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Abstract:  This paper analyzes the relationship between network sup-
ply and travel demand and describes a road development and degen-
eration mechanism microscopically at the link (road-segment) level. A 
simulation model of transportation network dynamics is developed, 
involving iterative evolution of travel demand patterns, network rev-
enue policies, cost estimation, and investment rules. The model is 
applied to a real-world congesting network for Minneapolis-St. Paul, 
Minnesota (Twin Cities), which comprises nearly 8000 nodes and 
more than 20,000 links, using network data collected since 1978. 
Four experiments are carried out with different initial conditions and 
constraints, the results of which allow us to explore model properties 
such as computational feasibility, qualitative implications, potential 
calibration procedures, and predictive value. The hypothesis that road 
hierarchy is an emergent property of transportation networks is cor-
roborated and the underlying reasons discovered. Spatial distribution 
of capacity, traffic flow, and congestion in the transportation network 
is tracked over time. Potential improvements to the model, in particu-
lar, and future research directions in transportation network dynamics, 
in general, are also discussed. 

1	 Introduction

Transportation network planning decisions made at one point in time can have profound impacts 
on the future. However, transportation networks are usually assumed to be static in models of land 
use. A better understanding of the natural growth pattern of roads would provide valuable guidance 
to planners. Today, the dynamics of network growth are poorly understood. This lack of understand-
ing is revealed time and again in the long-range planning efforts of metropolitan planning organiza-
tions (MPOs), where transportation network change is treated exclusively as the result of top-down 
decision-making, without considering what drives those decisions (Montes de Oca and Levinson 2006; 
Yusufzyanova and Zhang 2011a; Zia and Koliba 2015). Non-immediate and non-local effects are gen-
erally ignored in planning practice because network effects are not predicted with current tools, which 
often results in myopic network expansion decisions. If one looks at the complexity and bureaucracy 
involved in transportation infrastructure investment, one might conclude that it is impossible to model 
the transportation network dynamics endogenously. However, changes to the transportation network 
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are rather the result of numerous small decisions (and some large ones) by property owners, firms, 
developers, towns, cities, counties, state department of transportation districts, metropolitan planning 
organizations (MPOs), and states in response to market conditions and policy initiatives (Barthelemy 
2015). Though institutions make network growth (decline) happen on the surface, network dynamics 
are indeed also driven by some underlying natural market forces and hence predictable. 

A transportation network is a complex system that exhibits the properties of self-organization and 
emergence. Much previous research in dynamics related to transportation networks focuses on traffic 
assignment or traffic management. However, the dynamics of transportation network growth have re-
ceived limited, though growing, attention. (Xie and Levinson [2009] reviews the literature to 2009.) If 
a transportation network is represented by a directed graph, there are several important questions not 
fully answered: 

(1) How do the existing links, alternatively called arcs or edges and defined as road segments 
connecting two junctions (alternatively called nodes, intersections, or vertices) develop and 
degenerate? 
(2) How are new links added to the existing network? 
(3) How are new nodes added to the existing network?  

This paper addresses the first question and focuses only on the rise and fall of existing roads, rec-
ognizing the inter-dependence of road supply and travel demand. The approach is microscopic in that 
network dynamics are modeled at the link level. The following key questions are examined:

(1) Why do links expand and contract?
(2) Do networks self-organize into hierarchical patterns?
(3) Are roads (routes) an emergent property of networks?
(4) What are the parameters to be calibrated in a microscopic network dynamics model?
(5) Is the model computationally feasible on a realistic transportation network?  
(6) Is the model capable of replicating real-world network dynamics?  

Several previous studies (Weidner 1996; Horner and O’Kelly 2001; Yerra and Levinson 2005; Scott 
et al. 2006; Zhang and Levinson 2008; Miyagawa 2011) in this area show that transportation networks 
(road, air, etc.) tend to self-organize into a hierarchical pattern in which some links attract more traffic/
users, receive proper maintenance, and are gradually expanded, while other links are less popular, poorly 
maintained, and may eventually be abandoned. It is also demonstrated that although this hierarchical 
pattern seems to be designed by planners and engineers, it is actually an intrinsic emergent property of 
networks themselves. The simulation model developed in Yerra and Levinson (2005) assumes unlimited 
road capacity; the growth and decline of roads are reflected only by changes in their free-flow speeds. 

This paper makes several main contributions. First, travel demand is represented by a more realistic 
evolutionary demand pattern (extending Levinson [1995]) into the application of network growth). 
Second, it applies a routing and investment model akin to that of Zhang and Levinson (2009), thereby 
considering congestion effects and relaxing the assumption of unlimited capacity so that the impacts of 
network congestion on travel demand and supply can be incorporated in the analysis but applies it to 
a large-scale realistic network. Use of the Minneapolis–St. Paul, Minnesota (Twin Cities), transporta-
tion network with nearly 8000 nodes and more than 20,000 links allows us to examine computational 
properties and predictive value of the proposed microscopic network dynamics model, and it is the larg-
est application to date of network evolution models. (Levinson, Xie, and Montes de Oca [2012] uses a 
similarly sized Twin Cities network, but only state-owned links in the choice set were eligible for possible 
expansion, and the investment rules were very different; see also Yusufzyanova and Zhang [2011b] for a 
similar analysis of the Washington, DC, and Maryland region.)
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The next section develops a theoretical framework for studying the rise and fall of roads. The 
framework helps identify various influencing factors and inter-dependences among those factors, based 
on which a synthesis model of road expansion and contraction is developed in Section 3. The model is 
applied to the Twin Cities transportation network from 1978 to 1998 with different model parameters 
and starting conditions. The results of these experiments are summarized, and the listed research ques-
tions are answered in Section 4. Conclusions and future research directions are offered at the end of the 
paper. 

2	 Network dynamics at the microscopic level

Regional economic growth is taken as exogenous for this study of transportation network dynamics 
because transportation infrastructure is not the only factor that drives economic growth, and we do not 
yet have adequate other models to explain change in land use at the metropolitan level. Some attempts at 
this include Levinson, Xie, and Zhu (2007). It has long been known that transportation service and land 
use influence each other though iterative changes in accessibility and travel demand. However, land-use 
dynamics are also treated as exogenous in the following network analysis, so that attention can be fo-
cused on transportation network growth, a process with enough complicated and unknown dynamics 
for one to start with. The dynamics of other factors involved such as travel behavior, link maintenance 
and expansion costs, network revenue, investment rules, link expansion and degeneration are considered 
endogenously.

The foremost and probably also the most important constraint on future network growth is the 
existing network. In developed countries where transportation infrastructure has reached its saturated 
stage, it is rare to see new network growth from a tabula rasa. Even in an empty place without any previ-
ous development, natural barriers such as rivers and mountains still constrain future network growth. 
The current network connectivity pattern determines whether two links complement (are located up-
stream or downstream) or compete with (are parallel to) each other for demand. The existing network 
may or may not be at a steady state. It could still take years for road supply to meet existing travel 
demand even if no exogenous changes (e.g., population and economic growth) occur. The important 
question is how various forces drive the existing network to evolve rather than how long it takes.

Based on the current network, land-use arrangements, and individual socioeconomic status, people 
make their travel decisions, such as trip frequency, scheduling, destination, mode and route choices. 
These decisions transform into travel demand on the transportation network. This demand-generating 
process involves the existing network supply, congestion externalities, travel behavior, and link-level 
travel demand forecasting.  

Transportation is a service, and travelers pay to obtain that service in addition to spending their 
own travel time. In the United States, that payment is largely in the form of a fuel tax. However, if links 
were autonomous, they would set prices to maximize their profits in the form of a vehicle toll. In many 
real-world transportation networks, government agencies collect transportation revenue in terms of fuel 
taxes. We can set the price for using a link as a function of the link’s length and speed. It is convenient to 
use a notion of link revenue. Revenues collected by individual links may or may not be pooled together 
for investment purposes depending on the underlying institutional structure of the network. Longer, 
faster, and high-demand (traffic flow) links should be able to generate more revenue. If not maintained 
appropriately, link speed will decrease over time due to physical deterioration caused by the environ-
ment and traffic. Therefore, each link has a maintenance cost function. Link length, capacity, free-flow 
speed, and flow determine maintenance cost to a large extent. The amount of money required to expand 
an existing link can be calculated with a link expansion cost function. A previous empirical estimate of 
link expansion costs using network data in the Twin Cities metro area reveals that link expansion cost is 
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positively correlated to capacity, length, and road hierarchy (interstate, state highway, county highway, 
etc.), while negatively related to the distance from the nearest downtown (Levinson and Karamalaputi 
2003). These results suggest that link length and capacity should be included in the link expansion cost 
function, and this function is also subject to local adjustments.      

Specific revenue and cost structures in a transportation network provide inputs for investment 
decisions. Real-world observation of road investment decision processes suggests the hypothesis that 
decisions to expand transportation networks are largely myopic in both time and space, usually ignor-
ing non-immediate and non-local effects (e.g., Montes de Oca and Levinson 2006; Yusufzyanova and  
Zhang 2011a; Zia and Koliba 2015). This myopic decision process, when applied sequentially, tends 
to improve the relative speeds and capacity of links that are already the most widely used, and thereby 
expand their use. The rate and extent of this process is constrained by the cost of those improvements 
and limited budgets (revenue). From a market economy point of view, travel demand increases (due to 
changing preferences as well as sheer population) induce supply (capacity) increases—suppliers produce 
more of a good. The output of the investment process would be an updated network where some links 
are expanded and some degenerated. 

The mirror problem of induced demand is by now well understood (e.g., Noland 1998; Strathman 
et al. 2000; Fulton et al. 2000; Parthasarathi, Levinson, and Karamalaputi 2003). As travel costs drop, 
the number and especially the length of trips increase. The expanded link with increased travel demand 
can generate even more revenue, which may later result in further expansion on that link. Yet this loop, 
while positive, should have limits. The diminishing returns in the revenue structure and exponential 
increases of expansion costs will eventually stop this feedback loop. The opposite is true for degenerated 
links. All these suggest that reinforcement exists and transportation networks may self-organize into 
hierarchies. This hypothesis is subject to simulation tests in the following section.

Improving one link will also cause complementary (upstream and downstream) links to have great-
er demand, and competitors (parallel links) to have lesser demand (and be less likely to be improved). 
These network effects take time to propagate within transportation networks. They may be reinforced 
in complex transportation networks, create problems, but leave little clue to planners as to the root of 
the problem, and thus force transportation system planners and engineers to adopt myopic solutions, 
which may create even more problems.  

 This again highlights the importance of considering the full ramification of network expansion on 
future infrastructure decisions. Network effects both complicate the problem and suggest the analysis 
has to be iterative. Previous changes in the network, economy, demography, and even travel behavior 
cause a new travel demand pattern and hence new link costs and revenues. Accordingly, a new set of 
supply decisions will be made, generating new network changes. This loop is repeated until a steady state 
is achieved (depending on the cost structure, with fixed land-use patterns, the solution tends toward 
equilibrium). When the continuous exogenous changes in economy, technology, land development, 
and population are considered, a transportation network may never reach equilibrium. The evolution-
ary microscopic network growth process should produce rich dynamics important to anyone who is 
interested in shaping the future transportation network.    

3	 A network dynamics model

In this research, a network dynamics model is developed that brings together all the relevant agents and 
their interactions to simulate link expansion and contraction. Compared to an earlier network dynam-
ics model due to Yerra and Levinson (2005), this improved model relaxes the assumption of unlimited 
link capacity, a necessary step that has to be taken to make the model be of any practical importance. 
The foundation for the model development is the microscopic network growth dynamics described in 
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the previous section. The simulation model can be used to evaluate whether important system proper-
ties such as hierarchy, self-organization, and growth, actually emerge from decentralized processes. This 
purpose makes the principles of and modeling techniques for complex systems applicable. There is no 
universally accepted definition of a complex system. However, it is generally agreed that it consists of 
“a large number of components or ‘agents,’ interacting in some way such that their collective behav-
ior is not a simple combination of their individual behavior” (Newman 2001), which is the case in 
transportation networks. Examples of complex systems include the economy—agents are competing 
firms; cities—places are agents; traffic—vehicles are agents; ecology—species are agents. In transporta-
tion networks, we model nodes, links, travelers, and land-use cells as agents. Cellular automata (CA) 
and agent-based modeling techniques are commonly employed tools for modeling complex systems 
(von Neumann 1966; Schelling 1969; Wolfram 1994, 2002). An agent-based structure is used in the 
proposed network dynamics model.  

An overview of model components and their interconnectivity is shown in Figure 1. A travel de-
mand model predicts link-level flows based on the network, socioeconomic, and demographic informa-
tion. Based on the demand forecasting results, links calculate revenues and costs. An investment module 
then operates and causes annual supply changes, producing an updated network. The modeling process 
does not have to iterate annually. Other updating intervals can also be used. But yearly supply changes 
correspond to budgets, which are typically decided each fiscal year. The transportation network is rep-
resented as a directed graph that connects nodes with directional arcs (links). The standard notation 
convention for directed graphs is adopted for the following presentation on the details of mathematical 
formulations of those submodels. The directed graph is defined as: G = {N, A} where N is a set of sequen-
tially numbered nodes and A is a set of sequentially numbered directed arcs (links). 

Figure 1:  Flowchart of the transportation network dynamics model
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3.1	 Travel demand

Ideally, an agent-based travel demand model in which node, link, and travelers are modeled as interac-
tive agents should be applied to estimate travel demand at the level of links, so as to keep the disaggregate 
model structure consistent. Previous studies (Zhang and Levinson 2005, 2006, 2009; Zhang, Zhu, and 
Levinson 2008) have proposed such a model with successful application to the Chicago sketch network.  

In this paper, a traditional four-step forecasting model is used to predict travel demand at the link 
level, taking exogenous land use, socio-economic variables, and the existing network as inputs, consis-
tent with much current practice.   

A zone-based regression structure is used for trip generation. The origin-destination (OD) cost 
table obtained from the previous-year traffic assignment is used for trip distribution in the current year 
based on a doubly constrained gravity model (Voorhees 2013; Wilson 1969; Haynes and Fotheringham 
1984; Hutchinson 1974).  

The computation of the new OD demand table takes into account the historical impacts of past 
travel behavior. Travel demand in a given year depends on the demand in the previous year. Levinson 
(1995) elaborates the idea of such a hybrid evolutionary model. In contrast to a traditional equilibrium 
model, the evolutionary demand updating procedure does not require supply and demand to be solved 
simultaneously. In this study, the new OD demand is updated by a process similar to the method of 
successive averages (MSA) (Sheffi 1985; Smock 1962) in traditional traffic assignment procedures. The 
weights in equation (1) are specified in such a way that OD demand tables in each preceding year are 
weighted equally with the current year (i) OD demand. 

	 			   (1)

where:
qrs

i	 demand from origin zone r to destination zone s in year i
Or	 number of trips produced from zone r
Ds	 number of trips destined for zone s
mr ,ns	 coefficients in the gravity model
trs

i	 generalized travel cost of traveling from zone r to s
d(.)	 travel cost impedance function in the gravity model;  
γ	 coefficient in the impedance function

In the equation, the term 1/i represents the fraction of total demand that comes from updating with 
the most recent estimate of travel times associated with the ith year, while 1-1/i represents the fraction of 
demand from all other years. This aims at recognizing that destination choices (i.e., home location vis-
à-vis work location) are sticky and won’t suddenly change with changes in travel times on the network.

In this model, all travelers are identical except for their origins and destinations, and thus have 
identical values of time. Other models have relaxed this assumption (e.g., Zhang, Zhu, and Levinson 
2008) in different contexts.

The resulting OD table is loaded onto the current year transportation network through the origin-
based user equilibrium traffic assignment algorithm (OBA) developed by Bar-Gera and Boyce (2003). 
The generalized link cost function comprises two parts, a Bureau of Public Roads (BPR) (1964) travel 
time component and a vehicle toll.  
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	 				    (2)

where:
ta

i	 generalized travel cost on link a in year i
λ	 value of travel time constant (dollar/hr)
va

i 	 free-flow speed of link a (km/hr) in year i
Fa

i 	 capacity of link a in year i (veh/hr)
la 	 the length of link a (constant) (km)
fa

i	 average peak hour flow on link a in year i (veh/hr) 
θ1 ,θ2	 coefficients of the BPR travel time function
τa

i	 link toll per vehicle (dollar, see equation 4 for details)

The OBA algorithm derives link flows at user equilibrium and generates a new OD cost table that 
will be used for trip distribution in the next year. In the traffic assignment step, if the relative excess travel 
cost is less than 0.001, the Wardrop user equilibrium (Wardrop 1952) is considered to be satisfied. In 
practice, it is unlikely that traffic is actually at equilibrium (Zhu and Levinson 2015); however, this is 
standard practice in models, and guarantees a unique set of link flows, but not paths, and allows solu-
tions to be systematically compared with fewer confounds.

3.2	 Revenue and cost

Revenue is collected at the link level by vehicle toll. The annual revenue is simply the product of the toll 
and annual flow. The amount of the toll should depend positively on the length of the link and the level 
of service. In practice, toll roads often charge more for longer trips, which is not necessarily linear and 
depends on the system, and many also have a fixed cost or component of the toll that is independent 
of distance in addition to a variable (distance-based) part—though we assume it all to be linear and 
distance-based here. Also in practice, high occupancy/toll (HOT) lanes charge tolls for relatively faster 
trips compared with parallel free lanes, though tolling levels vary, and dynamic tolls rise with congestion 
(Janson and Levinson 2014). There is no standard guidance as to how much tolls would or should vary 
with speed. MnPASS, the local HOT lane, has a toll formula where the level of toll increases with den-
sity (and thus decreases in speed) in the HOT lane to ensure it remains free-flowing. In general, density 
increases in the HOT lane when the density also increases in the un-tolled and parallel general-purpose 
lanes, and thus travel-time savings are greater. 

The following revenue equation is employed, adapting Yerra and Levinson (2005):  

	 					     (3)

	 					     (4)

where:
Eai	 revenue (earnings) of link a in year i (dollar)
ψ	 coefficient to scale average peak hour flow to annual flow
ρ1 	 scale coefficient related to the toll level 	
ρ2 , ρ3	 coefficients indicating economies or diseconomies of scale	
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As the free-flow speed of a link increases, travelers are able to save travel time and hence are willing 
to pay a higher toll. However, speed improvements have decreasing returns. For instance, if speed triples 
from 8 to 24 km/hour, time spent traveling 1 km drops 5 minutes from 7.5 minutes to 2.5 minutes. If 
speed increases 16 km/hour from 88 km/hour to 104 km/hour, the time drops from 41 seconds to 35 
seconds—merely 6 seconds—which hardly seems worth considering.  

The coefficient ρ3 should be positive, because HOT lanes aside, tolls should not increase if speeds 
decrease, but less than 1, because willingness to pay is unlikely to increase superlinearly with speed as 
time savings decrease with speed, as shown in the previous paragraph. Thus ρ3 is between 0 and 1. (We 
use 0.75 in the application below.)  Note that with appropriate values for those coefficients, the toll-
based link-level revenue structure can also reasonably model centralized revenue collection mechanisms, 
such as fuel taxes (ρ2 = 1 and ρ3 = 0). 

The link maintenance cost function has only two determining factors: Link length and capacity: 

		  						      (5)

where
Ca

i	 cost of maintaining link a at its present condition in year i (dollar)
μ	 scale parameter	
α1 , α2	 coefficients indicating economies or diseconomies of scale

It is also assumed that all links have the same link maintenance cost function. This assumption is 
obviously not realistic and should be relaxed when local, link-specific data are available.

3.3	 Investment rules

If a link is autonomous and its annual revenue is higher than maintenance cost, the link will be expand-
ed in the next year, assuming revenue is not spent elsewhere. If revenue falls below maintenance cost, the 
link shrinks in terms of both a capacity reduction and a free-flow speed drop. 

The submodel of network investment decisions can have two aims, describe reality or identify 
optimal policies. The emphasis in this paper is the prior one, which is in contrast to the long line of 
research on the network design problem. The network dynamics model must be able to replicate what 
has happened in reality before it is applied for potential planning purposes. A prototype investment rule 
(link expansion and contraction function) is examined in which links manage themselves and do not 
share revenues.  

		  						      (6)

where 
β	 capacity change coefficient

Note that investment decisions in equation (6) are very myopic ones in that links only care about 
themselves, ignore network effects, and spend all revenues immediately. The value of β actually repre-
sents some properties of the link expansion process. If β is less than 1, it implies that there are disecono-
mies of scale in link expansion because doubled investment (E) would only produce less than doubled 
capacity. If β is larger than 1, economies of scale exist.  

Link capacity changes are often correlated with free-flow speed. By standard highway design prin-
ciples (e.g.,  the AASHTO [2011] “Green Book”), a hierarchy of roads has been designated where higher 
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capacity roads are limited access and designed for higher speed. These design principles (which may 
have emerged in any case) have been widely employed throughout the United States. Free-flow speed 
and capacity data used by the Twin Cities Metropolitan Council in its regional transportation planning 
model on more than 10,000 roadway sections are used to study the correlation of speed and capacity. 
A log-linear model is adopted (see Figure 2). R2 of the model is 0.7 and both coefficients are statistically 
significant at level 0.01.  

		  						      (7)

The predicted free-flow speeds are plotted against data in Figure 2. Keeping component functions 
such as this one continuous and differentiable in the network dynamics model can save a lot of work 
in the calibration stage. This is also the reason why an explicit link expansion cost function is not speci-
fied and why it is assumed that links invest any extra revenue immediately. However, if these simple 
continuous functions cannot adequately replicate reality, more sophisticated modeling tools should be 
considered. For instance, link expansion and contraction are in fact discrete events for which a choice 
model or catastrophe theory may be applied.  

Figure 2:  Link capacity and free-flow speed relationship: Observed (from regional transportation planning model) versus 
predicted (log-linear regression model)

With updated link capacity and free-flow speed, link travel time and link toll change, thus affect-
ing travel behavior. These supply shifts combined with preference, economic growth, and demographic 
changes give rise to the emergence of a new demand pattern.  

So far, a complete cycle of the network evolution process has been modeled. This cycle repeats itself 
annually. Simulation of these cycles can reveal various emergent properties of transportation network 
growth. The proposed network dynamics model can and should be calibrated and validated against 
observed time-series network and land-use data. The calibration procedure may consist of two stages. 
The parameters in the submodels (demand, revenue, cost, and investment) are estimated from empirical 
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network data. These estimates then form a starting solution for an iterative optimization routine with an 
improving search algorithm. Finer adjustments to the model system and parameters should be under-
taken based on an objective function, which can minimize the difference between the observed data and 
the model’s ability to predict which links were improved and by how much. In brief, the model param-
eters form a space that can be searched systematically to find a best fit between actual and predicted link 
expansions and contractions. The transportation network data in the Twin Cities metro area have been 
collected between 1978 and the present in digital format, while data collection work on corresponding 
land-use and economic information is ongoing. In the 2000 Twin Cities transportation network, there 
were 7976 nodes and 20,914 links. A bit more than 600 link expansions took place between 1978 and 
2000, which implies the Twin Cites transportation network is mature.  

Though a rigorous calibration work cannot proceed unless all required data are collected, simulat-
ing the model with the available Twin Cities network data can still provide valuable information regard-
ing the modeling concept, structure, and feasibility of a large-scale realistic network. The values of model 
parameters in these preliminary runs are based on either empirical estimation or our best understanding 
of the economies and diseconomies of scale in the network growth process and are summarized in Table 
1. The simulation experiments also provide opportunities to examine some qualitative properties of 
network dynamics.

Table 1:  Coefficients used in the experimental runs of the network dynamics model

Parameter Description Value Source

λ value of travel time constant ($/hr) 10 Empirical findings

θ1 , θ2
coefficients in the BPR function 0.15, 4 BPR

γ coefficient in the gravity model 0.1 Empirical findings

ρ1 ⋅ψ
combined scale coefficient in revenue model 
(dollar⋅hrρ  /kmρ  +ρ  )

1 Scale parameter

ρ2
power term of length in revenue model 1 CRS of link length

ρ3
power term of speed in revenue model 0.75 DRS of level of service

μ scale coefficient in cost model (dollar⋅hrα2/kmα1) 20 Scale parameter

α1
power term of length in cost model 1 CRS of link length

α2
power term of capacity in cost model 1.25 IRS of capacity

ω1 , ω2

coefficient in the speed-capacity log-linear regression 
model

-30.6, 9.8 Empirical estimate based on Twin Cities data

β capacity change coefficient 0.75 DRS in link expansion

CRS, DRS and IRS: constant, decreasing, and increasing returns to scale

3 2 3
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4	 Simulation experiments and results

Four experiments are set up with different initial conditions and restrictions on link contraction. It is 
assumed in all experiments that there are no exogenous changes in land use, economy, and population 
based on 1998 Twin Cities Metropolitan Council data. Let us imagine that we are planners in 1978 who 
are interested in network growth 20 years from “now” (i.e., in 1998). The 1978 network thus becomes 
the “existing” network. So, in essence, these four experiments set up scenarios in which “estimated” land 
use 20 years from “now” is applied to the “existing” network. Using the real 1978 network as the initial 
condition for the simulation model (Experiments 1 and 2) allows us to observe whether and how this 
real-world network achieves steady state. The real 1978 network already exhibits hierarchy in that a few 
important roads carry the bulk of traffic, while most roads have relatively low speed and volume. To 
see how network hierarchy emerges in the growth path, the other initial condition is the 1978 network 
topology with a uniform capacity of 400 vehicles per hour, which is the capacity of the narrowest link 
in the 1978 network. The adoption of two initial scenarios can also reveal whether starting conditions 
significantly affect the future growth of a transportation network. In the investment model, link con-
traction occurs as long as the collected revenue is insufficient to maintain a link at its present condition. 
However, in reality, links usually do not shrink—once you build it, you cannot easily abandon it. The 
presence of this practical constraint is considered and applied to two of the four experiments (Experi-
ments 2 and 4). Comparison of simulation results with and without the link contraction restriction 
sheds light on future refinement of the investment rules. In the simulation, if the network does not 
change in two consecutive years, the simulated network evolution process stops and a steady state is 
achieved. It is also possible that the network does not converge and changes constantly among two or 
more distinct states. 

As we can see in Figure 3, thousands of links are expanded and contracted in the first several years 
following 1978. However, the network settles itself very quickly, and after about 25 years, fewer than 
100 links still experience (relatively small) changes in capacity and free-flow speed. To achieve the strict 
equilibrium defined as a network with no more capacity changes, it is necessary to continue the itera-
tions for many more years for any network as large as the one in the Twin Cities metropolitan area. 
But all significant changes occur during the first 20 years. It is clear the network dynamics model is 
approaching equilibrium smoothly. It is probably not practical to execute the model until a strict equi-
librium is achieved. A goal function can be set up to determine the stopping point of the simulation. For 
instance, further iterations are not considered if the average percentage change of link capacity becomes 
less than 0.001. The remaining presentation of the simulation results only focus on network dynamics 
between 1978 and 1998 since most important changes take place during this period.  

Table 2:  Four simulation experiments

Initial Condition
Allow for Link Contraction

Yes No

1978 Twin Cities network with real 1978 capacity Experiment 1 Experiment 2

1978 network with uniform capacity (400veh/h) Experiment 3 Experiment 4
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Figure 3:  Convergence properties of the network dynamics model

In the travel demand model, an updating procedure similar to the method of successive averages 
(MSA) is adopted to take into account the impacts of lagged demand (Equation 1). One may suspect 
that it is this MSA procedure that forces the system to achieve a long-run equilibrium. To test this hy-
pothesis, Experiment 2 with the fastest convergence is also executed without MSA, i.e., travel demand 
in the current year is independent of demand in previous years (only the second term on the right-hand 
side of Equation 1 remains in this case). The convergence property without MSA rejects the hypothesis 
and suggests induced or latent demand actually hinders the equilibration process of a transportation 
network. This result is also intuitive—a road system with factors delaying the adjustment of demand to 
changing supply, such as habitual behavior, uncertainty, and information acquisition cost, takes longer 
to reach its equilibrium than a system without those factors or with those factors to a lesser degree. How-
ever, the existence of lagged demand does not seem to affect the final state of the system (cf., Figures 4d, 
which is visually equivalent to the result without MSA (not shown)).  

Predicted road expansions from the model between 1978 and 1998 are compared with expansion 
activities that actually occurred during that period. In Figure 4, the prediction results from Experiments 
1 (4c) and 2 (4d) are compared to the observed data (4b). Although the model successfully predicts 
several large freeway construction projects, it forecasts more expansions on roads already having high 
capacities (freeway segments) and fewer expansions on arterial roads than reality. Either the expansion 
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costs of arterial roads are overestimated or the costs of freeways are underestimated in the model. It is 
probably because the same cost function is used for all roads in the model. This suggests a need for cost 
functions adjusted to link-specific conditions. At this point, we are not arguing that the model predicts 
what should have been done. It must be able to describe reality first before it can be used as a normative 
tool.

Road hierarchy emerges in all four experiments (see Figure 5). In the predicted 1998 networks, 
most roads have low capacity and carry low flows, while only a few roads are expanded to very high 
capacities and carry the bulk of traffic. Experiments 1 and 2 start from the 1978 network with real 
capacity and hence the hierarchical structure is already present at the initial condition because the con-
struction work of most freeways in the Twin Cites had been completed by 1978. It is, therefore, not very 
surprising to see that the predicted 1998 network hierarchy conforms very well with the observed 1998 
data. With accurate network data in the starting year (1978) and good exogenous forecasts of land use 
and economic growth in a future year (we actually observed the 1998 land use), the proposed network 
dynamics model with very simple decentralized cost, revenue, and invest functions provides satisfactory 
forecasts of road hierarchy in the future year. It is interesting to see that hierarchy also emerges in Experi-
ments 3 and 4, where the starting condition is a uniform capacity network. The predicted hierarchies 
in these two scenarios are actually very close to the observed ones for lower-level roads. The results from 
Experiments 3 and 4 also suggest that if planners in the Twin Cities could design a brand-new network 
to serve the existing travel demand and replace the existing network, they would build many fewer roads 

Figure 4:  Experiment 1 and 2 vs. observed network growth after 20 years
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with very high capacities, as seen on the right side of the two graphs. This finding may be somehow 
not very meaningful due to the big “if.” How the network arranges itself in a hierarchical pattern from 
a uniform status is a really interesting question. To answer that question, the growth path of the Twin 
Cities network in Experiment 4 is presented in consecutive maps, where changes in road capacity are 
shown with lines with different weights (Experiment 3 gives almost the same results and is therefore not 
shown).

Figure 5:  Road hierarchy after 20 years

For those who are not familiar with the Twin Cities metropolitan area, a brief description of the 
features of the region may be helpful before the maps in Figure 6 are examined. Two traditional central 
business districts, downtown Minneapolis and downtown Saint Paul, are approximately 10 kilometers 
from each other. At the confluence of the Minnesota and Mississippi Rivers is the region’s international 
airport. A newer suburban business area, along the I-494 beltway, appears near the airport. The three 
downtowns, as well as the rivers are shown in the base year network (6a). After four years, the model 
predicts that some roads are expanded (6b). The location of these expansions tells us much about how 
road hierarchy emerges even from a uniform network. Natural barriers, such as rivers in this case, are 
sources of unbalanced road construction. It is clear that bridges are able to attract more flow than other 
roads in the network and hence are expanded first. Network effects then drive more flow to the roads 
emanating from bridges, for instance, the roads along riverbanks. If one carefully examines the roads 
surrounding the airport, the circle just west of the river confluence, it is evident these roads are also able 
to generate more revenues than an average road and are expanded early in the evolution process. The role 
of the airport here is much like some natural barriers such as mountains, because they all direct more 
flow to bypasses. The second source of hierarchy comes from activity centers. The three downtowns with 
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high densities of jobs and other activities are the areas with intense road expansions in the years following 
1978. Finally, the fact that all major road expansions between 1978 and 1982 take place in the central 
area of the region suggest that boundary effects also contribute to the formation of road hierarchy. Most 
trips originating from the edges of the city are inward trips and destined for activity centers located 
relatively closer to the geographical center of the region, while trips emanating from areas in the middle 
of the city are distributed along all possible directions. The asymmetry in demand patterns is the third 
source of road hierarchy identifiable from the second map. Again, network effects will help propagate 
the hierarchical pattern created by those three sources throughout the whole network over time. Twenty 
years later, road hierarchy can be found virtually everywhere in the network (6c).

Figure 6:  Emergence of hierarchies in Experiment 4
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Congestion is undesirable in a network and attracts a lot of attention in network analysis. In Figure 
7, volume to capacity ratios (V/C ratios) of all roads in the network after 20 years of evolution are plot-
ted in a histogram. The observed 1998 data suggest that most roads carry flows well below their capacity, 
and a few roads operate at V/C ratios near or slightly higher than one. Practically, over a long period of 
time, no road can carry flows more than its capacity. The presence of V/C ratios larger than one in the 
model is the result of inadequate description of road travel delays and scheduling adjustments in the 
traditional four-step, travel-forecasting model. Experiments 1 and 3 allow road degeneration, the results 
from which show a narrow range of V/C ratios, suggesting a more uniform distribution of congestion 
in the network compared to the observed data. Note that the model does not say that at equilibrium a 
uniform distribution of V/C ratios will be achieved. Roads have similar V/C ratios in Experiments 1 and 
3 but not the same ratios. Experiments 2 and 4, with a constraint on road contraction, obviously predict 
congestion much better than their counterparts without the constraint. Once a road is expanded but 
demand later does not justify the capacity after the expansion, the road is still going to be maintained 
and capacity reduction is less likely to happen. Furthermore, in the real-world, capacity expansions are 
discrete (1 lane, 2 lanes), while here they are modeled as continuous. Therefore, a constraint on road 
degeneration in the model should make it more realistic. The spike near a V/C ratio of one is still present 
in Experiments 2 and 4. This is because the same revenue and cost functions are applied to all roads. In 
reality, it may be more expensive to expand some roads than others and hence different levels of conges-
tion are observed. This again suggests that cost and revenue functions in the model should be adjusted 
according to local conditions.

Figure 7:  Network congestion after 20 years

Finally, the impacts of starting conditions and constraints on the predicted network dynamics are 
examined in Figure 8. Clearly, they do matter. By comparing the four graphs vertically, i.e., Experiment 
1 against 3, and 2 against 4, we find that different initial networks result in quite different networks at 
equilibrium. A horizontal comparison of the graphs reveals the relatively smaller influence of the restric-
tion on road degeneration.
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5	 Conclusions

A transportation network is a very complex system that consists of a full spectrum of various subsystems, 
the properties and behaviors of which are already hard to forecast. Efforts put into travel demand fore-
casting, network design problems, and revenue policies by numerous researchers are evidence of such 
difficulties. Predicting the growth of transportation networks is difficult because it requires us to consid-
er almost all subprocesses involved in network dynamics. Understanding the true relationships between 
supply and demand in transportation networks is the crucial task in theoretical development of network 
dynamics models. The difficulty also comes from practical issues, such as available data for model cali-
bration and validation. Socioeconomic, demographic, land-use, and transportation-network data from 
many years ago in an urban area must be collected and coded consistently over time. Several unresolved 
issues further complicate the problem, with the foremost one being: Is network growth simply designed 
by planners, or can it be explained by underlying natural and market forces? In light of this debate, we 
would like to view this paper as a proof of concept that some important system properties, such as road 
hierarchy and self-organization in transportation networks, can be predicted through a microscopic evo-

Figure 8:  The impacts of starting conditions and constraints on network growth
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lutionary process, a demonstration that such a microscopic agent-based model of network dynamics can 
be feasibly applied to large-scale realistic transportation networks, and an enquiry into how this concept 
can be realized and produce useful modeling tools for planners. Growth of economy, population, and 
cities has been intensively studied and knowledge accumulated from such studies has greatly aided plan-
ners. Traditionally, transportation networks have been assumed to be static or predetermined in analysis 
of urban areas. A model of transportation network dynamics can reveal more completely the impacts of 
today’s planning decisions in the future.

The present paper explores only the rise and fall of existing roads (maybe the rise and rise of existing 
roads given the preliminary simulation results), leaving the questions of how new roads are built and 
new nodes are created in realistic transportation networks to be answered by other studies. The process 
of road development and degeneration at the microscopic level is analyzed and an agent-based simula-
tion structure seems to be appropriate for modeling that process. To better describe reality, a systematic 
way to adjust cost and revenue functions based on area-specific factors such as type of roads, land value, 
and public acceptance should be considered. The inclusion of different classes of users with different val-
ues of time is an important extension. Similarly, the consideration of trucks (heavy duty vehicles), which 
have different operating characteristics and different cost structures associated with pavement wear and 
tear, would enhance the model. Another extension to the proposed network growth model is the in-
corporation of multiple travel modes, such as transit, rail, and pedestrian networks, which would allow 
planners to examine substitutional and complementary effects among various modes, and to evaluate 
a broader spectrum of transportation revenue and investment policies. Further research should test the 
sensitivity of models like this to parameters and consider constraints such as geometric design guidelines 
to better understand how constraints affect growth. 
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