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Land Use-Transport Interaction Modelling: A Review of the 

Literature and Future Research Directions 

 

Abstract 
The aim of this review paper is to provide a comprehensive and up-to-date material for both 

researchers and professionals interested in Land-use-Transport Interaction (LUTI) modelling. 

The paper brings together some 60 years of published research on the subject. The review 

discusses the dominant theoretical and conceptual propositions underpinning research in the 

field, the existing operational LUTI modelling frameworks as well as the modelling 

methodologies that have been applied over the years. On the basis of these, the paper 

discusses the challenges, on-going progress and future research directions around the 

following thematic areas; [1] the challenges imposed by disaggregation—data availability, 

computation time, stochastic variation and output uncertainty; [2] the challenges of and 

progress in integrating activity-based travel demand models into LUTI Models; [3] the quest 

for a satisfactory measure of accessibility and ; [4] progress and challenges towards integrating 

the environment into LUTI Models.  

 
Key Words: Land-use, Transportation, Four-step Model, Activity-based Approach, Micro-Simulation, 

Stochasticity, Uncertainty 

 

1. Introduction  

Following the pioneering work of Hansen (1959) in Washington DC which established that 

trip and location decisions co-determine each other, the notion that land-use and 

transportation interact with each other has been widely recognised and extensively studied.  

Over the past 60 years, considerable amount of cross-disciplinary research and professional 

collaborations have focused on understanding, integrating and predicting households’ 

residential and job location choice, the associated daily activity-travel patterns as well as 

transport mode and route choice. These research efforts have culminated in the development 

of state-of-the-art operational LUTI models as decision support systems for  assessing the 

impacts of land-use decisions on transportation and vice versa, as well as evaluating large scale 

transportation investments. 
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The aim of this paper is to provide a comprehensive review of progress in LUTI research to 

date.  Before proceeding, it is worth mentioning that a number of review papers have been 

published on the subject over the last decade (e.g. Badoe and Miller, 2000; Timmermans, 2003; 

Wegener, 2004; Hunt et al., 2005; Chang, 2006; Iacono et al., 2008; Silva and Wu, 2012). These 

review papers focused on existing operational modelling frameworks, the challenges as of the 

time and the steps that were being taken to address them. The current paper builds on the 

existing reviews.  It begins with a discussion of the dominants theories that are being applied 

in LUTI research. This is followed with a discussion of the nature of the link between land-

use and transportation both conceptually and from existing empirical research. Under section 

three, the two main travel demand modelling approaches (i.e. the four-step approach and 

activity-based approach) are discussed highlighting their fundamental differences and 

similarities as well as their relative strengths and limitations. The penultimate section provides 

an overview of the state-of-the-art operational LUTI modelling frameworks, focusing on their 

structure, the modelling methodologies, and the geography of application of these models. 

On the basis of these, the current challenges, on-going progress and the areas needing further 

research are outlined and discussed. 

 

2. The Theoretical Context 

The field of LUTI research is eclectic, drawing on theoretical and conceptual propositions 

from a wide range of disciplines including Economics, Geography, Psychology and Complexity 

Science.  On a more aggregate level of analysis, classical urban micro-economic theories of 

Alonso (1964), Ricardo (1821), Von Thunen (1826) and Wingo (1961), among others, provide 

the standard reference point to understanding the relationship between land-use and 

transportation. Adopting a deterministic analytical approach and simplifying assumptions 

including monocentricity, spatial homogeneity and rationality, urban economic theory posits 
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that transport cost, a function of travel distance, has profound impact on the location of 

activities and the overall optimum emergent structure of cities. Grounded in micro-economic 

theory, they enjoy sound theoretical basis and offer a robust framework for qualitative analysis 

of the relationship between location and transport (Barrade la Barra, 1989; Waddell, 1997). 

However, as  Barrade la Barra (1989) notes, the applied fields of transportation and urban 

modelling have remained largely apart from urban economic theory due partly to the 

restrictions imposed by tradition of econometrics and the inability of such models to capture 

the richness of urban and regional geography. 

 

Out of the quest for a practical approach to modelling LUTI emerged the Gravity/Spatial 

Interaction (SI) approach in the 1960s. Popularised by Lowry (1964) in his model of the 

Metropolis developed for the City of Pittsburgh, the SI approach came from the theory of 

social physics, grounded in the Newtonian concept of gravity and empirical analysis of human 

spatial interaction behaviour. The basic Lowry Gravity model states that, the interaction 

between any two zones is proportional to the number of activities in each zone, and inversely 

proportional to the friction impeding movement between them. Despite the simplicity and 

tractability of Lowry’s Gravity approach, it lacked any solid theoretical foundation (Berechman 

and Small, 1988; Waddell, 1997). Wilson (1970), drew on the concept of entropy 

maximization to provide a general theoretical framework for the SI approach.  Entropy refers 

to the degree of disorder in a system, which in the context of LUTI modelling results from 

the relative location of workers, jobs and housing in the city (Barrade la Barra, 1989). Within 

the framework of entropy maximization, the amount of interaction between activity zones 

can be worked out as a doubly-constrained, origin-constrained, destination-constrained or an 

unconstrained matrix model. 
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From the 1970s onwards, McFadden’s (1973) Random Utility Theory (RUT) gained 

prominence in LUTI modelling.  At the time, there was the need for a robust framework that 

could capture the complex choice behaviour dynamics involved in land-use and transport 

decisions at the individual level, whilst overcoming the weak assumptions and misspecification 

errors inherent in aggregate spatial interaction and urban economic models. This led to the 

development of utility-based models in which choices between alternatives are predicted as a 

function of attributes of the alternatives, subject to probabilistic variations in the knowledge, 

perceptions, taste, preferences, and socio-economic characteristics inter alia of decision 

makers. The adoption of utility theory allowed for the development of new generation of 

models based on the study of disaggregate behaviour (Iacono et al., 2008). Contrary to gravity-

based models, utility-based models are able to effectively address locational characteristics 

using a bundle of locational attributes, with each element in the bundle reflecting a distinct 

feature of the location, and a random component representing the unobserved characteristics 

of a location (Chang, 2006).  Despite enjoying sound theoretical foundation, utility-based LUTI 

models have been criticized for their inability to explicitly capture the underlying decision 

processes and behavioural mechanisms that result in observed location-travel decisions 

(Ettema 1996; Fox, 1995; Pinjari and Bhat, 2011).   

 

Classical uUtility theory is also grounded in unrealistic assumptions ofalso assumes rationality 

and perfect information in choice decisions. However, within the transportation and activity 

system, decision-makers face conditions of uncertainty for example, in choosing departure 

times, activities, destinations, transport modes and routes (Rasouli and Timmermans, 2014a). 

On the basis of these limitations imposed by utility theory, current research have begun to 

draw on a number of theories focusing on decision making under uncertainty. Decision making 

under uncertainty is viewed as choice between gambles or lotteries (Tversky, 1975). Thus, in 
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contrast to classic utility models, in decision making under uncertainty, the characterization 

of the choice alternatives is captured in terms of probability distributions; individuals are 

therefore not sure about the exact state of the choice alternative or about the outcome of 

their decisions (Rasouli and Timmermans, 2014a). A survey through the literature shows 

three standard theories of decision making under conditions of uncertainty being applied to 

transportation research. These are Expected Utility theory (Daniel Bernoulli, 1738; von 

Neumann and Morgenstern, 1944; Savage, 1954), Prospect theory (Kahneman and Tversky, 

1979) and Regret theory (DavidBell, 1982; Fishburn, 1982; Loomes and Sugden, 1982, 1987). 

Expected Utility theory (EUT) was formulated in the 18th century by Daniel Bernoulli (1738) 

and further developed by von Neumann and Morgenstern (1944) and Savage (1954) as a 

descriptive model of economic behaviour.  The foundational contribution of Bernoulli is linked 

to the so-called St. Petersburg paradox—the puzzle surrounding what price a reasonable 

person should be prepared to pay to enter a gamble, a game of infinite mathematical 

expectation, consisting of flipping a coin as many times as is necessary to obtain ‘heads’ for 

the first time. EUT states that the decision maker chooses between risky or uncertain 

prospects by comparing their expected utility values—the weighted sums obtained by adding 

the utility values of outcomes multiplied by their respective probabilities (Mongin, 1997). 

Critical evaluation of the limitations of EUT and efforts devoted towards developing 

alternatives to EUT can be found in Starmer (2000) and Kahneman and Tversky (1979). 

On the basis of several classes of choice problems associated with EUT as a valid descriptive 

theory of human choice behaviour, Kahneman and Tversky (1979) formulated the Prospect 

Theory (PT). The key principle underpinning the theory is that decisions are made based on 

the potential value of loss and gains rather than the final outcomes. These losses and gains are 

evaluated using heuristics. Proponents posit a two-stage decision making process. The first 

http://en.wikipedia.org/wiki/Heuristics_in_judgment_and_decision_making
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stage involves the use of various decisions to frame possible outcomes in terms of gains and 

losses, relative to some neutral reference point whilst the second stage involves evaluation of 

the outcomes of each alternative according to some value function and transforms objective 

probabilities into subjective probabilities (Rasouli and Timmermans, 2014a).  

An extension to PT is heuristic decision/bounded rationality theory (Simon, 1955, 1957, 2000; 

Tversky, 1969). Taking their roots from social psychology and behavioural economics, 

proponents argue that decisions are made on subsets of factors, affected by perpetual 

cognitive biases, uncertainty and information asymmetry, and do not necessarily result in 

optimal choices (Payne et al., 1993; Innocenti et al., 2013; Zhu and Timmermans, 2010). Leong 

and Hensher (2012) in their review, identified four types of heuristics strategies employed by 

individuals in their choice behaviour namely; satisficing, lexicography; elimination-by-aspects 

and majority of confirming dimensions. Few research in the area of transportation and location 

choice have however, applied these heuristic strategies in understanding choice behaviour 

(e.g. Arentze, et al., 2000; Foerster, 1979; Innocenti et al., 2013; Recker and Golob, 1979; 

Young, 1984; Zhu and Timmermans, 2010). This perhaps, is due to the difficulty in 

operationalising the principles of heuristics compared to utility maximization theory. 

 

Regret theory (RT) is attributed to seminal works of DavidBell (1982), Fishburn (1982) and 

Loomes and Sugden (1982, 1987). The theory is grounded in “the notion that individuals’ 

utility of choosing an alternative is not only based on the anticipated payoff of each individual 

choice alternative across different states of the world, but also on anticipated payoff of the 

other alternative” (Rasouli and Timmermans, 2014a p8). Thus, RT focuses on the opportunity 

loss in decision making—the difference between actual payoff and the payoff that would have 

been obtained if a different course of action had been chosen.  
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Another relevant behaviourally focused theory, from the psychology literature is Theory of 

Planned Behaviour (TPB) proposed by Ajzen (1985, 1987).  The central claim of TPB is that 

intentions are the motivational factors that influence  behaviour and that behaviour in turn,  

can  be  predicted  with  high accuracy  from  attitudes  toward  the behaviour,  subjective  

norms,  and perceived  behavioural  control (Ajzen, 1991). Proponents further posit that these 

components of behaviour are determined by behavioural beliefs, normative beliefs and control 

beliefs; and that changes in these beliefs should lead to behaviour change (Heath and Gifford, 

2003).  The most recent land-use and transport related research that have adopted TBP 

include the works of Bamberg and colleagues (2003), De Bruijn et al. (2009) , Haustein and 

Hunecke (2007), Heath and Gifford (2000) and Wu and Silva (2014). 

 

An equally important theoretical tradition relevant for LUTI modelling is the Time-Geography 

paradigm attributed to the original work of Hägerstrand (1970) and Chapin (1974). The time-

geography paradigm posits that spatial interaction occurs within a framework of spatio-

temporal constraints which necessitates trading of time for space (Miller and Bridwell, 2005; 

Peters et al., 2010).  Conceptually, time-geography theory uses a space-time prism to analyse 

the envelope of possibilities open to an individual, subject to a number of spatio-temporal 

constraints. Crease and Reichenbacher (2013) and Miller (2004) identified three main spatio-

temporal constraints of spatial interaction namely; Capability constraints- the ability or 

otherwise of an individual to overcome space in time. Coupling constraints- arising  from the 

need to undertake certain activities with other people for given durations; Authority constraints- 

resulting from common social, political, cultural and legal rules as well as exclusionary 

mechanisms that restricts an individual’s physical presence at a location. Although 

Hagertrand’s time-geography paradigm is conceptually simple, modelling activity-travel 
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behaviour using the framework in practice, is difficult and complex (Ben-Akiva and Bowman, 

1998; McNally, 2000). 

Complexity theory and general systems theory (Bertalanffy von Bertalanffy , 1950; Boulding, 

1956; Forrester, 1993) have also gained recognition in the field of urban and regional planning 

in general and LUTI modelling in particular. As a contemporary embodiment of general 

systems theory (Batty 2007), complexity theory provides the framework to think about cities 

as complex adaptive systems with several interacting components that manifest perpetual 

disequilibrium (Albeverio, 2008; Batty, 2007; Christensen, 1999). Applied in the context of 

LUTI modelling, complexity theory can provide a robust framework to study the path-

dependent and emergent behavioural outcomes of urban actors as well as the dynamic 

feedback relationship between the land-use and transportation systems.  On-going efforts to 

develop computer simulation models, including agent-based approaches in order to capture 

complex interactions of linked responses that lead to a co-evolution of urban structure with 

transportation infrastructure are grounded in systems and complexity theory (Albeverio, 

2008; Batty, 2007; Samet, 2013). 

 

In sum, research over the past six decades have drawn on a number of theories that can be 

applied either at an aggregate or disaggregate levels of understanding decision-making 

behaviour. Figure 1 provides a summary of the link between the levels of (dis)aggregation at 

which these theories are meant to be applied, and the varying degrees of complexity involved 

in operationalizing them. Urban economics theory and Entropy-based gravity models allow 

for macro-level analysis using simple and tractable mathematical models and therefore impose 

relatively low and moderate levels of complexity in operational modelling respectively.   
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Classical utility theory and theories of decision-making under uncertainty both focus on the 

micro/individual level of analysis. These theories are operationalized using mathematical 

formulations of mainly logistic regression models that vary in their complexity but are 

reasonably parsimonious and tractable. The last family of theories—the time geography 

paradigm, the social psychological theories and complexity theory also focus onare applied at 

both the macro and micro- levels of analysis, but require relatively highly complex 

formulations in their operationalization. The time-geography paradigm for example, imposes 

high level of complexity and combinatorial challenges. Heuristic/bounded rationality theory 

and the theory of planned behaviour are social cognitive models that can be operationalized 

but with very abstract and subjective psychological constructs using complex statistical 

methods such as Structural Equation Modellings (SEM). 

 

3. The Land-use-Transport Nexus: A Complex Two-way Dynamic 

Process 

A number of conceptual propositions have contributed to understanding the nature of the 

link between land-use and transportation. The ‘land-use transport feedback cycle’ (Wegener, 

2004), offers one of the simple, yet insightful frameworks for conceptualising the complex 
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Figure 1: Level of aggregation and degree of complexity involved in operationalizing theories 
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two-way dynamic link between the land-use system and transportation system. According to 

this framework, the distribution of land-use determines the location of activities. The need 

for interaction, arises as a consequence of the spatial separation between the land-use 

activities. The transport system creates opportunities for interaction or mobility which can 

be measured as accessibility. The distribution of accessibility in space, over time, co-

determines location decisions and so results in changes in the land-use system. 

 

In addition to the land-use transport feedback cycle, the 'Brotchie Triangle' (Brotchie, 1984) 

has been useful in conceptualizing the land-use-transport symbioses. The framework shows 

the relationship between spatial structure/dispersal (e.g. degree of decentralisation of working 

places) and spatial interaction as some measure of total travel (e.g. average trip length or 

travel time).  Thus, the 'Brotchie Triangle' represents the universe of possible constellations 

of spatial interaction and spatial structure (Lundqvist, 2003). It allows various hypothetical 

combinations of spatial structure and their mobility implications, starting from a monocentric 

structure in which there is zero dispersion of jobs, to highly decentralized urban structures 

in which all jobs are as dispersed as population. 

 

Despite the recognition that land-use interact with transportation, at least at the conceptual 

level, the mechanisms through which the systems impact each other have been difficult to 

isolate and measured empirically. This is because of the complex interaction among the several 

forces of physical, socio-demographic, economic and policy changes underlying the observed 

structure of the land-use and transport systems (Lundqvist, 2003; Wegener, 2004). The term 

land-use, for example encapsulate a variety of subsystems such as residence, workplace, and 

physical infrastructure as well as the outcome of complex urban market process (Mackett, 

1993). Consequently, the underlying processes of change in the overall urban environment is 

difficult to track and much more complex to disentangle in both space and time. 
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Furthermore, there appears to be little consensus in the literature, on the causal mechanisms 

by which urban form influences travel and vice versa. Some studies have concluded that urban 

structural variables (i.e. density, diversity, design, destination accessibility and distance to 

transit) have statistically significant influence on travel behaviour (e.g. Aditjandra et al., 2013; 

Grunfelder and Nielsen, 2012; Gim, 2013; Handy et al, 2005; Meurs and Haaijer, 2001; Næss, 

2013). Other studies have however, reported marginal or weak causal link between 

commuting behaviour and urban form (e.g. Cevero and Landis, 1997; Chowdhury et al., 2013; 

Nelson and Sanchez, 1997). Despite the on-going intellectual debate, the fundamental principle 

that land-use impacts transport and vice versa, is acknowledged by many scholars and 

supported by empirical findings from different contexts.  

 

The rest of this section discusses the key components that have constituted the focus of LUTI 

research and operational model development based on a conceptual framework shown in 

figure 2.  This is followed by a brief discussion of the pertinent issues under each of the 

components. 

 
Figure 2: A conceptual model showing the components the land-use-transport system 
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3.1. The Land-use Component:  Residential-Job Location Interdependencies  

The land-use component comprises all activity locations—residential, employment and 

ancillary activities such as shopping, schools and recreation.  A key focus area of LUTI research 

has been to understand long term choice behaviour of households with regards to housing 

(re)location and job (re)location, and the interdependency between them. Residential location 

is considered a long-term choice that directly impacts spatial structure and defines the set of 

activity-travel environment attributes available to a household or individual (Pinjari et al., 

2011). Combined with employment location, the two location choice sets, provide the spatial 

anchor to understanding commuting possibilities as well as the commuting implications of 

urban spatial structure over time (Yang and Ferreira, 2008). 

 

According to classical utility maximization theory, people will select the most accessible 

residential locations to their workplaces in order to minimize commute costs, all things being 

equal. Grounded in monocentric urban economic models, access-space-trade-off models 

assume that workplace choice is predetermined or exogenous to residential location choice 

(Waddell, 1993; Waddell et. al, 2007). Although in many urban models all employment is 

endogenous, the  The residential location component of a number ofsome operational LUTI 

models are based on the classical exogenous workplace assumption (e.g. DRAM/EMPAL, 

CATLAS METROSIM, TRANUS, MEPLAN and UrbanSim). These models, with the exception 

of, UrbanSim, also assume only one-worker household in their analysis (Waddell et al., 2007). 

Residential (re)location choice is influenced by several factors. These include housing type, 

traffic noise levels municipal taxes or rent levels (Hunt, 2010), transport times and costs, 

density of development, access to high quality schools and developments in small towns/rural 

areas (Pagliara et al., 2010). Other factors identified in the literature are the degree of 
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commercial or mixed land uses in an area, incomes, neighbourhood composition (Pinjari et al, 

2011), social networks (Tilahun and Levinson, 2013) and the evolution of household 

membership and family structures over time (Habib et al.,  2011; Lee and Waddell, 2010). 

 

More recent empirical works (e.g. Boschmann, 2011; Habib et al., 2001; Kim et al., 2005; Pinjari 

et al.,  2011; Tilahun and Levinson, 2013; Waddell et al., 2007) have however established that 

initial residential and job location choices as well as subsequent housing and job mobility 

decisions are jointly determined. Existing and new operational models will need to 

incorporate these newly emerging empirical evidence in order to realistically model housing 

and job location choice, and for improved travel demand forecasting.  Adopting a joint 

approach however presents the challenge of multi-dimensionality—a difficult analytical 

problem of modelling interdependence due to the many possible choice sets (Waddell et al., 

2007). Besides using joint logit or sequential ordering methods, a novel latent structure 

approach has been adopted by Waddell and Colleagues (2007) to address the dimensionality 

problem associated with modelling job-housing location choice interdependency without 

imposing a structure on the decision process a priori.  

 

Further research is also needed in different contexts to better understand the effects of life 

course events and changes in individual and household circumstances on job-housing location 

choice, the influence of households’ most recent residence on evaluating future location 

choice as well as the job-housing location choice interdependence among multiple worker 

households (Lee and Waddell, 2010; Waddell et al., 2007). 

 

 

3.2. The Transport Component: Modelling Approaches and Limitations 

Formatted: Space After:  8 pt, Line spacing:  Double
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The transport component of LUTI models, as shown in figure 2, focuses on understanding 

travel behaviour as a basis for predicting and managing travel demand. The key issues of 

concern therefore include trip origin and destination, transport mode choice, vehicle 

ownership and trip scheduling/sequencing behaviour. As shown in the conceptual framework, 

these attributes of travel demand are influenced by spatial structure as well as socio-

demographic factors. Travel behaviour and the associated transport infrastructure in turn, 

poses environmental impacts through greenhouse gas emission, noise generation, effects on 

air quality, landscape and water resources. 

Two main approaches to modelling travel demand can be found in the literature. These are 

the four-step, trip-based travel demand modelling approach and the activity-based modelling 

approach. The key features, strengths and limitations of these two approaches are discussed 

in the sections that follow. 

 

3.2.1The Four-step Transport Demand Model 

Gaining prominence from the 1950s, the four-step travel demand model (FSM) has become 

the traditional tool for forecasting demand and evaluating performance of transportation 

systems and large scale transport infrastructure projects (McNally, 2000). The typical FSM 

consists of four distinct steps of trip generation, trip distribution, modal split and route assignment. 

Each step is intended to capture intuitively reasonable questions relating to: how many travels 

movements are made, where they will go, by what mode the travel will be carried out and 

what route will be taken based on aggregate cross-sectional data (Bates, 2000). Travel is 

modelled using trips as the unit of analysis based on origin-destination (O-D) survey.  The 

spatial unit within which trips occur is represented as a number of aggregate Traffic Analysis 

zones (TAZ) defined based on socio-economic, demographic, and land-use characteristics 

(Bhat and Koppelman, 1999; Fox, 1995; Martinez et al., 2007).   
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Trip generation measures the frequency of trips based on trip ends of production and attraction 

to estimate the propensity and magnitude of travel. At the trip distribution stage, trip 

productions are distributed to match the trip attractions and to reflect underlying travel 

impedance (i.e. time/cost), yielding trip tables of person-trip demands. The relative 

proportions of trips made by alternative modes are factored into the model at the stage of 

Modal split. At the final stage, Assignment/Route choice, modal trip tables are assigned to mode-

specific networks. Generally, three different trip purposes; home-based work trips, home-

based-non-work trips and non-home-based trips are defined in the model (McNally, 2000). 

 

The dominance of the conventional FSM in producing aggregate forecasts as part of the 

transport planning process to date, derives from its logical appeal, simplicity and tractability 

(Bates, 2000; Davidson et al., 2010). A fundamental conceptual problem with this approach 

however, is its reliance on trips as the unit of analysis. As a trip-based approach, the FSM 

ignores the fact that travel is a derived demand; the motivation for the trips are therefore not 

explicitly modelled (Pinjari and Bhat, 2011; Malayath and Verma, 2013; McNally, 2000).  Given 

that different trip purposes are modelled separately, the scheduling and spatio-temporal 

interrelationships between all trips and activities comprising the individual’s activity-travel 

pattern are not considered by the FSM (Dong et al., 2006; McNally, 2000). Aggregate zonal 

analysis also implies that the effects of   socio-demographic attributes of households and 

individuals as well as the behavioural complexities in travel captured in the FSM is limited 

(Martinez et al., 2007; Silva, 2009).  This limits the ability of the approach to evaluate demand 

management policies and travel impacts of long-term socio-demographic shifts (Bhat and 

Koppelman, 1999; Fox, 1995; Pinjari and Bhat, 2011). 
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3.2.2 Activity-Based Modelling Approach 

The Activity-Based Approach (ABA) gained momentum around the 1990s with the promise 

of delivering a behaviourally-oriented alternative to the FSM. The conceptual underpinnings of 

this approach integrate aspects of the time-geography paradigm, human activity system 

analysis, as well as economic theory of consumer choice (i.e. utility maximization). 

 

The fundamental tenet of ABA is that travel is a derived demand; the need to travel is derived 

from people’s desire to pursue in various activities which are interrelated (McNally and Rindt, 

2007). The key areas of investigation in this approach therefore include the demand for activity 

participation; the spatio-temporal constrains within which activity-travel behaviour occurs; 

the complex interpersonal dynamics resulting from the interaction among household 

members and social networks; and activity scheduling and trip-chaining behaviour in time and 

space (Ettema, 1996; Bhat and Koppelman, 1999; Kitamura, 1988; Pinjari and Bhat, 2010;). 

 

Early activity-based models adopt a “tour-based” representation of trips. This refers to a 

closed chain of trips starting and ending at a base location to capture the interdependency of 

choice attributes (i.e. time, destination, and mode) among trips of the same tour (Davidson, 

2010).  More recently, emphasis has shifted to activity scheduling and trip chaining behaviour 

of households. Activity scheduling attempts to capture the processes by which individuals 

implement interrelated set of activity decisions interactively with others during a defined time 

cycle (Axhausen and Gärling, 1992; Ettema, 1996). Whereas trip-based approach is satisfied 

with models that generate trips, ABA focuses on what generated the activities which in turn 

generated the trips through analysis of observed daily or multi-day patterns of behaviour 

(McNally, 2000; Dong et al., 2006; Lin et al., 2009).  
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Contrary to the FSM, few activity-based models include route choice; activity-based models 

generate time-dependent O-D matrices and if predictions of traffic flows are needed, these 

matrices serve as input to conventional route assignment algorithms (Rasouli and 

Timmermans, 2014a). The data requirements, model outputs and fundamental principles of 

modelling travel demand using the FMS and/or ABA are not entirely different (Recker, 2001). 

However, the distinguishing feature of ABA relates to the “integrity, allowance for complex 

dependencies, higher resolution and time as a coherent framework” (Rasouli and 

Timmermans, 2014 p34). 

 

The activity-based paradigm has proven to pose serious impediment to the development of 

application models despite its conceptual clarity and purported unmatched potential for 

providing better understanding and prediction of travel behaviour (Recker, 2001). The 

approach is criticized for its lack of sound theoretical and rigorously structured 

methodological foundations (McNally and Rindt, 2007). Given that activity-travel decision 

processes have infinite feasible outcomes of many dimension, modellers are presented with a 

fundamental combinatorial challenge (Ben-Akiva and Bowman, 1998; Rasouli and 

Timmermans, 2014) and several others problems related to the process of activity scheduling 

such as how utilities or priorities are assigned to activities and which heuristics and decision 

rules are used (Axhausen and Gärling, 1992). Despite, these challenges and limitations, several 

activity-based application models have been developed by the academic community and 

Metropolitan Planning Organizations. A classification of existing application models based on 

modelling techniques adopted is presented in Table 1. 

All activity-based models are disaggregate. As shown in Table 1, two main disaggregate 

modelling approaches namely; Utility-based-econometric approach, and Micro-simulation 

have been adopted in existing application models. Utility-based econometric models are 
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systems of equations that capture relationships between individual-level socio-demographics 

and activity-travel environment in order to predict probabilities of decision outcomes (Ben-

Akiva and Bowman, 1988). Grounded in discrete choice and random utility theory, these 

models rely on multinomial logit and nested logit probability formulations. These systems 

achieve the needed simplification of the combinatorial problem by aggregating alternatives and 

subdividing the decision outcomes (Ben-Akiva and Bowman, 1998). 

Table 1: Activity-Based Travel Modelling: Applications and Modelling Techniques 

Utility Maximization-based 

models 

Micro-Simulation models Other 

Atlanta ARC (PB et  al., 2006) ALBATROSS (Arentze and 

Timmermans, 2000,  2004) 
HAPP (Recker,1995) based 

on operations research 

approach  

CEMDAP (Bhat et  al., 2004) AMOS (Pendyala et al., 1997) 

CEMUS (Eluru et  al., 2008) CARLA (Clarke, 1986) 

Columbus MORPC (PB Consult 

2005) 

HATS (Jones et  al., 1983) 

FAMOS (Pendyala  et  al., 2005) LUTDMM ( Xu et  al., 2005) 

New York NYMTC (Vovsha, et  

al., 2002) 

MATSIM (Balmer et  al., 2005) 

Portland METRO (Bowman, 

1998) 

STARCHILD (Recker et  al., 1986) 

SACSIM (Bradley et  al., 2009) SCHEDULER (Gärling et  al., 1994) 

SFCTA (Outwater and Charlton, 

2006) 

SMASH (Ettema et  al., 1993, Ettema 

et al., 1996) 

Sacramento SACOG- DaySim 

(Bowman and Bradley, 2005) 

TASHA (Miller & Roorda 2003) 

 TRANSIMS (Smith et al., 1995; Nagel 

et al.,2001) 

 

 

The period after the mid-1980s has witnessed a growing application of micro-simulation 

approaches in transportation and land use research. The concept of micro-simulation is one 

in which the aggregate behaviour of a system is explicitly simulated over time as the sum of 

the actions and interactions of the disaggregate behavioural units within the system (Iacono 

et al., 2008; Miller and Savini, 1998). While both micro-simulation and utility-based methods 

tend to be disaggregate models, the main advantage of the former  over the latter is that,  it 

allows to model the increasing heterogeneity of urban lifestyle, new tendencies in mobility 
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behaviour as well as environmental impacts of land-use and transport policies at the necessary 

spatial resolution (Hunt et al., 2008; Wagner and Wegener, 2007).  Micro-simulation models 

also derive their strength from their dynamic nature, which makes it possible to trace model 

components (e.g.  Individuals, households, jobs and dwellings) over time in order to observe 

the modelled processes of change at a level of detail that is not possible in other types of 

models (Pagliara and Wilson, 2010). 

 

 

Most activity-based travel demand models including CARLA, STARCHILD, SCHEDULER, 

TASHA, AMOS and ALBATROSS are hybrid micro-simulation systems that combine rule-

based computational process approach with recent paradigms of agent-based modelling 

(ABM) to mimic how individuals build and execute activity-travel schedules. Rule-based 

computational process models are computer simulation programmes that use a set of rules 

(e.g. choice heuristics) in the form of condition-action (if-then) pairs to specify how a task, 

such  as household activity-travel sequencing is carried out (Ben-Akiva and Bowman, 1998). 

AMOS for example, simulates the scheduling and adaptation of schedules and resulting travel 

behaviour of individuals and households using `satisficing' rule as a guiding principle. 

 

ABM, another disaggregate approach, is a bottom-up computational method that allows for 

the creation, analysis and experimentation with models composed of autonomous agents that 

interact with each other and their environment locally (NigelGilbert , 2008; Railback and 

Grimm, 2011;  Railsback et al., 2006; Wu an Silva, 2010). ABM as a modelling technique allows 

for a natural description of a complex system in a flexible and robust manner so as to capture 

emergent phenomenon (Batty, 2001; Bonabeau, 2002; Castle Castle and crooket al., 2006; 

Wu and Silva, 2010; Silva, 2011). While the use of behavioural rules is similar to other 
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disaggregate simulation techniques, ABM approach allows the agents (e.g. household 

members) to learn, modify, and improve their interactions with their environment (Batty, 

2007; Pinjari and Bhat, 2010; Jin and White, 2012; Silva and Wu, 2010).  TRANSIMS for 

examples uses agent-based modelling and cellular automata (CA) techniques. CA are objects 

associated with areal units or cells; they follow simple stimulus-response rules to change or 

not to change their state based on the state of neighbouring cells (Batty, 2007; Silva, 2011). In 

the CA-based TRANSIMS model, the transportation network is divided into a finite number 

of cells, approximately the length of a vehicle.  At each time step of the simulation, each cell 

is examined for a vehicle occupant; vehicles can only move to unoccupied cells according to 

simple set of rules. The CA approach in TRANSIMS allows to simulate large numbers of 

vehicles and to maintain fast execution speed (Smith et al., 1995). 

 

There are a number constraints imposed by micro-simulation-based models. In addition to 

the large input data requirements, such models are slow to execute and requires several 

running time; outputs between runs are also subject to significant stochastic variation 

andvariation and uncertainty (Krishnamurthy et al., 2003; Nguyen-Luong, 2008; Wagner and 

Wegener, 2007). Stochasticity implies that model outputs after each run or iteration lacks any 

predictable  Overorder. Micro simulation often uses Monte Carlo simulation methods where 

random numbers are used in the process of “deciding” which of the available alternatives the 

decision-maker will choose, given the calculated probabilities; model results are thus different 

if the model is rerun with different random numbers (Feldman et al., 2010). Over the years, 

innovative methodologies have been developed and applied to handle these challenges in 

existing operational models.  These are discussed later under section 5. 

 

As shown in table 1, the Household Activity Pattern Problem (HAPP) adopts a rather different 

modelling technique which has had less application in transport and land-use research. The 

mathematical programming approach adopted, draws inspiration from operations research, 

which involves the application of advanced analytical methods to arrive at optimal or near-
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optimal solutions to complex decision-making problems. The HAPP model is constructed as 

a mixed integer mathematical program to address the optimization of the interrelated paths 

through the time/space continuum of a series of household members with a prescribed activity 

agenda and a stable of vehicles and ridesharing options available (Recker, 1995). 

Despite the growing number activity-based travel demand models, their adoption and use in 

practice, either independently or as transportation sub-models in existing operational LUTI 

modelling frameworks has rather been slow (Rasouli and Timmermans, 2014b; Recker, 2001). 

Instead, as will be discussed in the immediately following section on integrated land-use and 

transport models (section 4), the transportation sub-model of most of the existing operational 

LUTI models adopt the four-step approach.   

 

4. Overview of Current Operational LUTI Models 

Over the past six decades, several LUTI models have been developed, calibrated and applied 

in policy analysis at different spatial scales. As shown in figure 3, most operational LUTI models 

have three main sub-model components namely; land-use, socio-demographic and 

transportation.  These sub-models are either fully integrated or loosely coupled with each 

other to provide input-output linkages during model execution.  
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Figure 3: Generalized structure of an operational LUTI Model 

 

 

The land-use sub-model often contains important information on urban land market including 

residential and employment space ratio, land values, dwelling and occupancy types, land-use 

mix, housing vacancy, demolition and redevelopment.  Most of the existing models (e.g. 

IMREL, KIM, MEPLAN, TRESIS, METROSIM, MUSSA, PECAS, RURBAN, TLUMIP, TRANUS, 

DELTA and URBANSIM) have detailed urban land and housing market sub-models. 

 

The socio-demographic sub-model contains important socio-economic variables that mediate 

households’ location choice and travel behaviour. Different model platforms have varying 

levels of detail they capture in terms of socio-demographic factors and processes. DELTA-

START (Simmonds and Still, 1998; Simmonds, 2001) and UrbanSim (Waddell, 2000) for 

example, have detailed demographic transitions sub-models that capture the dynamics of 
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household formation, dissolutions and  transformation as well as  employment transition 

model that simulates the creation and removal of  jobs. At the household level, the 

demographic sub-model of most LUTI modelling frameworks often divide households into 

segments of similar socio-economic groups. LILT (Mackett, 1983, 1990, 1991), MUSSA–

ESTRAUS (Martinez, 1992, 1996) and RAMBLAS (Veldhuisen, et al, 2000) are based on based 

on 3, 13 and 24 different population segments respectively. Some operational models— 

DELTA-START and IRPUD (Wegener, 1982; 1996; 2004) capture migration processes as part 

of their socio-demographic sub-models.  

 

There have been calls to combine revealed preference data with stated preference data in 

most utility-based LUTI models in order to avoid biases in selecting appropriate variables and 

generating choice sets associated with the former (Wardman, 1988; Chang, 2006). In 

TRESIS—the Transportation and Environment Strategy Impact Simulator developed by 

Hensher and Ton (2001) for example, the behavioural system of choice models for individuals 

and households is based on a mixture of revealed and stated preference data. 

 

The transportation sub-model of most of the existing operational LUTI models, particularly 

the spatial interaction-based and utility-based ones, adopt the four-step approach. As shown 

in figure 3, the land-use sub-model is dynamically coupled with the transportation sub-model 

containing a network assignment component. The extent and capacity of networks in the 

transportation sub-models for most models is held fixed or treated as a policy variable and 

therefore does not allow for evolutionary dynamics in transport networks (Iacono et al., 

2008). Generalized transport costs, manifested by congested networks, travel times and 

distance are fed into the calculation of accessibility indexes, which in turn provide a dynamic 

feedback input into the land-use system. 
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The development of operational LUTI models has undergone waves of modelling techniques. 

It is worth mentioning that the transition from one approach to the other does not necessarily 

result in a complete abonnement of the previous approaches. Rather, new modelling 

paradigms have combined lessons from the past with emerging theoretical and empirical 

insights, with the goal of overcoming the limitations of their predecessors. Table 2 shows a 

classification of exiting operational frameworks according to modelling techniques; each 

column reflects the dominant theoretical and methodological persuasion of the model 

developers. 

Table 2:  Operational LUTI Models and Modelling Techniques 
Aggregate Spatial 

Interaction-based Models 

Utility 

maximizationAggregate 

Utility-based Models 

Micro-Simulation 

Models 

Other 

 

ITLUP : DRAM, EMPAL, 

METROPILUS 

(Putman,1983, 1991, 1998) 

BASS / CUF Model  
(Landis, 1994; Landis & 

Zhang, 1998) 

ABSOLUTE (Arentze et al., 

2003) 

MARS 
(Pfaffenbichler, 2011; 

Pfaffenbichler  et al., 

2010;  Mayerthaler et 

al., 2009): systems 

dynamics-based 

KIM (Kim, 1989; Rho and 

Kim, 1989) 
CATLAS, METROSIM 

(Anas 1983, 1984, 1994) 

ILUTE  
(Miller and Savini, 1998; 

Miller et a.l, 2011) 

 

Leeds Integrated Land-Use 

model 

(Mackett, 1983, 1990, 1991) 

DELTA-START (Simmonds 

and Still, 1998; Simmonds, 

2001) 

Irvine simulation models  
(McNally, 1997, 1998) 

 

Lowry-Garin model (Lowry, 

1964; Garin 1966) 

IMREL 

(Anderstig & Mattsson, 

1991,1998) 

ILUMASS  
(Moeckel,  et al., 2002) 

 

MEPLAN  
(Echenique  et al., 1969, 1990; 

Hunt & Echenique, 1993) 

IRPUD  
(Wegener,1982;  

1996;2004) 

PECAS  
(Hunt et al., 2008 ) 

 

 

STASA (Haag, 1990) MUSSA -ESTRAUS  
(Martinez, 1992, 1996) 

RAMBLAS  
(Veldhuisen, et a.l, 2000) 

 

The Projective Land Use 

Model   
(Goldner, 1972) 

RURBAN  
(Udomsri, 1996; Miyamoto et 

al., 2007) 

SIMPOP(Bura, et al., 1996; 

Sanders, et al., 1997) 
 

Time Oriented 

Metropolitan Model 
(Crecine,1964) 

Uplan 

 (Johnston, et a.l, 2003) 

TRESIS (Hensher and 

Ton, 2001) 

 

TRANUS 
 (dDe la Barra 1989; Donnelly 

and Upton, 1998) 
 

UrbanSim  
(Waddell  2000, 2002; 

Waddell et al., 2003) 
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As shown in table 2, three main modelling methodologies have been applied in the 

development of existing operational models. Early LUTI models were aggregate spatial 

interaction-based, drawing on the gravity analogy with entropy maximization as the underlying 

theory.  In nearly all spatial interaction-based models, space is treated as discrete systems of 

aggregate zones; the zone systems afford the advantage of linking models with available data 

more easily and to develop more mathematically tractable models (Pagliara and Wilson, 2010). 

. The need to capture complex individual behavioural dynamics and to overcome the weak 

assumptions and misspecification errors inherent in aggregate spatial interaction models has 

culminated in the adoption of disaggregate utility-based and micro-simulation methods— 

dDiscussed under section 3.2.2-- in LUTI modelling.  

 

The Metropolitan Activity Relocation Simulator (MARS) adopts a somewhat different 

modelling approach. The model uses a systems dynamics approach in which a set of qualitative 

and quantitative tools are used to describe and analyse the dynamic feedback relationships 

between the land-use and transport systems and the underlying behaviour (Pfaffenbichler, 

2011).  

Besides modelling approaches, the geography of application of the existing models is worth 

discussing. That is the spatial contexts in which models have originated or which models have 

been calibrated with data. Out of the 28 models reviewed, 911 have originated from the USA 

(i.e. MEPLAN, BASS/CUF, MUSSA–ESTRAUS, CATLAS, METROSIM, UrbanSim, Uplan, 

Lowry-Garin model TOMM, Irvine simulation models and TLUMIP). To the knowledge of the 

authors, 3 of the models have been applied in the Asian context— LILT and RURBAN in 

Japan; and MARS in Chiang Mai, Hanoi and Ubon Ratchathani. Moreover, 3 of the models 

(LILT, MEPLAN and DELTA-START) have come from the UK. IRPUD, MEPLAN, and 

ILUMASS have been applied in the Dortmund region in Germany whilst RAMBLAS and 
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TRANUS have been applied in the Eindhoven region in the Netherlands, and Curacao, La 

Victoria and Caracas in Venezuela, respectively.  TRESIS has been used to investigate strategic 

level policy initiatives for Sydney, Melbourne, Adelaide, Brisbane, Perth and Canberra in 

Australia. Few of the existing models (i.e. LILT, ITLUP, MEPLAN, MARS and URBANSIM) have 

had large scale international applications. ITLUP—a computer software for forecasting 

metropolitan spatial patterns of residential location and transportation for example, has been 

calibrated for over 40 regions across the world. To the knowledge of the authors, none of 

the existing LUTI models as of now, have either been developed in or calibrated with data 

from any African city. 

 

5. Discussion of the Challenges, Progress and Future Research 

Directions 

 

 

5.1 The Challenges with Disaggregation 

A number of technical and practical challenges are imposed by disaggregate modelling 

approaches such as micro-simulation. First, micro-simulation–based disaggregate models 

increase considerably, the demand for high quality data making model development and 

calibration very difficult tasks (Iacono et al., 2008). Detailed data on activity participation and 

mobility patterns at the individual level, required in activity-based models for example, are not 

readily available from national census, and are therefore expensive and time consuming to be 

conducted independently.  Despite the unique opportunity presented by sensor technology 

such as GPS in mobile phones in allowing to directly monitor travel, their use raises a number 

of privacy concerns and may meet opposition from civil society groups (Wegener, 2011). 

 

Another challenge emphasised in the literature is the long execution time involved in running 

disaggregate models as well as stochastic variation in model outputs for smaller samples and 



27 
 

large numbers of choice alternatives (Harris, 2001; Nguyen-Luong, 2008; Veldhuisen, et al., 

2000; Waddell, 2011; Wagner and Wegener, 2007). This makes it difficult to examine a large 

number of scenarios required for the composition of integrated strategies or policy packages 

(Wegener, 2011; Waddell, 2011).  

 

Beside the huge data requirement and stochastic variation, disaggregate models are fraught 

with uncertainties with respect to model outputs. Uncertainties about model outputs can 

result from model misspecification, imperfect input information, and innate randomness in 

events and behaviours that are being modelled (Krishnamurthy et al., 2003; Poole and Raftery, 

2000). Krishnamurthy and colleagues (2003), examined the propagation of uncertainty in 

outputs of DRAM-EMPAL in Austin, Texas. Their study found that over a 20 year prediction 

period, uncertainty levels  due solely  to input and parameter estimation  errors was on the 

order of 38% for total regional  peak-period  Vehicle Mile Travel, 45% for  peak-period  flows, 

and 50% and 37% for residential  and employment  densities,  respectively. Such substantial 

variation in model results can be problematic especially when used to make critical cost-

benefit analysis of project alternatives that require huge investments. 

There have been on-going efforts to develop state-of-the-art methodologies to address the 

problems of stochastic variation and associated uncertainty in predicted outputs of existing 

models. Under constraints of data collection, computing time and stochastic variation, 

Wegener (2011) has  advanced the need or modellers to work towards a theory of balanced 

multi-level urban models which are as complex as necessary in scope, space and time and yet 

parsimonious. Such a multi-level modelling approach has been applied to the IRPUD model 

developed for the Dortmund region; the model simulation takes place at three spatial scales 

(i.e. region, zones and grid cells). ILUMASS adopt a similar three-tier scale of micro, meso and 

macro level modelling. 
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A handful of research in the field (e.g. Clay and Johnston, 2006; Kockleman, 2003, 2006; 

Ševcˇíková et al., 2011;  Ševcˇíková et al., 2007) have examined and applied methodologies for 

incorporating uncertainty in order to enhance the decision-making and evaluation capabilities 

of existing LUTI models. Monte Carlo simulation and Multivariate regression analysis have 

been the main methods for assessing the distribution of outputs, which are functions of 

random inputs in LUTI models (see for example, Clay and Johnston, 2006;   Krishnamurthy et 

al., 2003; Silva and Clarke, 2002, 2005). Monte Carlo simulation however, requires clear 

specification of outputs and single function inputs; these are extremely difficult for most 

integrated model outputs, and accuracy in approximation requires the use of high-order 

derivatives, further complicating the analyses (Krishnamurthy et al., 2003).  Ševcˇíková et al., 

(2007, 2011) have modified and applied Bayesian melding, a method proposed by Raftery et 

al., (1995) and Poole and Raftery (2000), to assess uncertainty about quantities of policy 

interest in UrbanSim. Their results showed that simple repeated runs method produced 

distributions of quantities of interest that were too narrow, while Bayesian melding gave well 

calibrated uncertainty statements (Ševcˇíková et al., 2007). Moreover, the application of 

emulators and ensembles—a statistical representation of the output of a more complex 

behavioural model to reduce computation times and to generate probabilistic forecasts is 

being explored (e.g. Rasouli and Timmermans, 2013). It is however early days yet as far as 

research on the application of emulators to resolving uncertainty in transportation research 

is concerned (Rasouli and Timmermans, 2014b).  

 

Despite the growing innovation in methodologies for handling uncertainty, it is acknowledged 

in the literature that the outputs of different modelling frameworks are differently affected by 

variations in inputs and parameters. On the basis of this, it is essential that future research 

focuses, among other things, on understanding the growth in predicting uncertainties over 



29 
 

time and across different model frameworks, towards a principled way of addressing problem 

of uncertainty (Waddell, 2011). 

 

 

5.2 Integrating Activity-based models into LUTI Models: Challenges and Progress 

Although there is increasing adoption of activity-based models by US Metropolitan Planning 

Organizations, application of such models in Europe seem to have stagnated whilst many Asian 

countries have demonstrated a complete lack of interest in these models (Rasouli and 

Timmermans, 2014b).  There are a number of reasons that explain the slow adoption of 

activity-based models. Practically, there is reluctance on the part of professionals to adopt this 

new approach as it requires a complete and massive substitution of their current models and 

associated practices (Wang et al., 2011). Activity-based travel models are also fraught with the 

challenges of huge data requirement, stochastic variation and output uncertainty associated 

with micro-simulation methodology used. Notwithstanding the foregoing challenges, efforts 

are currently underway to integrating activity-based transport models with land-use models. 

There has been the first attempt to incrementally integrate land-use models with activity-

based travel models for operational use by Wang and colleagues (2011). Other LUTI 

modelling frameworks including Ramblas, ILUMASS, UrbanSim and TLUMIP also integrate the 

activity-based travel demand modelling paradigm.  

 

Beyond the issue of integration, there are a number of areas needing further research in 

activity-based research.  Experts have underscored  the need for better understanding of the 

activity and vehicle allocation behaviour among members of households; how negotiation and 

altruistic processes among individuals shape activity-travel patterns; the impacts of children 

and other mobility dependent individuals on adults activity-travel scheduling and 

implementation behaviour; the appropriate time frame for different types of activities;  and 
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the complex interlacing of multiple time horizons that may be associated with the planning, 

scheduling, and execution of different activities and related travel over time(Pinjari and Bhat, 

2010).  Moreover, there is the growing need for a better understanding of the role of social 

networks in shaping activity-travel patterns in activity research beyond the descriptive and 

analytical narratives presented by existing empirical works (Axhausen, 2006; Rasouli and 

Timmermans 2014b).   

 

Future research in activity-based modelling and their integration into existing LUTI modelling 

frameworks need to incorporate the principles of theories focusing on decision making under 

uncertainty in order capture realistically, the behavioural complexities underlying observed 

location and travel decisions of households. Furthermore, operational activity-based models 

of travel demand lack integrity across days of the week as existing models simulate activity-

travel patterns of a typical day; future research need to develop robust frameworks for 

conceptualizing and integrating the blurring boundaries between activity and travel episodes— 

resulting from the advent of smart phones, mobile computing and other ICT—into 

comprehensive activity-based LUTI modelling frameworks (Rasouli and Timmermans, 2014b). 

 

5.3 Measuring Accessibility: Towards a Satisfactory Methodology 

Accessibility impacts land values and shapes the location behaviour of households and firms 

which in turns impact observed patterns of spatial interactions. Thus, in order to adequately 

assess and evaluate the long term impacts of investment and policies affecting land-use on 

transport and vice versa, more robust methodology is needed for deriving accessibility indices 

as the feedback mechanism of the land-use-transport link. However, accessibility, the key 

concept that links land-use with transportation is quite difficult and complex to theorise and 

operationalize in any meaningful and acceptable way (Geurs et al., 2012; Hanson, 2004). 
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Conventional approaches to accessibility measurement have included “person-based”, 

“location-based” and “infrastructure-based” measures.  A major drawback of location-based 

accessibility is that measures are aggregate as it treats all individuals in the reference zone as 

having the same level of accessibility to the destination (Hanson, 2004). Also, Infrastructure-

based accessibility measure excludes the land-use component and therefore do not correctly 

measure accessibility impacts of land-use strategies that affect the spatial distribution of 

activities (Geurs et al., 2012).  A “utility-based’ accessibility measure (Geurs et al., 2012), 

grounded in random utility maximisation theory and “space-time autonomy” approach have 

been proposed as more satisfying measures in the literature. The latter however, is very 

difficult and complex to operationalize. It is also suggested that existing activity-based models 

be employed to develop activity-based measures of accessibility and be tested in modelling of 

various longer lifestyle decisions, as well as in more specific residential and workplace choices 

(Shiftan, 2008). 

5.4 Integrating the Environment into LUTI Models 

Considerations for the environmental impacts of land-use and transport in existing models 

are still very limited. Given that land-use and transport activities impacts the environment 

through greenhouse emissions, air pollution and traffic noise generation, there is the need for 

land-use transport models to be linked to advanced environmental sub-models (Wegener, 

2004). The ILUMASS project (Wagner and Wegener, 2007) and TRESIS—the Transportation 

and Environment Strategy Impact Simulator (Hensher and Ton, 2002) constitute on-going 

efforts towards the integration of land-use, transportation and the environment. The UK 

Tyndall Centre for Climate Change Research Cities programme is  also developing  a  GIS-

based integrated land-use transport model and climate change impact analysis tools to explore 

the implications of climate risks as a result of different spatial planning strategies that will 

enable urban planners to explore the trade-offs between these strategies (Ford et al., 2010).   
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Existing LUTI models are unable to forecast the impact of future urban policy responses to 

climate change such as carbon taxes and emission trading, enforcement of anti-sprawl 

legislation; transport demand management through road pricing or parking fees, the 

redirection of transport investment to public transport, promotion of alternative vehicles or 

fuels and the impacts of significant energy price increases, among others (Wegener, 2011).  

The potential impacts of these policy responses on urban location and mobility decisions, as 

opposed to the known impacts of individual lifestyles and preferences, and the implications 

for modelling techniques will be an interesting line of enquiry in future research. 

 

6. Conclusion 

This paper has provided a comprehensive overview of some 60 years of research in the field 

of LUTI modelling.  The review has shown that the field has benefited from new possibilities 

accruing from advances in computing technologies including GIS and disaggregate modelling 

methodologies such as micro-simulation. Notwithstanding the on-going progress and 

innovation, there are a number of areas needing further research. Further research in needed 

to understand uncertainty propagation over time and across different model frameworks, and 

to develop and apply innovative methodologies to handle the challenge of stochastic variation 

and associated uncertainties in disaggregate model outputs. Secondly, there is the need to 

bridge the gap between the proliferation of activity-based travel demand models and their 

integration with operational LUTI models in practice. Thirdly, the capabilities of existing 

models need improvement with respect to integrating the environment and forecasting the 

impact of future urban policy responses on climate change and energy scarcity. The potential 

effects of increased energy prices on urban location and mobility choices of individuals, and 

their implications for modelling methodologies are also worth exploring. Finally, robust 
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methodologies for measuring accessibility, the key concept that links land-use and 

transportation, is needed in order to adequately evaluate the effects of land-use policies on 

transportation and vice versa. 
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