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Abstract: Cycling is one of the main transport modes and cycling 

infrastructure is strongly embedded in transport infrastructure in the 

Netherlands. Nonetheless, the bicycle network still undergoes frequent 

improvements and expansions. One of the critical elements in deciding on 

improvements and expansions is to understand the route choice of 

cyclists, which helps identify bottlenecks in bicycle flows and 

substantiate the need for new bicycle infrastructure. Yet, the factors 

affecting the route choice of cyclists are still not fully understood. To 

address this, we develop a varying-contiguity spatially lagged exogenous 

(VCSLX) model and analyze the probability of a cyclist choosing a 

certain segment based not only on the characteristics of that segment but 

also considering the characteristics of its neighbors along a route. 

Characteristics that are included in this study are the presence of bicycle 

infrastructure, traffic control installations and artificial lighting, as well 

as pavement type, bicycle and motorized-vehicle volumes and different 

land-use zones. The model involves the analysis of the observed routes 

extracted from cycling trajectories from Fietstelweek data, as well as 

corresponding hypothetical shortest path routes identified from the 

origin-destinations of the observed trips and the cycling network. The 

results of the study can help to understand the factors convincing cyclists 

to deviate from the shortest possible routes. The study contributes to the 

current literature by focusing on the underexplored aspect of spatial 

dependencies between route segments in the route choice of cyclists. 
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1 Introduction 

In the Netherlands, the bicycle is one of the main transport modes frequently used for 

commuting, shopping, or leisure (28% of all trips in 2022 (CBS, 2022)). Therefore, 

cycling infrastructure is strongly embedded in the transport infrastructure of the 

Netherlands. Nonetheless, the bicycle network still undergoes improvements and 

https://jtlu.org/index.php/jtlu
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expansions to strengthen the position of cycling even more (Ensing & Janssen, 2020). It 

is important to understand the route choice of cyclists to decide on the improvements and 

expansions particularly in a country already with a complex bicycle network. Preferences 

of cyclists are often used to identify bottlenecks in bicycle flows and substantiate the 

need for new bicycle infrastructure (Veenstra, 2021). Nonetheless, the factors affecting 

the route choice of cyclists are still not fully understood.  

 Trip length and trip duration are considered to be the attributes most often cited 

in the literature as factors influencing the route choice of cyclists, suggesting that the 

shortest path would be sufficient to estimate the route between the origin and destination 

for cyclists (Chen, 2016; Khatri et al., 2016; Prato et al., 2018; Winters et al., 2010). 

However, literature indicates that various environmental and infrastructural factors are 

influencing the route choice of cyclists such that the route choice deviates from the 

shortest path. For example, the cycling routes collected during a data collection period of 

two weeks in the study area, municipality of Enschede, showed that only 55.1% of the 

observed routes fully overlap with the corresponding shortest path (Fietstelweek, 2016). 

The results of stated and revealed preference surveys show that the effects of 

environmental factors on the route choice of cyclists vary between studies and contexts. 

Alattar et al. (2021) argue that one of the main limitations in previous literature 

concerning the route choice of cyclists is disregarding the spatial dependencies among the 

segments along a route. Including such spatial aspect can provide more robust results. 

Current literature that considers spatial dependency solely aims at explaining bicycle 

volumes rather than the route choice of cyclists. In that context, all first-order 

neighboring segments are considered in a network. However, considering all first-order 

neighboring segments in a network would be inappropriate for route choice analysis, as 

cyclists do not choose their route based on individual segments. Rather, they select 

multiple neighboring segments in sequence to construct their route. For example, cyclists 

will not select one segment with excellent bicycle infrastructure if that results in 

including many other segments without bicycle infrastructure in their route. They rather 

choose a set of spatially coherent segments with good bicycle infrastructure. This 

illustrates that individual segments are spatially affected by neighboring segments in a 

route. Lv et al. (2023) verified this effect by showing that the characteristics of adjacent 

segments influence the bicycle traffic flow at the targeted segment. They concluded that 

segments with extensive bicycle facilities do not always have high bicycle volumes and 

attributed this difference to the effect of adjacent segments. 

The objective of this study is to explore the factors affecting the route choice of 

cyclists. For this purpose, we developed a varying-contiguity spatially lagged exogenous 

(VCSLX) model to analyze the probability of choosing a certain segment based on its 

characteristics and the characteristics of neighboring segments. These certain segments 

are parts of the observed routes (based on cycling trajectories obtained from Fietstelweek 

data) and corresponding hypothetical shortest path routes identified from the origin-

destinations of trips and the cycling network. We assume that the cyclists would prefer 

the shortest possible route if there were no effect of segment characteristics. Therefore, 

the analysis results can help in understanding the factors convincing cyclists to deviate 

from the shortest possible routes. The study contributes to the current literature by 

focusing on an underexplored aspect of the route choice of cyclists, namely the spatial 

dependencies between route segments. Incorporating this component ensures that the 

probability of choosing a segment depends not only on its own characteristics but also on 

those of neighboring segments within a route.  
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2 Literature review 

2.1 Analysis of route choice of cyclists 

There exist different approaches to analyze influential factors on the route choice of 

cyclists, such as the stated preference surveys (Li et al., 2012; Strauss & Miranda-

Moreno, 2013; Winters et al., 2010). This approach has the advantage of controlling for 

the experimental environment (Prato et al., 2018). However, this approach has a major 

downside, as it only includes the intentions of cyclists rather than their actual choices 

(Bernardi et al., 2018). Data on the revealed preferences of cyclists, like the observed 

routes from Fietstelweek, are becoming more available with the increase in the GPS track 

datasets and studies using such datasets can mitigate the disadvantages of stated 

preference studies. 

Recent research has highlighted the importance of addressing spatial dependencies in 

route choice modelling (Alattar et al., 2021; De Jong et al., 2023). Alattar et al. (2021) 

note that current methods often overlook spatial aspects, despite spatial models providing 

more insights and better estimation for events with spatial autocorrelation, such as 

cycling (Lee & Sener, 2021). Alattar et al. (2021) considered two types of models that 

can deal with spatial dependency, namely the spatial lag model and the spatial error 

model. The first accounts for the spatial dependence of the dependent variable by 

neighboring areas, while the latter does not consider the dependent and independent 

variables, but rather includes an error term to estimate the spatial dependency. Both 

approaches are widely used in many applications (e.g., estimating bike sharing demand), 

describing a relation between bicycling frequency and land use characteristics and 

demand modelling for traffic volume prediction (Faghih-Imani & Eluru, 2016; Zhao et 

al., 2020). Moreover, De Jong et al. (2023) clustered segments which share the same 

street names in an error term to account for spatial dependency and used this clustering in 

both a cycling demand model and a cycling route choice model. They included examples 

of revealed versus shortest routes and conclude that the selection or avoidance of a route 

depends on some specific segment(s) and contribute this to spatial dependency.  

Spatial lag and spatial error model incorporate the impact of the dependent variable or 

the error term respectively of neighboring units on the dependent variable. As a result, 

both models are strong prediction models (Alattar et al., 2021). However, their 

explanatory power is less compared to the spatial lagged exogenous (SLX) model. The 

SLX model measures the impact of the explanatory variables in neighboring units on the 

dependent variable (Elhorst & Vega, 2017). Therefore, the model is conditional upon the 

infrastructure, traffic and land use allocation factors of neighboring segments. Thus, this 

approach allows for the consideration of the spatial dependence of different 

infrastructure, traffic and land use allocation factors separately allowing for a relatively 

straightforward model estimation and interpretation (Goetzke, 2008).  

In general, one contiguity matrix is created to symbolize the spatial arrangement of 

neighboring units (Goetzke, 2008). Nevertheless, this would not be appropriate in this 

study, since a certain segment can be part of multiple routes and its contiguity varies 

depending on the route it belongs to. Therefore, that segment is only affected by the 

characteristics of other segments in that particular route and not in other routes. 

Therefore, a contiguity matrix was created for every route individually. This resulted in a 

new type of SLX model, namely the varying-contiguity spatially lagged exogenous 

(VCSLX) model. A detailed representation of the model is provided in the methodology. 
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2.2 Environmental factor influencing the route choice of cyclists 

This section focusses on the explanatory variables that explained bicycle route choice 

in previous studies. A brief overview of selected papers on the influence of infrastructure, 

traffic and land use allocation factors on the route choice of cyclists published in the 21st 

century is presented in Table 1. It addresses the factors included and the direction of the 

included factors. 

 
Table 1. Summary of the infrastructural, traffic and land use allocation factors, and their effect 

according to literature 
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Traffic control 

installations 
±    + −   − −       

Cycle lane   + +  +  + + +      + 
Separate bike 

path 
+ + + + + +  + + + +      

Slope −  − −   − − − −   −   − 

Turns −    −     −   −   − 

Artificial 

lighting 
           +  +   

Pavement 

(asphalt) 
       +  +    +   

Pavement 

(paving stones) 
       −         

Motor vehicle 

intensities 
−      −  − −   −   − 

Bicycle 

intensities 
      −          

Residential land 

use zone 
     − −    ∙   − +  

Commercial 

land use zone 
     + −    ∙   − +  

Greenery land 

use zone 
 +  −  +  +  +     +  

Industrial land 

use zone 
         −    ∙   

Land use mix           +  +  +  

Degree of 

urbanisation 
  + −    −  + −   −   

+ : positive effect, − : negative effect, ∙ : not significant 
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2.2.1 Infrastructure-related factors 

Using revealed preferences, many studies found that high-quality bicycle facilities 

improve the attractiveness of a certain route significantly, as they improve bicycle flow 

and safety. Especially when the bicycle paths are separated from motorized traffic 

(Broach et al., 2012; Campos-Sánchez et al., 2019; Chen, 2016; De Jong et al., 2023; 

Koch & Dugundji, 2021; Łukawska et al., 2023; Meister et al., 2023; Prato et al., 2018). 

However, also suggestive cycle lanes have a positive effect (De Jong et al., 2023; Koch & 

Dugundji, 2021; Meister et al., 2023; Prato et al., 2018; Zimmermann et al., 2017). 

Several studies generated a set of alternative routes through revealed route data and 

evaluated these routes using various types of logit models. For example, Broach et al. 

(2012) showed that cyclists are already willing to take a significant detour if the slope of 

a certain route is 2% or more.  

Additionally, current literature is not conclusive on the effect of traffic control 

installations. On one hand Prato et al. (2018) and Koch and Dugundji (2021) concluded 

that cyclists are encouraged to take a detour to avoid traffic control installations based on 

their studies in Denmark and the Netherlands respectively. They attributed this to the 

disadvantage of stopping for cyclists. On the other hand, Khatri et al. (2016) and Broach 

et al. (2012) found that traffic control installations are deemed valuable in a lefthand turn 

with high traffic volumes, but these studies are focusing on two American cities which 

are designed to be more car centric.  

Prato et al. (2018) also found the negative effects of unpaved infrastructure, motorized 

vehicle intensities and turns on the attractivity of routes. In general cyclists prefer a 

simple route including a low frequency of turns (Zimmermann et al., 2017). In this, left 

turns are especially penalized heavier than right turns as left turns are more associated 

with higher delays at both signalized and unsignalized intersections and they add a safety 

risk (Khatri et al., 2016; Prato et al., 2018).  

Only stated preference studies consider artificial lighting as an influencing factor in 

route choice of cyclists and find that respondents are hesitant to cycling on routes which 

are not well lit after dark (Uttley et al., 2020; Winters et al., 2011). However, effect of 

artificial lighting on cyclists’ route preferences is little studied. 

2.2.2 Traffic-related factors 

The effects of bicycle intensities on the route choice of cyclists are also little studied. 

Stated preference studies indicate that high bicycle volumes negatively affect the comfort 

of cyclists, as it is harder to overtake and keep the same speed (Li et al., 2012). Also, a 

negative effect of high bicycle volumes on the perceived safety of cyclists was identified 

in Uijtdewilligen et al. (2024). However, data limitations result in little understanding of 

this perception in revealed preference studies. For motorized vehicle volumes there exists 

evidence from both stated and revealed preference studies that high volumes are 

unwanted by cyclists (Broach et al., 2012; Li et al., 2012; Meister et al., 2023; Prato et 

al., 2018). 

2.2.3 Land use-related factors 

Literature shows that land use can influence the attractiveness of a bicycle routes. For 

most of the land use classes, no decisive conclusion is obtained by studies. For example, 

on the one hand revealed preference studies conclude that commercial areas are preferred 

by cyclists (Koch & Dugundji, 2021; Zhao et al., 2020). On the other hand, stated 
preference studies conclude the opposite (Li et al., 2012; Winters et al., 2011). Possibly 

commercial areas are not attractive to cycle through, but are the only viable option for 
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cyclists, for example in city centers. Also, on the effect of greenery are studies not 

conclusive. Prato et al. (2018) concluded that forests and parks have a positive effect on 

the willingness to detour for cyclists. Nevertheless, Campos-Sánchez et al. (2019) found 

that green areas alone do not influence cyclists, but; rather, the proximity to separated 

cycle paths is necessary to be more attractive. When estimating relative route choice 

between observed routes and shortest paths in Oslo, Norway, De Jong et al. (2023) even 

found that greenery had a negative influence and contribute this to the unease in 

wayfinding through green spaces. 

 

3 Methodology 

The proposed methodology involves the estimation of the probability of choosing a 

certain segment based on its characteristics and the characteristics of neighboring 

segments in a route through a comparison of observed routes from Fietstelweek data with 

hypothetical shortest routes. The approach is summarized in Figure 1. For all origin-

destination pairs in the observed routes from Fietstelweek, a corresponding shortest path 

is generated using Dijkstra’s shortest path algorithm. For each of the routes, a separate 

contiguity matrix is created. This contiguity matrix involves the contiguity of all 

segments in a route. 

The contiguity matrices are combined with characteristics such as traffic volumes and 

land use to produce the contiguity characteristics of all segments. These served as input 

for the varying-contiguity spatially lagged exogenous (VCSLX) model. The study 

focuses on the factors playing a role in convincing the cyclist to deviate from the shortest 

routes; thus, segments of the shortest routes that overlap with the observed routes are 

excluded from the analysis. The remainder of this section describes this VCSLX model in 

more detail and introduces the study area and corresponding data sources. 
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Figure 1. The approach of the study 

3.1 Varying-contiguity spatially lagged exogenous model 

The dependent variable in this study has a binary nature, as a segment belongs to 

either the observed route or the shortest path. Therefore, all observed segments are 

denoted as 1 and segments in the shortest routes are denoted as 0. In case a segment is in 

both observed and the shortest routes, it is added to the dataset twice, once with a 1 and 

once with a 0. The shortest route segments overlapping with segments from the observed 

route were used in developing the contiguity matrix but they are excluded in the model 

estimation. Binary dependent variables are often dealt with using logistic regression 

(Alattar et al., 2021). Therefore, the standard SLX model in a binary environment is 

estimated by the following equation: 

 

𝑌𝑖 = logit(𝑃𝑖) = 𝛼 + 𝑿𝛽 +𝑾𝑿𝛾 (1) 

 

Where α is the constant, β is the set of coefficients of the characteristics at a certain 

segment, γ is the set of coefficients of the spatial lag of the characteristics of neighboring 

segments, X is the characteristics of the segments and W is the contiguity matrix.  

As mentioned, usually one contiguity matrix is created to represent the spatial 

dependencies. However, a segment is only affected by the characteristics of other 
segments within the same route, not in other routes. As a result, a contiguity matrix was 

created for every route individually, hence the varying-contiguity spatially lagged 

exogenous (VCSLX) model. The nature of the contiguity matrix has a substantial effect 
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on the results of the regression analysis (Goetzke, 2008). Since it is expected that the 

characteristics of segments further away from a certain segment affect the attractivity 

less, compared to closer segments, a distance decay function based on the inverse 

distance is used. Although segments further away from a particular segment have less 

effect, still all the segments in a route are considered.  

In the contiguity matrix, diagonal values are typically zero; however, it is possible to 

combine the effect of an independent variable with its spatial lag by adding an identity 

matrix to the contiguity matrix. This approach allows for a more robust estimation of 

variable effects and is conducted by the following equation: 

 

𝑌𝑖 = logit(𝑃𝑖) = 𝛼 + (𝑾𝒋 + 𝑰)𝑿𝛽 (2) 

 

This equation is similar to Equation 1; however, β coefficient vector represents both 

the characteristics of a certain segment and the characteristics of neighboring segments. I 

is the identity matrix with the same size as Wj, where Wj is the contiguity matrix of route 

j. A hypothetical contiguity matrix is schematically visualized in Figure 2 with the 

“greenery cover” of three segments in a route. The greenery cover of segments 1, 2 and 3 

is 25%, 0% and 75% respectively. Looking from the perspective of Segment 1, Segment 

3 is twice as far away as Segment 2, assuming that the lengths of the segments are the 

same. Segment 1 (highlighted in red) would have a spatially weighted greenery cover of 

0.50 (1*0.25+0*0.67+0.33*0.75=0.50) if the data from the weighted matrix and the 

greenery cover were combined. 

 

 

Figure 2. Schematical visualization of the weighted characteristics A) contiguity matrix, B) 

greenery cover per segment in a route [%] (red row shows weights for Segment 1) 

3.2 Study area 

The study area is the municipality of Enschede located in the province of Overijssel in 

the East of the Netherlands (Figure 3). The municipality of Enschede is a medium-sized 

city with a few neighboring villages with a total of 161,235 inhabitants in 2023 (CBS, 

2023a). Enschede is strategically chosen as the Fietstelweek data initiative originates 

from Enschede (Fietstelweek, 2016). This results in a large availability of data for this 

particular municipality. In total, 8,606 observed routes are present in the Fietstelweek 

data for Enschede. These observed routes have at least either the origin or the destination 

in the municipality of Enschede. This means that cyclists can travel from other 

municipalities in the Twente region close to the municipality of Enschede such as 

Hengelo, Haaksbergen, Losser and Oldenzaal. However, only the part of routes within 

the municipality borders of Enschede is included in this study, because some of the data 

is less trustworthy or not available for this study outside the municipal boundaries. The 
municipality of Enschede has 1,159 km of infrastructure available for cyclists of which 

23% consists of separated bicycle paths and 5% consists of cycle lanes. 
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                            A.                                                                            B. 

Figure 3. A) Municipality of Enschede in dark green in the province of Overijssel in lighter green, 

B) the cycling network of the municipality of Enschede 

3.3 Data sources 

Based on the conclusions drawn from the literature review, data was collected on the 

infrastructural and land use allocation factors influencing the route choice of cyclists. All 

the data sources are summarized in Table 2. 
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Table 2. Overview of the used data sources 

 
Data Variable Description Source 

Route Observed routes - (Fietstelweek, 2016) 

Infrastructure  

Traffic control 

installation 
Binary variable whether or not present (Fietsersbond, 2021) 

Cycle lane Binary variable whether or not present (Fietsersbond, 2021) 

Separate cycle path Binary variable whether or not present (Fietsersbond, 2021) 

Turns  
Binary variable whether or not a turn angle 

of 60 degrees 
(Fietsersbond, 2021) 

Artificial lighting Binary variable whether or not present (Fietsersbond, 2021) 

Pavement (asphalt)  Binary variable whether or not present (Fietsersbond, 2021) 

Pavement (paving 

stones) 
Binary variable whether or not present (Fietsersbond, 2021) 

Traffic 

Bicycle intensities 

Categorical variable: low (less than 250 

bi/day), medium (250-500 bi/day) and 

high volumes (500+ bi/day) 

(Veenstra, 2021) 

Motorized vehicle 

intensities 

Categorical variable: low (less than 1,000 

veh/day), medium (1,000-3,000 veh/day) 

and high volumes (3,000+ veh/day) 

- 

Land use 

Residential land 

use 

Ratio with buffer area; continuous 

variable between 0 and 1 
(PBL, 2018) 

Commercial land 

use 

Ratio with buffer area; continuous 

variable between 0 and 1 
(PBL, 2018) 

Greenery land use 
Ratio with buffer area; continuous 

variable between 0 and 1 
(PDOK, 2021) 

Industrial land use 
Ratio with buffer area; continuous 

variable between 0 and 1 
(PBL, 2018) 

Land-use mix 
Ratio with buffer area; continuous 

variable between 0 and 1 
(PBL, 2018) 

Degree of 

urbanization 

Categorical variable between 1 (densely 

urbanized (2,500+ addresses/km2)) to 5 

(not urbanized (less than 500 

addresses/km2) 

(CBS, 2023b) 

3.3.1 Cycling routes 

The Fietstelweek dataset provides observed routes of cyclists. The most recent data is 

from 2016 in which bicycle users were asked to map their cycle behavior via a 

smartphone app using GPS during the week of the 19th of September (Koch & Dugundji, 

2021). Nonetheless, this data source has its limitations. To anonymize the data, from all 

trips, a distance between zero and 400 meters was dropped at the beginning and end to 

mask the true origin and destination (Koch & Dugundji, 2021). Based on the origin and 

destination of the observed route, the shortest path was generated using Dijkstra’s 

shortest path algorithm using the travel time of the segments as weights. For this average 

travelling speeds by Fietstelweek were used, while including average waiting times at 

signalized intersections as estimated by Velthuijsen (2020) on signalized intersections in 

Enschede.  

3.3.2 Network and traffic 

The Fietsersbond, a Dutch cyclist union, provided their network (Fietsersbond, 2021). 

The characteristics of the Dutch cycling network are updated annually by volunteers. The 

network is highly valued in Bernardi et al. (2018), due to the richness of its 

characteristics. The dataset for the municipality of Enschede includes 22,214 directional, 

cyclable links, which provide insights into most of the infrastructural characteristics 
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considered in this study, such as the presence of traffic control installation, separate cycle 

path, cycle lane and artificial lighting and the type of surface material.  

The bicycle intensities are provided via the FietsMonitor of Witteveen+Bos (Veenstra, 

2021). Witteveen+Bos estimated a four-stage model which visually represents bicycle 

flows. This helps in identifying bottlenecks in current infrastructure and analyzing the 

effect of proposed measures. Next, motorized vehicle intensities are estimated using a 

Mobi Surround tool provided by the University of Twente. This tool is a four-stage 

model made as a QGIS plugin that is specifically designed for estimating the motorized 

vehicle volumes of the municipality of Enschede. 

3.3.3 Land use 

Basisregistratie Grootschalige Topografie data (PDOK, 2021) is a data source 

providing detailed information on all kinds of physical objects in the built environment 

with a resolution of 20 centimeters. For this study, this source is utilized to identify 

locations with various types of greenery, ranging from public parks, to pastures, sport 

fields and trees functioning as street furniture. Besides that, Wijken en Buurten data 

(CBS, 2023b) is a data source providing data on the degree of urbanization for all 

neighborhoods, districts, and municipalities in the Netherlands. Furthermore, RUDIFUN1 

data (PBL, 2018) is a data source of Planbureau voor de leefomgeving, a Dutch 

governmental institution specialized in policy analysis on environment, nature and space. 

This data source provides information on the land use in the built environment on a 

building level.  

3.3.4 Data processing 

The Fietsersbond network already included most of the infrastructural characteristics 

that were included in this study and all of them were converted to a binary nature, 

indicating whether or not a certain characteristic is present or not. As suggested by 

Broach and Dill (2016) and Zimmermann et al. (2017) intensities were made categorical.  

Zimmermann et al. (2017) used between 10,000 and 20,000 vehicles/day as medium 

vehicle intensities and over 20,000 vehicles/day as heavy motorized vehicle intensities. 

Nonetheless, their analysis was executed in the Phoenix metropolitan area, one of the 

most car-centric areas in the United States with around 30 times as many inhabitants 

compared to Enschede. Therefore, based on the motorized vehicle intensities of 

Enschede, between 1,000 and 3,000 vehicles/day is chosen for medium vehicle intensities 

and over 3,000 vehicles/day for heavy vehicle intensities. The same categorical approach 

was done for bicycle intensities with 250-500 bicycles/day being the medium range and 

over 500 bicycles/day representing heavy intensities. The number of turns in each route is 

estimated using the Fietsersbond network and the observed routes or shortest paths. Turns 

are considered as subsequential links in an observed route or shortest path with more than 

a 60-degree angle between them. 

To derive the type of building environment around the segments, a crow-fly buffer of 

250 meters is employed. This buffer size is chosen as it has been used in previous studies 

and as a middle-size buffer, it is useful in both dense urban areas as well as more rural 

areas (Winters et al., 2010, 2011). Moreover, the buffer shape was chosen to be round, as 

recommended by Winters et al. (2010) and Van Nijen (2022). Then, the portion of a 

certain land use class within the whole buffer area is considered in the model. The land 

use mix is then estimated using the Shannon index (Strauss & Miranda-Moreno, 2013; 

Winters et al., 2010; Zhao et al., 2020). The same buffer area is used to estimate the 

degree of urbanization, as the average of the neighborhoods within the buffer area is 
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considered to be the degree of urbanization. Note that a higher class number corresponds 

with a lower degree of urbanization. 

 

4 Results 

4.1 Varying-contiguity spatially lagged exogenous model 

A total of 104,841 observed route segments and 55,358 shortest path segments are 

considered in the analysis. By considering these segments, the coefficients of the VCSLX 

model are estimated and described in Table 3. Additionally, the data was also used to fit a 

logistic regression model, to verify the effect of the spatial lag and identify whether 

spatial lags improve the model fit.  

 
Table 3. Statistical summary of the VCSLX model and logistic regression model 

 
 Factor β Std. Err. p β Std. Err. p 

  VCSLX model Logistic regression model 

 Constant 0.316 0.061 ~0 0.064 0.047 0.169 

In
fr

a
st

ru
ct

u
ra

l 

Traffic control installation 1.240 0.028 ~0 0.772 0.028 ~0 

Cycle lane 0.209 0.015 ~0 0.308 0.020 ~0 

Separate cycle path 0.076 0.012 ~0 0.134 0.017 ~0 

Turns -0.171 0.013 ~0 -0.102 0.014 ~0 

Artificial lighting -0.095 0.018 ~0 -0.146 0.024 ~0 

Pavement (asphalt) 0.092 0.019 ~0 0.068 0.025 ~0 

Pavement (paving stones) -0.127 0.024 ~0 -0.153 0.031 ~0 

T
ra

ff
ic

 Heavy car intensities 0.116 0.015 ~0 0.116 0.019 ~0 

Medium car intensities 0.087 0.020 ~0 0.084 0.023 ~0 

Heavy bicycle intensities -0.364 0.010 ~0 -0.421 0.014 ~0 

Medium bicycle intensities -0.117 0.010 ~0 -0.166 0.017 ~0 

L
a
n

d
 u

se
 

Residential land use zone -0.230 0.050 ~0 -0.533 0.083 ~0 

Commercial land use zone 0.599 0.060 ~0 0.833 0.098 ~0 

Greenery land use zone -0.501 0.034 ~0 -0.792 0.054 ~0 

Industrial land use zone -0.386 0.062 ~0 -0.317 0.093 0.007 

Land use mix -0.276 0.029 ~0 -0.349 0.047 ~0 

Degree of urbanisation 0.001 0.005 0.764 0.004 0.008 0.596 

 MSE 0.214 0.219 

 AIC 179,702 182,824 

 

Table 3 shows that both models perform similarly. Nonetheless, the Mean Squared 

Error (MSE) and Akaike information criterion (AIC) are both lower for the VCSLX 

model favoring it over the model without spatial lags. To indicate the relative 

contribution of the factors (Table 4), standardized regression coefficients are used to 

eliminate the effects of different scales or measurement units. Standardized coefficients 

can give insights into the relative importance of the influential factors (Siegel & Wagner, 

2022). Table 4 shows that the most substantial factors influencing the likelihood of 

choosing a segment are the presence of a traffic control installation, heavy bicycle 

intensities, green land use zone and land use mix.  
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Table 4. Standard regression coefficients 

 

 

4.2 Likelihood of choosing a segment 

The VCSLX model estimates the probability of a cyclist choosing a segment based on 

its characteristics and the characteristics of its neighbors in a route. The model can also 

be used to identify segments that are more likely to be chosen in the network. Such 

visualization can be a powerful tool for policymakers as it introduces deficiencies in the 

bicycle network. Especially, it can also provide information on why a certain segment is 

relatively less preferred when the map is combined with the underlying datasets, such as 

land use or traffic volumes.  

This map with the likelihood of choosing a segment is created for the municipality of 

Enschede and a cut-out of the inner city and presented in Figure 4 and Figure 5, 

respectively. As the likelihood of choosing a segment is based on other segments in a 

route, only segments in the network that are also part of a route are considered. For 

segments, which occur in more than one route, the average likelihood is considered. 

Although only 55% of the network is covered by segments in either the observed routes, 

the shortest path, or both, the spatial distribution of included segments is sufficient to 

create this map, as it excludes only local roads.  

 

Factor Standardised β

Constant 0

Traffic control installation 0.593

Cycle lane 0.215

Separate cycle path 0.121

Turns -0.172

Artificial lighting -0.129

Paved infrastructure (asphalt) 0.128

Paved infrastructure (paving stones) -0.124

Heavy car intensities 0.125

Medium car intensities 0.060

Heavy bicycle intensities -0.554

Medium bicycle intensities -0.112

Residential land use zone -0.095

Commercial land use zone 0.185

Green land use zone -0.403

Industrial land use zone -0.118

Land use mix -0.304

Degree of Urbanisation 0.008

In
fr

a
st

r
u

c
tu

r
a

l
T

r
a

ff
ic

L
a

n
d

 u
se
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Figure 4. The likelihood of choosing a segment, classification by equal counts of the municipality 

of Enschede 
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Figure 5. The likelihood of choosing a segment, classification by equal counts of the inner city of 

Enschede 

 

5 Discussion 

The VCSLX model revealed the effects of several traffic, infrastructure, and land use 

variables on the route choice of cyclists. The most substantial factors on the likelihood of 

choosing a segment are the presence of traffic control installation, heavy bicycle 

intensities, green land use zone and land use mix. These results are also illustrated in 

Figure 4 and Figure 5. 

A notable observation from Figure 5 is the preference for the Enschede’s ring road and 

its arms (highlighted in pink in Figure 5), although it is not known for its high-quality 

infrastructure and comfortable cycling. The ring road is associated with high motorized 

vehicle intensities, less bicycle intensities, less greenery, relatively many stops due to a 

high density of traffic control installations, but also few turns. Considering the latter, the 

ring road is often used as an identification mark when navigating through the city, and 

cyclists prefer simple routes without turns (Zimmermann et al., 2017). De Jong et al. 

(2023) indeed state that green spaces are associated with difficulties in wayfinding for 

cyclists. Thus, the cyclists of the Fietstelweek favor simple routes over routes with more 

greenery and less motorized vehicle intensities. Another interesting aspect of Figure 5 is 

the fact that the bicycle highway F35 (highlighted in blue in Figure 5) is less preferred, 

despite its high asphalt quality and greenery cover, contrary to the parallel route along the 

Hengelosestraat. Following the VCSLX model, this would be expected, but the result is 

counterintuitive. What could play a role in this is that when the Fietstelweek data was 

generated (2016) a major bridge connection (pointed out with an asterisk in Figure 5) 

connecting Hengelo with Enschede was not yet finished. 
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While the majority of the results of the VCSLX model are intuitive and in accordance 

with the literature (Table 5), some of the findings are contrary to expectations. For 

example, artificial lighting is found to negatively affect cyclist route choice. This finding 

seems counterintuitive, yet artificial lighting only influences the route choice of cyclists 

after nightfall and in this study, no time component is considered. Therefore, artificial 

lighting might be more accurately explained by the approaches adopted in previous 

studies. For instance, Uttley et al. (2020) looked at the reduction in bicycle flows in 

darkness and how artificial lighting can curb this reduction. Their conclusions show that 

the route choice of cyclists is only indirectly affected. Moreover, Winters et al. (2011) 

executed a stated preference study considering among other things artificial lighting. 

However, this approach only indicates the intentions of the cyclists rather than their 

actual choices. 

The presence of land use mix, similar to artificial lighting, negatively affects the route 

choice of cyclists. Land use mix is used in a direct way in this study. Approaches adopted 

by studies considering land use mix identify a difference in cycling frequency (Saelens et 

al., 2003; Zhao et al., 2020) and compared this frequency with the frequency of using 

private motorized vehicles (Winters et al., 2010). Both approaches only indirectly include 

the route choice of cyclists and might explain why areas with a high land use mix are less 

preferred. Another explanation could be that areas with high land use mixture are 

associated with relatively high density of conflicts (Asadi et al., 2022). Also, three-

quarters of the included types of land use in the land use mix have a negative influence, 

so it is reasonable to expect that a combination of land uses also has a negative influence. 
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Table 5. Literature consistency of the VCSLX model 

 
Factor Expected sign Found sign Consistency 

Traffic control installation +/- +  

Cycle lane + +  

Separate cycle path + +  

Turns - -  

Artificial lighting + -  

Paved infrastructure (asphalt) + +  

Paved infrastructure (paving stones) - -  

    

Heavy car intensities - +  

Medium car intensities - +  

Heavy bicycle intensities - -  

Medium bicycle intensities - -  

    

Residential land use zone +/±/- -  

Commercial land use zone +/±/- +  

Greenery land use zone +/±/- -  

Industrial land use zone ±/- -  

Land use mix + -  

Degree of urbanisation +/- ±  

 

5.1 Limitations and future work 

The observed routes of Fietstelweek provided great insight into the actual routes 

cyclists use; however, the data is relatively old (2016) compared to most other sources 

(2022/2023) used in this study. This means that renovations, extensions, or reductions in 

the current bicycle network included in more recent data sets were not present when the 

observed routes were generated. That is, a substantial portion of the bicycle infrastructure 

is renovated or newly created based on the vision of the municipality of Enschede. 

Therefore, the changes in the infrastructure may affect the outcome of the analysis. 

The data of the Fietstelweek used in this study is also not fully complete, since the 

timing of a trip was not included. However, the timing of a trip is estimated to 

substantially influence the route choice. As mentioned, this could affect the estimated 

coefficient for artificial lighting, as it is expected that artificial lighting only affects the 

route choice after nightfall. Moreover, motorized vehicle intensities, as well as bicycle 

intensities, are highly affected by the timing of the day, as peak hours result in higher 

intensities. Nonetheless, this aspect is not included in this study and as it varies largely 

over the day, it is recommended to include it in a future study. 

It is worth noting that the participants in the Fietstelweek were mostly experienced 

cyclists, resulting in a relatively large share of longer trips. According to the Fietstelweek 

data of 2016, the average distance per trip was 4.44 kilometers. However, the average 

distance per trip by bicycle according to (CBS, 2017) was 3.56 kilometers in 2016. 

Another downside is that no demographic data on, for example, gender and age, is 

included in the dataset and therefore also not included in this study, even though these 

aspects influence cycling behavior and route choice for cyclists (Broach et al., 2012; 

Broach & Dill, 2016; Segadilha & Sanches, 2014; Winters et al., 2010). 
There is also a difference between the network of the observed routes (open street 

map) and the network of Fietsersbond used for shortest paths. When converting the 
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observed routes to the Fietsersbond network, it became clear that not all observed routes 

were generated matching the network perfectly, since a substantial number was 

connected to perpendicular roads, often only open for other modes of transport, or other 

insufficiencies. This is most likely caused by the fact that GPS data is not precise enough 

for the level of detail of urban infrastructure networks (Khatri et al., 2016; Zimmermann 

et al., 2017). As a result, only 61% of the observed routes of Fietstelweek could be used 

in the analysis. Also, Prato et al. (2018) could use only 68% of their GPS-generated trips 

as a result of map-matching problems.  

Future research might consider timing of travelling and demographic data on cyclists 

to create a more specific understanding of cyclists’ the route choice. Also, the VCSLX 

model shows promising results, but this study was only executed in one study area, while 

the estimates could be fully different in another study area. Executing research with the 

VCSLX model in other study areas can increase the robustness of the method.  

 

6 Conclusion 

The route choice of cyclists has been often analyzed in the literature without 

considering the spatial correlations of segment features (i.e., traffic, infrastructure, etc.) 

within a route, although these features affect the preference of cyclists towards a certain 

segment. To overcome this limitation, we developed and employed a varying-contiguity 

spatially lagged exogenous model. This model allowed us to analyze the probability of 

choosing a segment based not only on its characteristics, but also the characteristics of 

neighboring segments within a route. 

Literature shows that there are fifteen major factors affecting the route choice of 

cyclists. Fourteen of these factors were analyzed using the VCSLX model (only slope is 

excluded due to study area characteristics). Analysis results demonstrated that the 

VCSLX model outperforms the logistic regression model, thereby confirming the 

importance of accounting for spatial correlations. The findings indicate that cyclists 

prefer direct routes (e.g., Enschede Ring Road) despite adverse features such as high 

motorized vehicle intensities, low greenery, and a high density of traffic control 

installations. This is because direct routes can make navigation through the city relatively 

easy due to a low frequency of turns. Furthermore, we found that residential areas are less 

preferable verifying the findings of previous studies. However, a counterintuitive finding 

is that the F35 bicycle highway is not deemed favorable, despite its high-quality asphalt. 

This may be because the F35 was still partly under construction during the period when 

the Fietstelweek observed routes were generated.  

The developed model was also used to estimate the likelihood of a cyclist choosing a 

segment. Results show that the presence of bicycle facilities like cycle lanes and separate 

cycle paths positively affects segment preference. In contrast, the likelihood of choosing 

a segment is negatively influenced by the frequency of turns, heavy bicycle intensities, 

green and residential land use as well as industrial land use and land use mix. These 

findings can guide policymakers when deciding on improvements in the cycling network 

and in designing new bicycle infrastructure.  
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