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Abstract: The global trend toward urbanization has spurred the widespread 

adoption of transit-oriented development (TOD). While previous research has 

extensively explored the relationship between land use and TOD ridership, 

much of it has focused on linear associations at a singular scale. Leveraging 

recent advancements in nonlinear modeling and the accessibility of open-

source data, this study employs a comprehensive two-step methodology. 

Firstly, K-means clustering algorithm categorizes TOD sites in Shenzhen into 

three distinct clusters, providing a site-based understanding of their 

characteristics. Subsequently, a Light Gradient Boosting Machine 

(LightGBM) classification model, complemented by SHapley Additive 

exPlanations (SHAP) values for interpretation, quantitatively evaluates the 

influence of mixed land use on TOD ridership across various catchment 

areas. As for the findings, we discover that land-use factors have different 

effects on TOD site patronage at different buffer radii and delve into the 

intricacies of these effects. Further results reveal non-linear relationships with 

varying degrees of positivity and negativity. For instance, residents and 

health sites positively impact patronage across all buffer radii, while certain 

commercial land uses exhibit a negative influence. The study demonstrates 

how the importance of different land-use structures varies across these 

clusters, shedding light on the nuanced impacts of land use on TOD 

catchment areas. Our research optimizes land-use mixes based on 

predominant cluster characteristics by offering actionable recommendations 

for urban managers. 
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1 Introduction 

Transit-oriented development (TOD) is becoming more popular worldwide in urban 

planning (Hasibuan et al., 2014). For instance, 55 cities in mainland China have opened 

urban rail projects with a total operational mileage of 10,291.95 km by 2022, comprising 

8,012.85 km or 77.85% of subways, most of which are TOD-oriented, large in number, 
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and costly. Research shows that TOD has effectively responded to numerous countries’ 

social and environmental issues stemming from car-centric transportation planning. It 

addresses challenges such as the unsustainable expansion of roads, traffic congestion, and 

air pollution. Besides, TOD also promotes the development of urban areas that are well-

connected and accessible through efficient public transportation systems, fostering 

sustainable mobility and livable communities (Ao et al., 2019; Gan et al., 2020; Shao et 

al., 2020). 

One of the most important issues in constructing the TOD project is considering the 

planning of surrounding mixed land use. This requires careful consideration of various 

factors, including land availability, transit accessibility, urban design principles, and 

stakeholder engagement, to ensure the successful and sustainable implementation of TOD 

initiatives (Cao et al., 2020; Taki et al., 2017). A few studies and planning projects 

strongly emphasize “mixed-use” around TOD stations, considering how best to match the 

mix of urban land use to maximize TOD’s ridership and efficiency (Marilee A, 2016; Niu 

et al., 2019). Hence, a better understanding of TODs can be achieved by characterizing 

them through mixed land use. 

Another important issue in the TOD project is determining the proper service radius, 

also known as a modifiable areal unit problem (MAUP) in relevant fields. At the meso-

micro level, previous studies found that TOD projects typically conduct catchment areas 

with a radius of 500-1000m (5-10 minutes walking distance) for land use intensification. 

While these core areas are important, the land use effects of TOD areas at the meso-

macro scale are equally important. When Cervero and Kockelman (1997) proposed the 

concept of TOD in the 1990s, he constructed a structure of coordinated development of 

two circles, the direct impact area of TOD and the peripheral neighboring sub-areas, 

which could have up to a radius of 1600m. In Korea, the planning of TOD further 

considers a radius of 2,000m to achieve better control of the land surrounding the TOD 

(Lee et al., 2005; Sung & Oh, 2011). Also, in Taiwan, Yen et al. (2023) applied the 2km 

as the radius of the catchment area to explore the land value around the TODs. These 

studies considered that a continuous, safe, and comfortable form of pedestrianized space 

could attract more residents to use metro stations (Wang et al., 2022). All these indicate 

that intensity control and functional organization should not be targeted only at the 

interior of the TOD but should be integrated and coordinated with the larger surroundings 

to enhance the stations’ efficiency. 

While several studies have explored the relationship between transit-oriented 

development (TOD) and ridership (Su et al., 2022; Yang et al., 2022), there are still some 

limitations within the existing literature. Firstly, the current nonlinear studies 

predominantly utilize early machine learning models, which may need to be better suited 

for multiclassification, imbalanced datasets, and lack of interpretability. Secondly, the 

discussions on the MAUP mainly focus on small-scale catchment areas. At the same 

time, the increasing popularity of shared bicycles or electric vehicles for TOD 

necessitates a broader examination. Lastly, despite similarities in the built environment, 

TODs constructed in downtown and suburban areas can exhibit substantial variations in 

ridership. Consequently, there is a critical need to categorize TODs, but only some 

studies have focused on this. 

In reality, planners and government agencies have faced challenges in identifying 

suitable operational zones and developing effective mixed-use site plans to manage, 

facilitate, or regulate TOD projects. The complexities lie in determining the optimal 

locations for TOD implementation and designing comprehensive plans that accommodate 

mixed land uses, transportation infrastructure, and community needs (Hasibuan et al., 

2014; Lin & Gau, 2006; Taki et al., 2017).  
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To address the above questions, this study takes Shenzhen in China as a testbed. In 

Shenzhen, one of the most developed and compact cities, the TOD planning strategy has 

also emerged as a new, widely accepted idea for urban construction and urban 

rehabilitation (Niu et al., 2019; Ramlan et al., 2021; Renne & Appleyard, 2019). 

Therefore, a study in Shenzhen can help us understand the relationship between urban 

land and TOD construction to evaluate sustainable transportation planning for developed 

cities accurately. 

Regarding the methods, this study uses interpretable machine learning to decipher the 

impact of various land uses on TOD ridership in different catchment areas. It 

demonstrates the following contributions: (1) Revealing the specific effect of mixed land 

use on TOD ridership using the state-of-the-art machine learning models, namely Light 

Gradient Boosting Machine (LightGBM) and SHAP (SHapley Additive exPlanations) 

values. (2) Comparing the non-linear and heterogeneous effects of land uses across three 

catchment areas with radii of 500, 1000, and 2000 meters. (3) Discussing the effects of 

land uses based on different categories of TODs. The remainder of the paper is organized 

as follows. The paper is structured as follows: Section 2 reviews the relevant literature. 

Section 3 introduces the study area, data sources, and the modeling approach. Section 4 

presents the visualizations and interpretations of the model results. Finally, the paper 

concludes with insights for planning practice and future directions for further research. 

 

2 Literature review 

2.1 The relationship between mixed land use and TOD catchment areas 

The relationship between the built environment and ridership in the catchment areas, a 

key aspect of TODs, plays a critical role in reinforcing the scientific basis of urban 

policies and the efficiency of planning solutions (Shao et al., 2020). With the TOD 

catchment areas as study units in earlier research, direct ridership models, a pioneering 

and widely adopted technique for transport planning, involve regressing ridership in 

TOD’s environment. Through this process, it has been identified that demographic 

characteristics and land use factors significantly influence TOD ridership, thus playing a 

crucial role in predicting travel demand (Cervero, 2006). To gain deeper insights into this 

phenomenon, researchers in urban-rural planning and transport geography have 

investigated the land use characteristics of catchment areas and their correlation with 

ridership patterns.  

Furthermore, researchers have explored these relationships across various areas to 

address the Modifiable Areal Unit Problem, ensuring a more comparative analysis (Ma et 

al., 2018; Su et al., 2022). The Modifiable Areal Unit Problem, commonly called MAUP, 

is a challenge frequently encountered in geographic analysis. It arises when the choice of 

spatial units (such as neighborhoods or districts) influences the statistical analysis results, 

potentially introducing biases. With the growing availability of geospatial big data, 

encompassing points of interest (POI), metro swipe data, social media data, and mobile 

phone signaling data, researchers can integrate multiple data sources. This integration 

facilitates a more comprehensive characterization of the intricate details surrounding 

Transit-Oriented Developments (TODs). By harnessing these diverse data sources, 

researchers can better understand the complex dynamics and interactions within TOD 

environments (Iseki et al., 2018; Li, Lyu et al., 2020). 

Recently, studies on the relationship between mixed land use and TOD catchment 

areas have increasingly emerged all over the world, including the United States (Ding et 

al., 2019), the UK and Europe (Ingvardson & Nielsen, 2018), South Korea (Choi et al., 

2012; Sohn & Shim, 2010), and China (An et al., 2019; Huang et al., 2020). Extensive 
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research has consistently shown that built environment and land use influence TOD 

ridership along three principal dimensions: density, diversity, and design (Cervero & 

Kockelman, 1997; Harirchian et al., 2021; Lin & Gau, 2006). Density refers to the 

number of people or jobs within a given area. Higher-density areas are more likely to 

support transit use because they provide a larger pool of potential riders within a 

walkable distance of transit stops (Cervero, 1989). Design refers to the physical layout 

and organization of buildings, streets, and public spaces. Good design can support transit 

use by making it easy and pleasant to walk or bike to transit (Cervero, 1989; Nyunt & 

Wongchavalidkul, 2020). Diversity refers to the mix of different land uses in an area, 

such as residential, commercial, and institutional uses. A diverse mix of land uses can 

support transit use by providing a variety of destinations within a walkable distance of 

transit stops (Nyunt & Wongchavalidkul, 2020). Furthermore, a diverse mix of land uses 

can also support a more balanced demand for transit throughout the day, as people travel 

for different purposes at different times. These findings of diversity research emphasize 

the importance of achieving an optimal land use mix. For instance, a 1-hectare increase in 

Hong Kong in commercial/residential floor areas is associated with a 100 average 

weekday rail ridership rise. Similarly, a change in business floor space leads to an 

increase of 20 average weekday rail ridership per hectare in New York (Loo et al., 2010; 

Shao et al., 2020). That is to say, the land use of the surrounding sites plays a crucial role 

in sustaining rail ridership, particularly in high-density and developed cities, as it reflects 

the spatial function and intensity of human activity. Given its status as a mass transit 

vehicle, maintaining an appropriate and supportive land use environment is essential for 

ensuring the continued success of rail systems planning (Li et al., 2024; Loo et al., 2010). 

Despite numerous studies focusing on the relationship between the built environment 

and TOD ridership (Li, Lyu et al., 2020), a common limitation is the narrow scope of 

analysis within a specific radius catchment, typically around 500 or 800 meters 

(approximately a five to ten-minute walk) (Su et al., 2022; Yang et al., 2022). However, 

this perspective overlooks the potential effects at larger scales. After all, commuters 

arriving at the TOD have more ways to travel than just walking at a constant speed. One 

such mode is the increasingly popular bike-sharing system, which allows users to cover 

distances of up to approximately two kilometers in just five minutes, significantly 

expanding the range of activities for TOD commuters. This highlights the importance of 

considering not only pedestrian accessibility but also the availability and integration of 

other transportation options when assessing the effectiveness and reach of TOD 

developments.  

It is critical to direct the building of sites throughout numerous surrounding circles. 

Instead of concentrating just on the local area, a more global and comprehensive 

understanding of the influence of TOD on neighboring sites should be reached. As a 

result, there is a need for research that explores the impact of the built environment on 

TOD ridership across broader geographic areas, encompassing larger scales. Different 

catchment areas of multiple radii in 500m, 1000m, and 2000m are constructed in this 

study to reveal the impact of land use on TOD ridership. 

2.2 The relationship shifts from linear to nonlinear 

Before machine learning was widely available, the majority of existing empirical 

studies adopted simple regression models such as least squares, structural equation 

modeling, and geographically weighted regression to fit the direct or indirect effects of 

land variables on TOD ridership (Estupiñán & Rodríguez, 2008; Sohn & Shim, 2010). 

Many previous studies explored the relationship between population density, 

residential/employment areas, land use, and TOD ridership. However, these studies only 
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assume a linear or log-linear correlation between these factors and TOD ridership, which 

may oversimplify the complex dynamics (Shao et al., 2020).  

More advanced modeling techniques are needed to capture and accurately represent 

the multifaceted factors influencing TOD ridership. Researchers can uncover and 

effectively model the intricate relationships and underlying factors that impact TOD 

ridership by employing sophisticated modeling approaches. For instance, research in 

Washington, USA, unveiled a positive correlation between job density and metro riding 

up to a specific threshold, while no further relationship once the threshold was exceeded. 

The marginal effect of land-use mixing is zero when the mixed-use index is too little or 

too large (Ding et al., 2019). These studies have revealed that certain variables may only 

significantly correlate with ridership once a specific threshold is surpassed. Furthermore, 

the interpretation of this non-linearity can vary depending on the specific independent 

variable being examined (Tao et al., 2020; Yang et al., 2021). 

Even more and more research on the impact of land use on TOD ridership shifting to 

more sophisticated non-linear models (Cheng et al., 2020; Wu et al., 2022), findings 

could not avoid the diverse effects of mixed land use across the various catchment areas, 

causing the MAUP. The effect of a specifically built environment variable on ridership 

may saturate or reduce up to a certain scale, and figuring out its effective range might 

offer more precise guidelines for land use planning for TOD (Ding et al., 2019; van Wee 

& Handy, 2016). 

Hence, when planners utilize land use policies to encourage transit usage, it is 

imperative to understand how different scopes of citizen activities contribute to TODs. 

The scopes of activities are not only limited to the different radiuses of catchment areas 

but also indicate different urban locations at the TOD station. Sites in well-developed 

regions and suburban areas will have different activity effects (Song et al., 2022). 

Therefore, in addition to delineating the radius of different catchment areas, it is equally 

necessary to delineate the categories of TODs. 

However, there needs to be more research examining the heterogeneous effects of 

mixed land use on different types of TODs and their corresponding catchment areas. 

Hence, our study first clustered the TOD stations using the K-means algorithm to address 

the above challenges. Subsequently, a more effective and interpretable non-linear model, 

LightGBM classification with SHAP values, is employed to construct accurate models 

capable of handling multiple classifications. The results of this study will add a more 

comprehensive and rigorous perspective to related studies. 

 

3 Material and methods 

3.1 Research area 

Shenzhen, positioned as one of the four central cities of the Guangdong-Hong Kong-

Macao Greater Bay Area, is the first and most significant special economic zone in China 

(Gu, Tang et al., 2024; Shao et al., 2020). It also secured the third position in the Walden 

Economics Institute’s 2021 ranking of the top 100 cities in China. 

Functioning as a national logistics hub and an international integrated transport hub, 

Shenzhen spans an area of 1,997.47 km2, encompassing ten districts. It benefits from a 

well-developed public transportation system (Yang et al., 2021). Notably, on December 

28, 2004, Shenzhen became the fifth city in mainland China to inaugurate a metro system 

by opening its first metro line. With a total length of 265 km, the Shenzhen metro system 

ranked fifth in China in terms of overall mileage in 2018. The network of metro lines 

accommodates a daily average passenger flow exceeding 5.1 million individuals, 



462 

 
462 JOURNAL OF TRANSPORT AND LAND USE 17.1 

contributing to a public transportation share of 48%. Consequently, the metro system has 

become a fundamental urban public transportation network component.  

Furthermore, the Shenzhen metro system incorporates substantial TOD principles, 

employing a mixed and intensive approach to station planning that fosters connectivity 

with surrounding neighborhoods and facilitates the city’s rapid and mature metro system 

expansion (Zhou & Yang, 2021). Thus, this study focuses on the Shenzhen Metro as of 

2018 and offers crucial insights for TOD construction, particularly in developing 

countries with medium-density urban environments.  

 

 

Figure 1. The location of Shenzhen and TOD metro stations 

Note: The circle of each metro station shown in this figure is a 500m radius. The actual land use is based on 

the map in GIS Pro. 

 

Figure 1 shows the geographical locations of the metro stations in Shenzhen. The 

study measures the average distances between two adjacent stations in the whole districts, 

the center districts (Futian, Luohu, and Nanshan), and the suburban districts (Baoan, 

Longgang, and Longhua) using GIS Pro, which are around 982m, 806m, and 1306m 

respectively. In addition to this, the minimum distance between the two sites is 354m, 

and the maximum distance is 2984m. The distance between adjacent stations also aided 

in selecting the radius for this study. 

3.2 Data collection and processing 

In this study, we primarily focus on analyzing various land use proportions while 

incorporating additional control variables, namely floor area ratio (FAR), mix land use 

index (MLU), and points of interest (POI). These variables are crucial in investigating the 

research objectives and understanding the relationship between land use patterns and 

other relevant factors. 
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The land use data in this study is derived from the China Basic Urban Land Use Type 

Map, which was researched and published by the Tsinghua University team (Gong et al., 

2020). This dataset provides a detailed map based on a unified urban land use standard 

(Table 1). It integrates various data sources, including 10m satellite images, 

OpenStreetMap, nighttime lights, and Tencent social big data from 2018. Machine 

learning techniques were employed to train the data outcomes using the input attributes 

(Gong et al., 2020). The dataset covers 6,808 plots (excluding roads) in Shenzhen. 

According to the dataset, in 2018, the impervious area in Shenzhen was 911.969 km2. 

The land use proportions were as follows: residential land accounted for 32.5% (296.25 

km2), commercial land accounted for 4.9% (44.86 km2), industrial land accounted for 

31.0% (282.86 km2), transportation land accounted for 1.2% (10.91 km2), and land for 

public administration and services accounted for 1.8% (16.86 km2). 

 
Table 1. Classification of urban land-use data 

 

Land use Descriptions 

Resident Houses and apartment buildings are places where people live. 

Business Buildings where people work, including office buildings, internet technology, e-commerce, media, etc. 

Commerce Houses and buildings for commercial retail, restaurants, lodging, and entertainment. 

Industry Land and buildings used for manufacturing, warehouse, mining, etc. 

Government Lands used for government, military, and public service agencies. 

Education Lands, including schools, universities, institutes, and ancillary facilities, are used for education and research. 

Health Lands are used for hospitals, disease prevention, and emergency services. 

Culture Lands are used for public sports and cultural services, including gyms, libraries, museums, and exhibition centers. 

Green Parks and green spaces are used for entertainment and environmental conservation. 

 

While the overall accuracy of the original dataset ranged from 61% to 80% (Gong et 

al., 2020), a random calibration process was conducted to verify the accuracy of the land 

use data in different regions of Shenzhen by comparing it with real satellite remote 

sensing images from the same year with the base map in GIS Pro. The results 

demonstrated that the overall data accuracy was sufficiently high, with parcel boundaries 

aligning with actual road planning and land classifications consistent with real land use 

functions. These findings confirm the suitability of the dataset for conducting high-

precision research in this study. Figure 2 also shows some sample mappings to illustrate 

the land use around the TOD stations in different locations of Shenzhen. 

Then, to more accurately capture the intensity of functional activities associated with 

specific land use types in three dimensions, we obtained the building roof vector dataset 

of Shenzhen City (Zhang et al., 2022). This dataset includes building footprints (𝐵𝐹) and 

building layers (𝐵𝐿) and was obtained from the National Qinghai-Tibet Plateau Scientific 

Data Center in China. By incorporating this dataset, we aim to enhance the 

characterization of functional activities within different land use types, focusing on their 

vertical dimension. 

𝑆𝐻 = ∑(𝐵𝐹𝑛 × 𝐵𝐿𝑛)

𝑛

𝑘=1

 （2-1） 
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where, 𝑆𝐻 denotes the total area of high-rise buildings in each catchment radius, 𝑛 

represents the number of each building, 𝐵𝐹 indicates the building footprints, and 𝐵𝐿 

signifies the building layers. 

Based on the above land use and architecture data, FAR and MLU are calculated in 

this study. FAR (Floor Area Ratio) is the ratio of the total floor area of buildings to the 

land area, reflecting the intensity of development and building density on a given land. 

MLU measures the diversity of land use structures and functions within a certain area. It 

can be obtained by calculating the proportion of different land use types and the 

information entropy (Lin et al., 2022). These indicators provide important information 

about land use patterns and diversity, helping researchers understand the characteristics 

and effects of land use. The calculation formula for FAR and MLU are as follows: 

𝐹𝐴𝑅𝑗 = 𝑆𝐻𝑗 𝐵𝐹𝑗⁄  （2-2） 

where 𝐹𝐴𝑅𝑗 represents the floor area ratio of the 𝑗 catchment area, 𝑆𝐻𝑗  represents the 

total floor area, and 𝐵𝐹𝑗 is the total floor print area in the catchment area. 

𝑀𝐿𝑈𝑗 = 1 − ∑ (𝑃𝑖 × 𝑙𝑜𝑔(𝑃𝑖))
𝑛

𝑖=1
 （2-3） 

where 𝑀𝐿𝑈𝑗  represents the mix land use index of the 𝑗 catchment area, 𝑃𝑖  represents 

the proportion of the 𝑖 land use type. 

 

 

Figure 2. Sample mappings of the land use around the TOD stations  

Note: The actual land use is based on the OSM base map in GIS Pro. 

 

Lastly, POI data reflects multiple functions’ overlay and mixing degrees on a specific 

land use category. It provides a more accurate reflection of the completeness of facilities 

on a particular land and is an important factor in attracting human flow. Therefore, we 

include it as a control variable in this study. The POI data used in this research is sourced 

from the OpenStreetMap website and represents the total number of POIs in Shenzhen in 

2018. It includes restaurants, leisure and entertainment venues, and cultural and sports 

facilities. The complete list of POI categories can be queried on the OpenStreetMap 

website. 
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Although POI classifications are consistent with land use classifications, POIs are the 

basic units of place function and focus on reflecting the density and diversity of socio-

economic activities. In comparison, land use data can be used to characterize the planned 

area related to building sites and plot ratios. Based on these differences, land use is the 

independent variable, and POI, FAR, and MLU are used as a control variable to analyze 

the effect of mixed land use on the TOD ridership. 

3.3 Metros ridership and catchment area definition 

With the advancement of urban metro transportation and the availability of various 

transportation big data, such as cab GPS data, shared bicycle data, metro card data, and 

bus data, these datasets have become essential for planning and research purposes. This 

study’s metro ridership data is derived from the Shenzhen Pass card data, publicly 

available on the Shenzhen government data open platform (https://opendata.sz.gov.cn/). 

The specific data used in this study covers the dates of September 1, 2018 (Saturday) and 

consists of a total of 875,296 metro ride records, with both passenger on- and off-

boarding records recorded. It reflects the overall ridership numbers at the metro stations, 

which gives a more holistic picture of the heat of activity on the metro and the differences 

in all-day traffic flow between metros. It is worth noting that on those specific dates, the 

metro system carried most of the city’s public transportation ridership. The data includes 

passenger IDs, ride dates, transaction values, and on- and off-boarding status. By 

conducting data cleaning and statistical processing of the on- and off-boarding stations, 

the ridership for each line station can be obtained. 

To assess the completeness and accuracy of the land use data, a comparison was made 

using the information provided by the data for the 165 Shenzhen metro stations, which 

serve as the focus of this study (Figure 1). The ArcGIS Pro platform created catchment 

areas with radii of 500m, 1000m, and 2000m around each metro station. The radius was 

chosen from previous studies on land use and TOD (Shao et al., 2020; Wang et al., 2022). 

Subsequently, the land use and building attributes were extracted and quantified within 

each catchment area. This process allows for a detailed analysis of the land use 

characteristics and patterns near the metro stations. 

3.4 Clustering analysis: The K-Means approach 

By cleaning and counting the metro data, we have a significant variation in ridership 

between different stations, and it is not ideal to directly make a regression of the 

relationship between ridership and land use. Therefore, it is necessary to classify the sites 

into different groups, which means that the stations with more similar ridership are in the 

same group, so the classification regression model can be used to explore the mixed land 

use effects on the ridership. 

Cluster analysis enables the classification of sample sets into classes in an 

unsupervised mode and discovers the characteristics of different classes. K-Means, one of 

the most commonly used methods in clustering, calculates the best class attribution based 

on the similarity of the distance between points, and the division principle is the 

minimization of samples within a group (Krishna & Narasimha Murty, 1999; Sinaga & 

Yang, 2020), as shown in the following equations: 

𝐶(𝑖) = 𝑎𝑟𝑔 min
𝑗

‖𝑥(𝑖) − 𝑢𝑗‖
2
 （2-4） 

𝑢𝑗 =
∑ 1{𝐶(𝑖) = 𝑗}𝑥(𝑖)𝑚

𝑖=1

∑ 1{𝐶(𝑖) = 𝑗}𝑚
𝑖=1

 （2-5） 
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where, 𝐶(𝑖) represents the closest one among a sample 𝑖 and 𝑘 classes, and the value 

of 𝐶(𝑖) is one of 1 to 𝑘. The center of mass 𝑢𝑗 represents our guess of the centroids of the 

samples belonging to the same class, and the clustering is considered converged if we 

repeat the iterations until the center of mass remains the same or changes very little. 

Besides, one crucial parameter that needs to be specified in K-Means is the number of 

clusters. The elbow method is utilized to determine the optimal number of clusters. This 

method involves plotting the within-cluster sum of squares (WCSS) against the number 

of clusters and identifying the point at which the change in WCSS starts to level off 

significantly (Sinaga & Yang, 2020). The number of clusters corresponding to this point 

is chosen as the classification criterion, ensuring a meaningful and informative 

classification of the metro stations. 

3.5 Regression and decoupling: LightGBM classification and SHAP value 

LightGBM classification, an integrated machine learning algorithm based on decision 

trees and gradient boosting, has demonstrated superior performance compared to artificial 

neural networks and traditional linear statistical models in terms of accuracy and 

generalization, especially when dealing with unstructured data in small and medium-

sized structured datasets (Ke et al., 2017). The underlying framework of LightGBM 

classification has been enhanced through system optimization and algorithm 

improvements, surpassing other popular machine learning regression models such as 

gradient boosting, random forest, and logistic regression in both execution speed and 

model performance. As a result, it has gained considerable attention in various data 

science domains (Memon et al., 2019). 

The development of eXplainable AI (XAI) has made machine learning and artificial 

intelligence models more interpretable, overcoming their black-box nature. One such 

XAI technique is Shapley Additive explanations (SHAP), which can model, interpret, and 

visualize complex processes (Gu, Wu et al., 2024). The Shapley value, a concept from 

game theory (Kuhn & Tucker, 2016), is a fundamental method for model interpretation. 

SHAP builds upon this concept and quantifies the contribution value of each feature in 

the model, considering the dimensions of individual observations (Štrumbelj & 

Kononenko, 2014). Therefore, this study applied the SHAP value to explain the 

LightGBM models. The equations are as follows: 

𝑆𝐻𝐴𝑃(𝑋𝑗) = ∑
𝑘!(𝑝−𝑘−1)!

𝑝!
(𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆))𝑆⊆𝑁∖{𝑗}       （2-6） 

𝑦̂𝑖 = 𝑦𝑏𝑎𝑠𝑒 + ∑ 𝑆𝐻𝐴𝑃(𝑥𝑗𝑖)𝑘
𝑖=1       （2-7） 

𝑆𝐻𝐴𝑃𝑔𝑙𝑜𝑏𝑎𝑙_𝑗 =
∑ |𝑆𝐻𝐴𝑃(𝑥𝑗𝑖)|𝑛

𝑖=1

𝑘
     （2-8） 

In equations, 𝑆𝐻𝐴𝑃(𝑋𝑗) denotes the SHAP value of the feature 𝑗, 𝑝 represents the 

total number of features, 𝑁 ∖ {𝑗} indicates a set of all possible combinations of features, 

excluding 𝑋𝑗, 𝑆 is a feature set in 𝑁 ∖ {𝑗}, 𝑓(𝑆) signifies the model prediction with 

features in 𝑆, and 𝑓(𝑆 ∪ {𝑗}) stands for the model prediction with features in 𝑆 plus 

feature 𝑋𝑗. Meanwhile, 𝑦̂𝑖 represents the model prediction value for the observation 𝑖, 

𝑦𝑏𝑎𝑠𝑒 denotes the mean value of the predictive value at other samples and 𝑆𝐻𝐴𝑃(𝑥𝑗𝑖) 

indicates the SHAP value of the 𝑗𝑡ℎ feature for 𝑖, reflecting the marginal contribution of 

the feature to the prediction. 
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4 Analysis results  

4.1 Clustering results for TOD metros 

We employed the elbow method to identify the optimal number of clusters to 

understand better how land use influences TOD passenger flow in various geographical 

locations. Subsequently, we applied the k-means clustering algorithm to analyze the 

passenger flow data for each subway station. This approach allows us to examine the 

specific impacts of land use in different geographical contexts on TOD ridership. 

To study the impact of land use in different geographical locations on TOD passenger 

flow, more specifically, after scaling the data and determining the optimal number of 

clusters based on the elbow plot (see Figure 3), we ran the k-means clustering algorithm 

with the passenger flow of each subway station.  

 

 

Figure 3. Elbow plot result, which was used to determine the best clustering group number  

 

As shown in Table 2, the algorithm clustered the TODs into three distinctive clusters, 

designated T1 to T3. The number and the percentage share of the TOD metro station in 

the three clusters are described in the table. Cluster T1 has the maximum share of the 

total station, 52.7%, while cluster T3 has the least share, 6%. 

 
Table 2. Classification of urban land-use data 

Cluster T1 T2 T3 

Number 87 68 10 

Share of TOD metro station 52.7% 41.2% 6% 

 

Figure 4 shows the spatial distribution of three types of metro stations after clustering. 

We found that cluster T1 is located in the center and south of the city, which are the 

places where the economy is more developed. Clusters T2 and T3 are spread on the edge 

of the city center and north of the city. Combined with Shenzhen’s specific urban status 

quo, cluster 1 is the more densely populated and developed area, followed by cluster 2, 

and cluster 3 is the more sparsely populated and undeveloped area. 
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Figure 4. Spatial distribution of three types of TOD metro stations in Shenzhen 

Note: The actual land use is based on the map in GIS Pro. 

4.2 Multicollinearity test for independent variables 

In this study, we used the Variance Inflation Factor (VIF) to assess the correlation and 

multicollinearity between independent variables. Typically, a VIF value greater than five 

or a high value (e.g., greater than 10) may indicate the presence of severe 

multicollinearity, signifying stronger collinearity among the independent variables. The 

VIF evaluation results for the three catchment areas are shown in Table 3, indicating that 

the 12 independent variables used in our analysis do not exhibit multicollinearity issues. 

This supports the subsequent regression analysis. 

 
Table 3. The VIF result of the multicollinearity test for twelve independent variables 

Variables R=500 R=1000 R=2000 

MLU 1.604 1.854 2.025 

Resident 1.623 1.675 2.106 

Business 1.729 1.61 2.542 

Commerce 1.300 1.232 1.524 

Industry 1.198 1.259 1.598 

Government 1.093 1.052 1.416 

Education 1.130 1.103 1.390 

Health 1.074 1.096 1.609 

Culture 1.182 1.228 1.329 

Green 1.166 1.098 1.210 

FAR 1.603 2.077 1.730 

POI 2.003 2.044 2.447 

4.3 Machine learning parameterization and fitting performance 

This study split the data into a training set (80%) and a test set (20%). The 

hyperparameters of the LightGBM classification models were determined using a 

systematic grid search method available in the Scikit-learn library of Python, based on the 

model’s performance evaluated on the validation set. 
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Furthermore, we used Accuracy, MAE (Mean Absolute Error), and RMSE (Root 

Mean Squared Error) to assess the predictive performance of the machine learning model. 

Accuracy is suitable for classification tasks, measuring the proportion of correctly 

classified samples in the predictions, as shown in Table 4. MSE calculates the average of 

the squared differences between the model’s predicted values and the true values. MAE 

computes the average of the absolute differences between the model’s predicted and true 

values, and it is more robust and less sensitive to outliers than MSE. RMSE calculates the 

square root of the mean squared error, providing a better measure of the differences 

between the predicted and true values while evaluating the magnitude of prediction 

errors. A higher accuracy and smaller values for MSE, MAE, and RMSE indicate better 

performance of the model.  

 
Table 4. The metrics of the three LightGBM classification models in different radii 

Radius Accuracy MAE RMSE 

 Training Testing Training Testing Training Testing 

500 0.884 0.736 0.015 0.394 0.123 0.674 

1000 0.885 0.615 0.015 0.515 0.123 0.759 

2000 0.892 0.645 0.008 0.455 0.087 0.674 

 

The detailed results are shown in Table 4. Due to the relatively small sample size and 

the relatively simple nature of the classification task in this study, considering various 

indicators comprehensively, there are no apparent signs of overfitting or underfitting. As 

a result, the fitting performance of the three models can be regarded as satisfactory. 

4.4 Global relative importance of land Uses in TOD Metros 

Figure 5 and Table 5 show the relative importance of the explanatory variables 

representing TOD metro ridership of LighGBM classification models when the 

catchment radius is 500, 1000, and 2000, respectively. 

 
Table 5. Comparing the global relative importance value in the model of different variables facilities on 

TOD ridership 

 

Variables R=500 R=1000 R=2000 

MLU 165 50 115 

Resident 237 156 78 

Business 65 73 89 

Commerce 72 103 133 

Industry 16 62 97 

Government 46 133 102 

Education 74 119 131 

Health 24 96 124 

Culture 106 81 102 

Green 79 137 127 

FAR 244 134 162 

POI 183 143 104 

 

A different trend was found in each catchment radius zone. In the R=500 catchment 

radius (Figure 5-a), the functional types contributing more to TOD ridership consist of 

FAR, resident, MLU, POI, and culture. In contrast, the factors contributing less to 
ridership include industry, health, and business. In the R=1000 catchment radius zone 

(Figure 5-b), the most important factors included the POI, residents, health, education, 
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and commerce, and the least important factors were culture and industry. Meanwhile, in 

the R=2000 catchment radius zone (Figure 5-c), TOD ridership is strongly influenced by 

health, MLU, commerce, business, and FAR. However, education and industry have less 

impact. This highlighted the essential role of different catchment radius zones in 

unraveling the TOD-metro ridership relationship and suggested that discussing the 

different catchment radius zone scenarios is necessary. 

Comparing the relative importance of factors affecting ridership at TOD subway 

stations with different catchment radius zones, it becomes evident that MLU (Mixed 

Land Use), FAR (Floor Area Ratio), and POI (Points of Interest) are influential factors 

that must not be overlooked in the study of ridership at TOD stations, with POI being 

particularly noteworthy. Surprisingly, residents and health play crucial roles as 

influencing factors among the various land use factors. Specifically, residents have a 

greater impact on the passenger flow of TOD sites with R=500 and 1000, while health 

significantly influences the passenger flow of TOD sites with R=1000 and 2000. 

 

 

 

Figure 5. The global relative importance of the explanation and control variables on TOD ridership, 

respectively. a) R=500, b) R=1000, and c) R=2000 
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4.5 Decoupling the nonlinear impact of land use on various TOD metros 

Although the importance of features in LightGBM can intuitively reflect the 

importance of features, it cannot measure how the features are related to the final 

prediction results. Thus, the SHAP value should be introduced to reflect the influence of 

the features in each sample and the positive and negative impact. The subsections analyze 

the SHAP values of different clusters at different radius catchment radii. 

In this study, we utilized the SHAP tool implemented through the SHAP module in 

Python to elucidate the dissimilarities among the clusters. By employing the SHAP tool, 

we produced a graphical representation called a “summary plot,” which effectively 

showcases the pivotal features and their respective influence on the prediction. The 

summary plot generated by the SHAP tool is presented in Figures 6 to 8. 

In the SHAP value summary plot, each feature is depicted by a horizontal bar, and the 

most important features will be on top.  The bar’s color gradient reflects the variable’s 

corresponding value or magnitude. Notably, blue represents a lower value, while red 
means a higher value. The direction of the SHAP value indicates the effectiveness of a 

feature’s value in characterizing the cluster. A positive (negative) SHAP value signifies a 

feature more (less) likely to contribute significantly to the cluster’s characterization. 

 

 

Figure 6. SHAP value for T1, T2, and T3 clusters in the R=500 catchment area 

 

When the catchment radius is set to 500, our analysis revealed a noteworthy 

observation: a higher proportion of the Culture land type exhibited a positive SHAP value 
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for the T1 type site (Figure 6-T1). Conversely, among the other influencing factors, the 

proportion of Commerce and Residents displayed relatively high negative SHAP values. 

This implies that the passenger flow within cluster T1 is more likely to increase with an 

augmented proportion of Culture land. In contrast, both Commerce and Resident 

proportions harm the passenger flow of cluster T1. 

Regarding T2 sites (Figure 6-T2), a similar pattern emerges, where the proportion of 

industry and health positively impacts the passenger flow within the T2 cluster. 

Conversely, the proportion of culture and residents negatively impacts this cluster’s 

passenger flow. Regarding T3 sites (Figure 6-T3), an intriguing shift is observed: the 

proportion of culture has emerged as the most influential factor in passenger flow. 

Surprisingly, a high value of culture land exhibits a negative SHAP value, indicating its 

adverse effect on passenger flow. Conversely, the high value of resident land type 

demonstrates a positive SHAP value, suggesting that an increase in this land type may 

positively enhance the passenger flow within the T3 cluster when R=500. Furthermore, 

education also positively impacts passenger flow in this context. 

When R=500, the control variables MLU, POI, and FAR emerge as significant factors 

influencing passengers. Simultaneously, the specific direction and magnitude of their 

influence on passenger flow will vary across different cluster types. The proportions of 

land uses such as culture, commerce, residential, industry, and health also play crucial 

roles in this variability, as their impact on passenger flow differs among the various 

clusters. 

 

 

Figure 7. SHAP value for T1, T2, and T3 clusters in the R=1000 catchment area 
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When the catchment radius zone is set to 1000, focusing on T1 sites (Figure 7-T1), 

among the land use factors, the proportion of government and education exhibits the most 

substantial impact on the passenger flow of TOD sites. However, it is important to note 

that their influence directions are opposite: while government proportion negatively 

affects passenger flow, education proportion positively impacts passenger flow. 

Additionally, the proportion of residents positively influences the passenger flow in this 

context. 

Regarding T2 sites (Figure 7-T2), the proportions of green and government have 

emerged as the two most significant factors. Notably, their high values are associated 

with negative SHAP values, indicating that the passenger flow of TOD sites is more 

likely to decrease with an increase in these two land types. Conversely, the high value of 

the Resident ratio exhibits a positive SHAP value, suggesting that its growth is more 

likely to enhance the passenger flow of the T2-type site. 

In the case of T3 sites (Figure 7-T3), the passenger flow of TOD sites may be 

positively influenced by the proportions of green, business, resident, and education land 

types. Increasing these land types will likely increase the site’s passenger flow. On the 

contrary, health-related land types harm the site’s traffic, potentially leading to decreased 

passenger flow. 

When R=1000, across the three different TOD sites, special attention should be given 

to the land types of government and green. Government land type has a relatively 

significant negative impact on the passenger flow of T1 and T2 sites. In contrast, green 

land type exhibits a substantial negative effect on T2 TOD sites and a noteworthy 

positive impact on T3 TOD sites. These findings underscore the importance of carefully 

considering the influences of government and green lands in the context of varying  

TOD sites. 
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Figure 8. SHAP value for T1, T2, and T3 clusters in the R=2000 catchment area 

 

When the catchment radius is set to 2000, focusing on T1 stations (Figure 8-T1), the 

proportions of commerce, culture, and business positively influence the passenger flow of 

TOD subway stations. Conversely, the proportion of industry hurts the passenger flow of 

the station. Hence, an increase in commerce, culture, and business land types is likely to 

enhance the passenger flow, while a higher proportion of industrial land types may lead 

to a decrease in passenger flow for the T1 station. 

Regarding T2 sites (Figure. 8-T2), the proportions of green, government, resident, and 

education are the key land type factors that significantly influence their passenger flow. 

Among these factors, the proportions of green, government, and education hurt the 

passenger flow of the TOD site. In contrast, the proportion of residents has a positive 

effect on the passenger flow of the site. Therefore, increasing the proportions of green, 

government, and education land types may decrease passenger flow, whereas increasing 

the proportion of resident land types is likely to improve passenger flow for T2 sites. 

Concerning T3 sites (Figure. 8-T3), residents, health, business, and government are 

the primary factors influencing passenger flow among the various land use types. 

Specifically, resident, business, and government land types negatively impact TOD site 

passenger flow, while the health land type positively affects TOD site passenger flow. 

Consequently, an increase in resident, business, and government land types may decrease 

passenger flow, whereas an increase in healthy land types will likely lead to a rise in 

passenger flow for T3 sites. 
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When R=2000m, the impact of land type factors on the passenger flow of different 

TOD stations varies significantly. Therefore, a case-by-case analysis is essential to 

discern the specific influential factors for each station accurately. It is crucial to assess 

and evaluate each TOD station individually to accurately understand the unique interplay 

of land type factors and their effects on passenger flow. 

 

5 Discussions 

5.1 Land management and policy planning response 

Transit-Oriented Development (TOD) plays a pivotal role in urban planning and 

design, especially as the city experiences rapid expansion in construction land, resulting 

in land constraints. Achieving a well-balanced and integrated land use layout becomes a 

prerequisite for effective urban management and policy planning. This study delves into 

the impact of various land uses on ridership within three TOD catchment areas, 

considering real conditions and planning in the city. The results of this study are not only 

applicable to Shenzhen but also have great significance for other cities with similar 

construction backgrounds and development levels: 

Firstly, the existing TOD planning needs comprehensive strategies for different 

catchment areas. As indicated in the results, catchment areas with different radii exhibit 

varying impacts on travel flow, in line with previous findings (Jun et al., 2015; Li, Zhao 

et al., 2020). It is suggested that many cities should adopt an approach to expanding 

service radii in their urban planning. Specifically, emphasis should be placed on the 

impacts of smaller radii land use in the city center and densely populated areas where 

TOD stations are concentrated. Conversely, in non-central and less populated areas, the 

primary focus should be on the impacts of larger radii area. 

From this planning perspective, we advocate for customized strategies based on 

different geographical locations and station types. City managers should strive for precise 

alignment in TOD planning, ensuring station planning aligns with real demand. In-depth 

analyses of traffic flow data, population density, and employment distribution can better 

inform station locations and densities, preventing issues of under-planning or excessive 

station density. In particular, stations like the T1 cluster should facilitate more commerce 

and business land, which consistent with many small-scale studies using non-linear 

models (Shao et al., 2020; Xiao et al., 2021; Yang et al., 2021). Then, stations of the T2 

cluster need more facilities related to residents’ living, while the T3 stations will have 

more ridership by constructing more resident land near the stations. 

Furthermore, TOD projects should actively encourage policies promoting mixed-use 

development. Results indicate that, in smaller or larger radii, Mixed Land Use (MLU) is 

the most significant influencing factor on passenger volume, particularly with a 

pronounced positive impact in smaller radii. This results also similar with relevant small-

scale studies using non-linear models (Shao et al., 2020; Xiao et al., 2021). This finding 

aligns with the majority of TOD research, demonstrating that the organic integration of 

different land uses, such as industrial, residential, commercial centers, and cultural 

facilities, attracts diverse groups to use public transportation (Niu et al., 2019; Shao et al., 

2020; Su et al., 2022). Mixed-use development enhances vibrancy around TOD stations, 

increases passenger flow, and optimizes the transportation network. 

Moreover, city transportation planning should prioritize optimizing transport facilities 

and services at TOD stations to enhance the connection between stations and surrounding 

areas (Taki et al., 2017). This study found that residential neighborhoods remain a 

significant source of passenger volume in small catchment areas of TOD, followed by 

commercial areas and industrial parks (Li, Zhao et al., 2020). As the catchment area 
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radius increases, the importance of green spaces and administrative districts becomes 

more prominent. This suggests that the current connectivity of TOD with more distant 

functional spaces in the city needs to be sufficiently robust. Therefore, in addition to 

considering mixed land use, attention should also be given to station entrances and exits, 

transfer passages, bicycle parking areas, and other measures to improve station services 

and enhance passengers’ travel experience. 

Lastly, the results also show that the catchment areas of TOD should strategically plan 

for residents’ travel needs and provide health and education facilities. Data analysis 

reveals that health and education facilities significantly contribute to TOD passenger 

flow, particularly in the city center and densely populated areas. Hence, Shenzhen should 

meticulously consider the travel demands of surrounding residents, ensuring adequate 

health services coverage to enhance the service quality of TOD stations and contribute to 

developing residential living circles. 

The comprehensive findings of this study, analyzing the influence of land use on TOD 

ridership from various perspectives, provide valuable insights into the significance of 

land planning and mixed land use. Moreover, these results guide the city government in 

formulating scientifically driven transportation planning policies for the future. 

5.2 Limitations and perspectives 

This study delves into the impacts of urban land use on TOD ridership in various 

catchment areas within the highly developed city of Shenzhen. While we address the 

previous research limitations related to nonlinear model construction and multi-scale 

analysis, contributing to a more comprehensive understanding of Shenzhen’s land use-

TOD ridership relationship, it is crucial to acknowledge certain limitations that 

necessitate further investigation. 

Our analysis focuses on the impacts of urban land use on TOD ridership, specifically 

in one city’s subway station cases. The findings are highly relevant to medium-developed 

cities in China, offering a valuable supplement to current global TOD research. However, 

other researchers should conduct cross-sectional comparison studies across multiple cities 

for more generalized conclusions. Additionally, our study employs state-of-the-art 

LightGBM models for nonlinear modeling, using the model’s rankings as a reference for 

various catchment planning. Nevertheless, there is room for improvement by 

incorporating additional metrics to elucidate further the effects of mixed land use on 

TOD ridership. For example, an in-depth discussion on how the mixed-use developments 

in a building can be categorized or combined can more detailly assist the design and 

planning at the micro-level. 

Furthermore, while this research enhances understanding of the non-linear effects of 

land use on ridership and pedestrian flow in future TOD studies and planning, extending 

beyond a single small-scale study, it is essential to recognize the study’s limitations. 

Despite the extensive use of data and interpretable machine learning methods, the 

findings are constrained by specific datasets and contexts. In particular, limited by data 

availability, this study could not use data from working days for further research analysis. 

Hence, comparing the differences in impacts that vary between weekdays and weekends 

is also meaningful. 

 

6 Conclusions 

This study seeks to identify the non-linear relationship between built environment 

features and ridership to optimize the TOD land-use pattern. To achieve this, three 

LightGBM classification models are applied to analyze three catchment areas, and the 
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SHAP value is used to decouple the mixed land use pattern within multiple urban TOD 

catchment radii. The primary conclusions drawn are as follows: 

 

1) While residential and health land consistently rank highly, their significance 

varies slightly across buffer radius zones. As the radius increases, the land use 

type that contributes the least to ridership shifts from industry to education. 

Therefore, the land uses that significantly impact TOD ridership growth are 

residential, health, and industrial, while educational, green, cultural, and 

government land uses do not play a significant role in driving ridership growth. 

2) Based on the outcomes of the machine learning model, it is evident that the 

contribution of various influencing factors to TOD passenger flow varies 

depending on the catchment radius. This observation highlights the significance 

of the catchment areas in controlling research results, emphasizing the need for 

classification and detailed analysis in our study. 

3) Different types of TOD stations exhibit varying effects of land use on passenger 

flow at different buffer radii. For T1-type subway stations, commerce hurts TOD 

passenger flow in smaller buffer zones, but it positively impacts larger buffer 

zones. As for T2 sites, industry and health are more important when the buffer is 

small (500), while the significance of government increases as the buffer zone 

expands. Meanwhile, for T3 subway stations, residential land use consistently 

plays a crucial role in the passenger flow of the station, regardless of the buffer 

radius. 

In summary, during the urbanization process, the government should carefully 

consider the impact of land uses on ridership at both small and large catchment radii. A 

comprehensive allocation of land use functions based on the varying human flow from 

different land areas is essential. Additionally, efforts should be made to enhance the 

efficiency of mixed land-use sites. These conclusions provide critical guidance for urban 

planners and policymakers in developing and implementing effective TOD strategies that 

align with the complex interplay between land use and transportation patterns. 

Additionally, the study sets the stage for further research in exploring the potential of 

nonlinear modeling and multi-scale analysis in TOD studies across different cities and 

regions. 
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