0.06 0.09 0.05 0.04 0.07 0.05 0.64  

 

A meticulous analysis of pair durations offered intriguing revelations. Discordant 

pairs exhibited an average duration difference ranging from 5.74 to 6.02 across models. 

In contrast, concordant pairs presented a higher average duration difference, spanning 

from 10.23 to 10.34. When all pairs were taken into account, this average was 9.27. This 

trend is also mirrored in the average durations of both discordant and concordant pairs. 

Figure 6’s histogram elucidates this pattern: the duration difference distribution for 

discordant pairs reveals a pronounced spike around zero, tapering to a slender right tail. 

In contrast, the distribution for concordant pairs is more evenly dispersed, marked by a 

significant right tail and a modest peak around zero. This divergence highlights a 

pervasive challenge: models tend to misclassify pairs that not only are proximate in 

duration but also have relatively shorter durations.  
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Figure 6. Histogram of duration difference in the pairs considered for C-Index measure 

 

6 Conclusions 

Understanding household residential relocation timing is crucial for transport and 

urban planners. This study analyzed the timing of 1,024 household relocations in Sydney, 

Australia, using a diverse and high-dimensional dataset. While existing literature explores 

various methodologies and influential variables for residential relocation duration, recent 

advancements in machine learning provide new tools tailored for survival data. Such 

advancements present a prime opportunity to refine classical survival models, particularly 

when dealing with complex, high-dimensional relocation data. In our research, we 

benchmarked ten machine learning survival techniques with six feature selection methods 

against three classic survival models. Findings indicated that while classical models 

underperformed without feature selections, they closely mirrored machine learning 

outcomes when integrated with tree-based automated feature selectors. Notably, the 

GBM, tree-based XGBoost, and Random Forest SRC models emerged as the most potent, 

with tree-based models exhibiting stability and minimal sensitivity to feature selection 

algorithms. 

In the study, we conducted a comprehensive analysis of 163 features, with each 

feature having multiple selection opportunities across various learner and feature selector 

combinations. Key insights from the feature importance analyses reveal home-related 

features as dominant predictors, with homeownership, indicated by the “Is owner?” 

feature, being the most predictive one, boasting an importance score of 0.98. Life events, 

such as “Childbirth” and “Vehicle purchase” within the last two years, along with 
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accessibility features—particularly those related to public transport, the number of 

students, and financial situations—emerged as the most crucial features among all. 

Further, two feature selection techniques — manual and machine learning-based 

automatic approaches — were analyzed. Inspired by Bostanara et al. (2021), the manual 

model generally aligned with the automatic model in many features, though they 

diverged on some influential variables. Statistical tests, such as ANOVA and bootstrap 

analysis, emphasized the superior performance of the automatic model, highlighting its 

increased predictive accuracy. Delving deeper, descriptive analyses on concordant and 

discordant pairs revealed the automatic model’s enhanced capability to predict certain 

residential relocations, particularly those linked to recent life-course events. Notably, the 

automatic model excelled in estimating the relocation timing of homeowners compared to 

renters, and for those households exhibiting shared intra-household decision-making. The 

automatic approach also displayed a heightened accuracy for individuals having 

experienced a major life event within the past two years. 

In this study, classical models integrated with automated feature selection techniques 

exhibited comparable performance to advanced machine learning methods, maintaining 

inherent advantages of conventional approaches. Stacking ensemble models, 

incorporating predictions from diverse models like Cox-PH and others, aimed to refine 

accuracy. However, even with rigorous tests using methods like XG-boost, enhancements 

in outcome metrics were minimal. In-depth analysis revealed consistent challenges across 

models in categorizing certain observation pairs, especially those with closer and shorter 

durations, underscoring a common modeling limitation. 

Accessibility, a key factor in home selection, was analyzed in this study. We 

considered three main accessibility metrics: average household travel time to work and 

school, local land-use structure, and the number of jobs within a 30-minute radius. We 

hypothesized that considering the accessibility of both current and potential future homes 

would be crucial for a residential relocation model. A linear model was developed to 

gauge households’ inclination to modify their accessibility post-relocation. The self-

selection bias was mitigated by directly asking households about their preferences for 

home attributes, though such data is rarely available, limiting the model’s predictive 

utility. However, future research could employ ordered logit models to estimate 

household attitudes towards various home attributes. This study has policy implications, 

emphasizing the promotion of a 30-minute accessible city and the enhancement of urban 

greenspaces, footpaths, and public transport equity. In terms of accessibility’s impact on 

residential relocation duration, the accessibility of present and prospective homes was 

vital in approximately 20% of the models. Additionally, land-use and commute time via 

public transport were significant in 30% - 55% and 85% of models, respectively. 

Our study offers foundational insights into residential relocation dynamics, paving the 

way for more intricate investigations. By integrating disaggregated prediction methods 

like agent-based models with synthesized populations, we gain a nuanced understanding 

of individual decision-making, guiding effective policy and sustainable urban planning. 

While our research emphasizes relocation timing and accessibility shifts, we haven’t 

detailed household location choices. Recognizing this connection’s significance, future 

research will incorporate discrete choice models to explore location decisions. Merging 

machine learning with these models also presents a promising avenue for further 

exploration. 
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