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Built environment and travel behavior: Validation and application of a 1 

continuous-treatment propensity score stratification method 2 

  3 

Abstract 4 

This article discusses the validation and implementation of a propensity score 5 

approach with continuous treatments to test the existence of a causal relationship between 6 

the built environment and travel behavior using cross-sectional data. The implemented 7 

methodology differs from previous applications in the planning literature in that it relaxes the 8 

binary treatment assumption which polarizes the built environment into two extremes (e.g. 9 

urban vs suburban). The effectiveness of the proposed methodology in reducing bias was 10 

validated via Monte Carlo simulation using several data generating processes. Model results 11 

suggest that an increase in urbanization level –as measured by a newly-developed composite 12 

index of urbanization– has a negative effect on home-based maintenance car trip frequencies, 13 

and conversely, a positive effect on home-based maintenance non-motorized trip frequencies. 14 

Results estimates suggest the existence of a causal mode substitution mechanism between 15 

car and non-motorized modes given increases in the urbanization level at residential location, 16 

thus providing some empirical support to the arguments put forth by compact city advocates. 17 

Keywords: Travel behavior, Built Environment, Residential Self-selection, Causal Relationship, 18 

Propensity Score stratification, Monte Carlo Simulation.  19 
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1. Introduction 20 

Against the backdrop of urban sprawl and suburbanization, worsening traffic 21 

conditions and declining city centers, recent years have seen a paradigm shift in the 22 

conceptualization of what constitutes good urban development. Be it New Urbanism or Smart 23 

Growth in the United States, or Compact Cities in the EU and Japan, one of the main premises 24 

behind these new paradigms is that mixed-use, high density developments can significantly 25 

reduce automobile dependency and promote the use of alternative modes such as transit, 26 

bicycles or walking, thus resulting in more accessible, livable and inclusive neighborhoods and 27 

cities.  28 

The underlying assumption behind this premise is that there exists a non-spurious, 29 

causal mechanism behind the built environment-travel behavior connection. Therefore, the 30 

main objective of this article is to test the existence or not of this causal mechanism. More 31 

specifically, this study seeks to answer the following research questions: 32 

 Does the built environment, as measured by urbanization level at one’s 33 

residential location, has a causal effect on maintenance trip frequencies by 34 

mode? If so, what is the nature of this effect? 35 

 For maintenance trips, does a mode substitution effect exists between car and 36 

non-motorized modes given changes in the urbanization level at one’s 37 

residential location? 38 

In particular, given the scarce nature of panel data, this study focuses on establishing 39 

causality using more widely available cross-sectional data. To do so, a propensity score 40 

approach is implemented using a continuous treatment variable as proposed by (Author, 41 

2014). This approach overcomes the main limitation of the existing binary approach as it takes 42 
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into consideration the variability in the urbanization level of cities instead of arbitrarily 43 

polarizing the built environment into urban or suburban. This variability in urbanization is 44 

captured by a proposed continuous urbanization level index that serves as the treatment to 45 

be allocated. The estimation method allows for mitigation of the pervasive modifiable areal 46 

unit problem (MAUP). Furthermore, the performance of the continuous treatment propensity 47 

score method is validated through Monte-Carlo simulation. 48 

   The rest of the paper is structured as follows. Section 2 provides an overview of 49 

existing findings in the residential self-selection literature. Section 3 elaborates on the 50 

methodological aspects of this article including an overview of the propensity score approach 51 

(3.1), the generalization to continuous treatments (3.2), methodological comparison through 52 

Monte Carlo simulation (3.3), and the continuous treatment estimation (3.4). Section 4 details 53 

the general characteristics of the data used to test the study hypotheses, while Section 5 54 

summarizes the modeling results. Finally, Section 6 wraps up the main conclusions of the 55 

article, its policy implications and limitations. 56 

2. Literature review 57 

A considerable number of studies have addressed the self-selection problem, and 58 

since the literature has been widely documented elsewhere (see Cao et al. (2009a), Author et al. 59 

(2015)), only a brief outlook is provided here, specifically focusing on studies analyzing trip/tour 60 

frequencies, unless otherwise stated.  61 

From a cross-sectional approach, self-selection bias can be thought of as a kind of 62 

omitted variable bias. Consequently, this bias can be mitigated by including in the 63 

deterministic component of the model equation the variables associated with residential 64 

location, such as preferences and attitudes, as well as other socio-demographics. This 65 
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approach is referred to by Mokhtarian & Cao (2008) as the statistical control approach. After 66 

accounting for attitudes and preferences, Kitamura et al. (1997) found that these factors 67 

explained a higher proportion of observed trip frequencies, and controlling for them reduced 68 

the magnitude of the land use effect. It is important to note; however, that attitudes and 69 

preferences do not render the built environment effect insignificant (Chatman, 2009). Using 70 

a similar strategy, strong effects have been observed particularly for non-motorized (NMM) 71 

trips, suggesting the existence of a mode substitution mechanism with private vehicles (Cao, 72 

et al., 2006; 2009b; Naess, 2009). The statistical control approach; however, is limited by the 73 

uncertainty of the effectiveness of the covariates used, especially in the case of attitudes, 74 

where there is no overarching theory guiding the definition and measurement of attitudes 75 

(Bohte, et al., 2009). 76 

Khattak and Rodriguez (2005) found via an instrumental variable approach, that 77 

households in neo-traditional neighborhoods exhibit less car trips and shorter distances, even 78 

though overall trip frequencies are similar. Boarnet and Sarmiento (1998) used the 79 

percentage of buildings built between the 40s and 60s as an instrument for the built 80 

environment, and found no significant effects in most models and high sensitivity to model 81 

specification. On the other hand, using the same instrument, Vance & Hedel (2007) found 82 

evidence backing the existence of a casual mechanism between urban form and car use, and 83 

robustness to alternative model specifications. In spite of all, finding a proper instrument can 84 

be a difficult task. 85 

 From a quasi-longitudinal approach, changes in perception of accessibility have been 86 

associated with driving and walking level changes (Handy, et al., 2005; Handy, et al., 2006). 87 

SEM studies have also found evidence of mode substitution with higher level of car use and 88 
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lower levels of transit use associated with suburban relocation (Scheiner & Holz-Rau, 2013), 89 

and reduced driving associated with relocation to neo-traditional neighborhoods (Cao, et al., 90 

2007). The main limitation of this approach; however, is the risk of forgetting past behaviors, 91 

and the impossibility of measuring attitudes in the past (Cao, et al., 2007). 92 

Finally, from a longitudinal approach, using first-differenced OLS regressions Krizek 93 

(2003) found that as neighborhood accessibility increases, number of household tours 94 

increase, yet driven distances decrease. Author et al. (2014b)  found via a fixed effect model, 95 

evidence of substitution effect between nearby activities reached by non-motorized modes and 96 

faraway activities reached by car, given accessibility level changes at home location. Although ideal 97 

due to its proximity to an experimental situation, true panel data studies in the literature are rather 98 

few in number due mostly to data collection difficulties. 99 

Propensity score applications in the planning literature 100 

Although not extensively, several studies in the transport literature have implemented 101 

propensity score methodologies as a way to address the residential self-selection problem. In 102 

a non-randomized treatment assignment context, its attractiveness derives from the 103 

potential to remove bias stemming from a perhaps large set of observed covariates Xi using a 104 

single scalar function (Rosenbaum & Rubin, 1983). 105 

Empirical findings suggest that even after controlling for residential self-selection, 106 

positive relations exist between vehicle kilometers driven and distance from the city center 107 

(Cao, et al., 2010), and between higher levels of business diversity and four-way intersections 108 

with more walking (Boer, et al., 2007). In addition individuals living in neo-traditional 109 

neighborhoods were found to walk more than those living in suburban areas (Cao, 2010). 110 
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Although these studies highlight the potential of the propensity score approach to 111 

mitigate selection bias, most studies polarized the built environment to a binary treatment 112 

(usually urban vs. suburban), ignoring the inherent variability in terms of how “urban” or how 113 

“suburban” a neighborhood is. In that sense, the continuous approach discussed in this article 114 

allows for the estimation of the average treatment effect by taking into consideration the full 115 

spectrum of variability in the urbanization level across a city, doing without the need to 116 

arbitrarily define what  “suburban” or “urban” means. 117 

3. Methodology 118 

3.1. Propensity score function and treatment estimators: The binary treatment case 119 

Rosenbaum and Rubin (1983) defined the propensity score function as the conditional 120 

probability of treatment given observed covariates.  The theoretical basis supporting the 121 

propensity score are discussed in detail in Rosenbaum and Rubin, but are briefly summarized 122 

here in order to provide a general understanding of the concept at hand.  123 

 The propensity score as a balancing score: Given a binary treatment z, as a function of 124 

observed covariates the propensity score will balance Xi, so that conditional on the 125 

propensity score function   P(𝐗𝐢) = P(zi|𝐗𝐢), the distribution of Xi is the same for 126 

treated and untreated groups. In other words, conditional on P(Xi), Xi and z are 127 

independent 128 

1) Pr {zi|𝐗𝐢, P(𝐗𝐢)} = Pr{zi|P(𝐗𝐢)} 129 

 The strong ignorability assumption: Given equation (1), strong ignorability of 130 

treatment implies that outcomes (Y0i,Y1i) are independent from treatment assignment 131 

given P(Xi). In addition, every unit has a chance to receive either treatment state 132 



7 
 

2) P{(𝑌0𝑖, Y1i)|zi, P(𝐗𝐢)} = P{(𝑌0𝑖, Y1i)|P(𝐗𝐢)} ; 0 < P(zi = 1|P(𝐗𝐢) < 1  133 

Rosenbaum and Rubin (1983) note that in a randomized trial the propensity score is a 134 

known function defined by the randomization mechanism. In a nonrandomized case; however, 135 

this function is not known but can be estimated from observed data, using limited dependent 136 

variable models such as the logit model in the case of discrete choices.  Care should be taken 137 

to include as much relevant covariates as possible in the specification function. 138 

Given that the two conditions above hold, Rosenbaum & Rubin (1983) show that at 139 

any value of the balancing score, the difference between the treatment and control means is 140 

an unbiased estimate of the average treatment effect at the value of the balancing score; as 141 

such, unbiased estimates of treatment effects can be estimated via several estimators.  To do 142 

so, several approaches have been proposed, of which the most common are matching 143 

(Heckman, et al., 1998), weighting (Horvitz & Thompson, 1952; Imbens & Wooldridge, 2008), 144 

and stratification (Rosenbaum & Rubin, 1984), of which the latter is of most concern to this 145 

study, as it can be easily adapted to continuous treatment. 146 

 The stratification approach consists on sub-classifying the sample on J number of 147 

strata based on the propensity score where the ATE can be estimated as  148 

3) ATEstratification = ∑ (𝑌̅𝑗1 − 𝑌̅𝑗0) ∙ 𝑊𝑗
𝐽
𝑗=1  149 

where  𝑌̅𝑗1 is the mean outcome in class j when treated, 𝑌̅𝑗0 the mean outcome in class j when 150 

untreated, and 𝑊𝑗 is the relative weight of strata j estimated as nj/N. Rosenbaum and Rubin 151 

(1984) showed that a 5 strata sub-classification of the propensity score might reduce over 152 

90% of bias due to observed covariates. Imbens & Wooldridge (2008) point out; however, 153 

that although five strata have been commonly used empirically, depending on sample size 154 
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and the joint distribution of the data, fewer or more strata might results in lower mean square 155 

error. 156 

3.2. Generalizing the propensity score to continuous treatments 157 

A generalization of the propensity score method was proposed by Imai and van Dyk 158 

(2004) to allow for arbitrary treatment regimes Ti
A. Following Imai and van Dyk, the 159 

distribution of a continuous treatment Ti
A given a vector of covariates Xi, is modeled as 160 

Ti
A|𝐗𝐢~N(𝐗𝐢

⊺𝛃,σ
2

) . The propensity score function  P(𝐗𝐢) = Pr{Ti
A|θ

𝛙
(𝐗𝐢)}   is assumed 161 

Gaussian distributed, and parameterized by 𝛙 = (𝛃,σ
2

) , so that θ
𝛙

(𝐗𝐢) = 𝐗𝐢
⊺𝛃 .  This 162 

implies that the propensity score function is solely characterized by the scalar θ, and its 163 

estimator θ
̂

𝛙
(𝐗𝐢) = 𝐗𝐢

⊺𝛃̂, is uniquely characterized by the conditional mean function of the 164 

linear regression of the treatment variable Ti
A = tP and all covariates Xi, where tP  is a 165 

potential treatment. 166 

  It can also be shown that for non-binary treatments, the propensity score is as a 167 

balancing score 168 

4) Pr {Ti
A|𝐗𝐢 , P(𝐗𝐢)} = Pr {Ti

A|P(𝐗𝐢)}           169 

and that given P(Xi) the outcome distribution of a potential treatment tP, Yi(tP) is independent 170 

from treatment assignment  171 

5)  𝑃𝑟{𝑌𝑖(𝑡𝑃)| 𝑇𝑖
𝐴, 𝑃(𝑿𝒊)} = 𝑃𝑟 {𝑌𝑖(𝑡𝑃)|𝑃(𝑿𝒊)}                    172 

for any tP ∈  𝒯 , where 𝒯  is a set of potential treatment values. Thus, by averaging 173 

Pr {Yi(tP)|P(𝐗𝐢)} over the distribution of P(Xi), the distribution of the outcome of interest can 174 

be obtained as 175 
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6)  Pr{𝑌𝑖(𝑡𝑃)} = ∫ Pr{Yi(tP)|Ti
A = tP,θ} Pr(θ)dθ.                    176 

This integration can then be approximated parametrically as Pr𝛟{Yi(tP)|Ti
A = tP} stratified 177 

by the propensity score θ, where 𝛟 parameterizes the distribution. Thus, the distribution of 178 

Yi(tP) can be approximated as the weighted average of the within strata outcome distribution 179 

7) Pr{𝑌𝑖(𝑡𝑃)} ≈ ∑ Prϕĵ
{Yi(tP)|Ti

A = tP} ∙ Wj
J
j=1                        180 

where ϕĵ  is the within strata estimate of unknown parameter 𝛟 in strata j, and Wj is the 181 

relative weight of strata j. 𝛟 can then be estimated as 182 

8)  𝛟̂ = ∑ ϕĵ {Yi(tP)|Ti
A = tP, 𝐗𝐢} ∙ Wj

J
j=1          183 

where covariates Xi are included to control for variability of θ within strata. The average 184 

treatment effect is then a function of ϕ̂; in this case, the weighted treatment coefficient of 185 

the regression of the outcome variable Yi(tP) on tP and all covariates, where weights are given 186 

by the sample relative weight nj/N. Variance for the weighted coefficients can be estimated 187 

as 188 

9)  ∑ 𝑊𝑗
2𝐽

𝑗=1 ∙ 𝑉𝑎𝑟(𝛽̂𝑗)            189 

 where Wj is the weight of each strata j, where ∑ 𝑊𝑗 = 1𝐽
𝑗=1 . 190 

3.3. Methodological comparison through simulation 191 

The performance of the propensity score methodology is tested against the OLS full-192 

covariate model (statistical control approach) through Monte Carlo simulation. Two set of 193 

simulations are estimated, corresponding to home-based maintenance trips by car and by 194 

non-motorized means. Although relevant covariates related to travel behavior and residential 195 

location are known to some extent, the true data generating process is unknown, in that sense, 196 



10 
 

Following Rubin & Thomas (2000) and Imai and van Dyk (2004), exponential functions were 197 

used to specify two data generating processes (DGP), an additive model and a multiplicative 198 

model, with different levels of linearity. For the additive models, departing from Imai and van 199 

Dyk, the data generating process is of the form 200 

10)   Yi = 𝛿𝑖 𝑇𝑖
𝐴 + c1(𝜆) ∑ 𝝀𝑘𝑒𝑚𝑘𝑿𝑖𝑘𝐾

𝑘=1        201 

while for the multiplicative models, the data generating process is of the form 202 

11)     Yi = 𝛿𝑖 𝑇𝑖
𝐴 + c2(𝜆)𝑒∑ 𝜆𝑘𝑿𝑖𝑘

𝐾
𝑘=1             203 

where for the ith individual, Yi is the simulated outcome (e.g. home-based maintenance trip 204 

frequencies by mode), δi is the treatment effect, Ti
A is the assigned treatment, and λk is a 205 

vector of zero-mean Gaussian distributed coefficients for a vector of covariates Xi  of k 206 

dimensions.  The variance of λk is then used to control the level of linearity of each model. The 207 

component m in the additive model is a set of independently distributed variables that take 208 

values of -1 or +1 with equal probability. Each simulation was run with 1000 replications. In 209 

these applications the constants c1(𝜆) and c2(𝜆) are fixed to 1. 210 

The degree of linearity of each model is measured by the average R2 value of the regression 211 

of each function on the set of covariates X based on a 1000 replications1. For each DGP, three 212 

levels of linearity are considered. A highly linear model with average R2 ≈ .95, a moderately 213 

linear model with average R2 ≈ .85, and a moderately non-linear model average R2 ≈ .75.  214 

As in Rosenbaum & Rubin (1984) and Imai & van Dyk (2004), the simulations are conducted 215 

under the assumption that the true propensity score function in known. 216 

                                                           
1 Covariates are fixed among all replications as the observed values in the dataset are used. 
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3.4. Defining the treatment of interest: A continuous index of urbanization 217 

Urbanization level at the location of residence, measured as a continuous variable, 218 

was defined as the treatment variable of interest. In order to quantify urbanization level, a 219 

latent variable model was specified using confirmatory factor analysis (CFA). CFA not only 220 

allows for a complete specification of the nature of relation between the latent factor and its 221 

indicators, but also allows for the calculation of goodness of fit statistics to test how well the 222 

estimated solution reproduces the observed variances and covariances of the indicators 223 

(Brown, 2006). 224 

3.4.1.  The spatial analysis unit 225 

A critical part of the analysis is the definition of the basic spatial unit. Particularly due 226 

to the modifiable areal unit problem (MAUP), a pervasive yet widely ignored problem in 227 

spatial analysis, stemming from the way spatial data is aggregated. This problem, as argued 228 

by Fotheringham & Wong (1991)  might have unpredictable effects in multivariate analysis. 229 

Given that spatial zones in widely used datasets such as the national census are defined rather 230 

arbitrarily, how sensitive are estimated results to changes in terms of zoning and scale is thus 231 

a non-trivial problem. Empirical research; however, has shown that a regular aggregation 232 

scheme such as a rectangular tessellation tends to produce more tractable results than 233 

aggregation on census geographic units (Putman & Chung, 1989; Zhang & Kukadia, 2005). 234 

Accordingly, to address the zonal problem, instead of the existing political district divisions, a 235 

regular sampling scheme is implemented. A 300m wide hexagon (150m from the center to 236 

any vertex) tessellation was used to subdivide the city area in regular spatial units. Although 237 

more common in ecological modelling, a hexagonal grid was selected as it presents some 238 
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advantages over the rectangular grid, such as a better match in Euclidian distance 239 

measurements, and greater clarity in visualization (Birch, et al., 2007). 240 

Regarding the aggregation scale problem, as suggested by Jelisnki & Wu (1996) and 241 

Dark & Bram (2007) a sensitivity analysis was conducted in order to analyze how sensitive 242 

results are to variations in the scale of analysis. Therefore, in addition to the 300m wide 243 

hexagon, three additional scales were used for the sensitivity analysis; 100m, 600m and 244 

1000m wide hexagons (Sensitivity analysis results not included here, but are available upon 245 

request to the authors). 246 

3.4.2. Definition of the indicator variables 247 

In urban economics, combination of factors such as resource and transport advantage, 248 

economies of scale, and preference for variety in consumption and production are commonly 249 

agreed to give way to the urban agglomerations (Fujita, 1989).  A myriad of factors such as 250 

land use allocation, land rent prices and population density are usually defined as functions 251 

of distance from the city center (Alonso, 1964; Mills, 1967; Fujita, 1989), while more recently 252 

in urban planning and transportation studies, particular attention has been given to the issue 253 

of accessiblity, as determined by the spatial distribution of potential destinations, its 254 

attractiveness and their ease of reach (Handy & Niemeier, 1997; Handy & Clifton, 2001).   255 

Guided by urban economics and planning theory, a monocentric city would thus 256 

exhibit at its center higher access to goods and services (both in term of supply and ease of 257 

access), higher land use intensity and higher land prices, decreasing as one moves away from 258 

the center. Put another way, the closer to the city center, the higher the urbanization level. 259 

As such, for the purposes of this analysis urbanization level is conceptualized as a latent 260 

construct that accounts for the observed spatial distribution of the city in terms of supply of 261 
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goods and services , land use intensity, transport mobility and land prices. Indicators were 262 

selected based on the results of an exploratory factor analysis (EFA) conducted on a set of 263 

potential indicators theoretically associated with urbanization levels. In addition, the spatial 264 

data used for this analysis (with the exception of population density) has the advantage of 265 

being available in the form of point data, which allows for a flexible definition of the analysis 266 

unit in order to address the MAUP issue discussed earlier. The four indicators used were:  267 

A. Commercial Kernel density: Using location data of commercial facilities extracted from the 268 

geo-referenced phonebook data provided by ZENRIN Co., Ltd (2011), a Kernel density of all 269 

non-industrial services was estimated via ArcGIS, as a measure of supply of goods and services. 270 

As defined by Silverman (1986), the multivariate Kernel estimator can be written as 271 

12)  𝑓(𝑥) =
1

𝑛ℎ2
∑ 𝐾𝑛

𝑖=1 {
1

ℎ
(𝒙 − 𝑿𝑖)}              272 

where n is the sample size, h is the bandwidth or smoothing parameter, and K is a Kernel 273 

weighting function, defined for a bivariate variable x following Silverman (1986) as 274 

13)  𝐾(𝑥) = {  3𝜋−1(1 − 𝒙⊺𝒙)2    𝑖𝑓 𝒙⊺𝒙 < 1
0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   275 

A symmetrical density function is drawn on each data point (each commercial facility) 276 

following the specified Kernel weighting function in equation (13) extending up to the defined 277 

bandwidth h at which point the weight becomes zero. The kernel density is thus the sum of 278 

these density values at each sampling point where the sampling mesh size was set at 50m x 279 

50m. 280 

Bandwidth h was defined rather arbitrarily at 500 meters. Nevertheless, estimated 281 

density values at bandwidths of 500 meters, 750 meters and 1,000 meters yielded high 282 

correlations, with all coefficients above 0.95. In that sense, since CFA aims at reproducing the 283 
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observed variances and covariances of the data, the bandwidth specification is of little 284 

concern for the purposes of this analysis. 285 

B. Population density: Population density was used as a measure of land use intensity. Since 286 

data from the 2005 national census was used (PASCO, 2005), at its finest resolution, the data 287 

is available only at the district level, as a result, it not possible to control for the zoning effect 288 

in the data.  289 

C. Weekday transit frequency was used as a measure of transport mobility. Railway data was 290 

gathered from publicly available service timetables from each operator (Fukuoka City 291 

Transport Bureau, 2014; JR Kyushu, 2014; JR West, 2014; Nishi-Nippon Railroad Co., Ltd, 2014) 292 

while bus data was provided by the Ministry of Land, Infrastructure, Transport and Tourism 293 

(MLIT, 2011a; MLIT, 2011b). Weekday transit frequencies for locations within 800 meters 294 

from train stations, and 300 meters from bus stops were calculated and added, resulting in a 295 

single transit accessibility index. 296 

D. Land price: Land price data was provided by the Ministry of Land, Infrastructure, Transport 297 

and Tourism (MLIT, 2013a; MLIT, 2013b) . Land prices were interpolated from 1,965 data 298 

points extracted from the combined datasets via ArcGIS using the nearest neighbor method. 299 

4. Survey design and data characteristics 300 

The main data source for this analysis was an online survey conducted in the city of 301 

Fukuoka, Japan. The survey was conducted in December 2013, through Macromill, Inc. a net 302 

research company with over 2.3 million monitors all over Japan. The survey aimed at 303 

gathering four major types of information: (i) individual and household attributes, (ii) mobility 304 

biography (which includes relocation history and main modes of transport during different 305 
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life stages (see Axhausen (2008)), (iii) attitudes related to transport and residential location, 306 

and (iv) travel behavior. The data gathered corresponds to a large extent to relevant 307 

covariates largely cited in the residential self-selection literature as playing in a role in co-308 

explaining residential location and/or travel behavior (see Cao et al. (2009a) for an extensive 309 

review on the issue). 310 

The target population was adults living in Fukuoka City at the time of the survey, and 311 

the sampling method used was stratified random sampling, where the stratification criteria 312 

was household composition. At first, respondents were randomly sampled from the monitor 313 

list and subjected to a pre-survey in order to gather data on their household composition. 314 

Respondents were then selected to participate in the main survey depending on the strata 315 

sizes and expected response rates. The survey was pre-tested using a convenience sample of 316 

students and faculty in the Department of 〇〇 of the University of 〇〇. 317 

Table 1 compares the population distribution to the sampling distribution. The single 318 

elder cohort was underrepresented in the sample by almost 7 percentage points; conversely, 319 

the single young cohort was over-represented the same amount. 320 

Table 1. Individual and household sample characteristics 321 

Household type Frequency 
Sample 

percentage 
Population 
percentage 

Single household 314 47.9% 47.7% 
    Of which: Young (age 20-64) 302 46.0% 39.2% 
    Of which: Elder (age 65 and over) 12 1.8% 8.5% 
Couples only 101 15.4% 15.1% 
    Of which: Young (age 20-64) 60 9.1% 8.7% 
    Of which: Elder (age 65 and over) 41 6.3% 6.5% 
Nuclear household 
(including single parent households) 

201 30.6% 31.3% 

Three generation household & others 40 6.1% 6.0% 

Total 656 100% 100% 

Population data source: 2010 population census of Japan 
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Given the complexity of the survey, a computer interface was considered the best 322 

medium given the possibility of automatically tailoring the survey to the respondent’s 323 

answers as the survey progresses. Concerning the possibility of coverage error stemming from 324 

the exclusion of people with no access to the internet or not enough digital literacy to answer 325 

the questionnaire, internet penetration rate for Japan was estimated at 79.1% for 2011. 326 

Among the 13-49 years old cohort, penetration rate stood up at 90%, while for the 60-64, 65-327 

69, and 70-79 cohorts, rates stood at 73%, 60% and 42% respectively (MIC, 2012). In terms of 328 

digital literacy, MIC (2012) also estimated that among internet users, users who use the 329 

internet for purchases or trade accounted for 60%, although a gap was observed between 330 

users under 49 years old and older users. In that sense, in spite of a high diffusion rate, for 331 

older cohorts there might exist some limitations in terms of sample representativeness. 332 

4.1.  General characteristics of covariates 333 

General sample characteristics were compared against population characteristics 334 

taken mainly from the 2010 national census and the 2011 Private Income Statistical Survey 335 

(National Tax Agency, 2012) to check the representativeness of the sample. Due to space 336 

limitations, in addition to general socio-demographics, only covariates that made the final 337 

propensity score model (see Section 5.1.) are summarized in Table 2. 338 

As is usual in online questionnaires, the average age in the sample is lower than the 339 

population sample suggesting a slight bias towards the young. Sample average household size 340 

is also larger, with a sample average of 2.21 against the population average of 2.01. Compared 341 

against the Private Income Statistical Survey for 2011 (National Tax Agency, 2012), In general 342 

the income distribution is rather similar to the national average distribution, although 343 

consistent with the web-survey literature (Couper, 2000), higher income households are 344 
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slightly over-represented in samples while lower income cohorts are somewhat 345 

underrepresented. 346 

In order to account for the effect of built environment characteristics at previous 347 

locations respondents were asked to indicate the address of the 3 places where they have 348 

spent most of their lives (besides their current location, which was asked separately). In 349 

addition, respondents were asked to state the life-course events, if any, motivating these 350 

relocations. The most frequently cited reasons for moving to the present location are 351 

employment-related reasons (19%) marriage (12%) and school-related reasons (10%). 352 

In terms of car ownership, the sample mean is estimated at 0.7 vehicles per household 353 

against a mean population value of 0.98 per household, the largest difference among 354 

measured variables. On the other hand, the ratio of driving license holders stands at 89% 355 

against a population ratio of 62%, although this difference might be partly explained by the 356 

exclusion of the under-20-years-old cohort.  357 

Regarding attitudes and habits, automobile use habit was measured using the 358 

Response Frequency Index (RFI) proposed by Verplanken et al. (1994) . Respondents were 359 

presented with 10 hypothetical trips and given six travel modes (Car, train, bicycle, walk, 360 

motorbike and other) to choose from.  361 

 362 

 363 

 364 

 365 

 366 
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Table 2. Individual and household sample characteristics 367 

Variable name Mean Population mean Std.Dev. 

Household characteristics  2010 census data  
Household size 2.22 2.01 1.38 
Number of children 0.46 - 0.82 
Number of cars 0.70 0.98 0.67 
Driver to car ratio 0.84 - 0.29 

Number of workers 1.08 - 0.70 
House is company/school lodge 0.03 - - 

Job located in city center 0.33 - - 

Household yearly income1  NTA National average  

     Under JPY2,000,000 0.20 0.24 - 

     From JPY2,000,001 to JPY3,000,000 0.18 0.17 - 

     From JPY3,000,001 to JPY4,000,000 0.16 0.18 - 

     From JPY4,000,001 to JPY5,000,000 0.12 0.14 - 

     From JPY5,000,001 to JPY6,000,000 0.11 0.09 - 

     From JPY6,000,001 to JPY7,000,000 0.07 0.06 - 

     From JPY7,000,001 to JPY8,000,000 0.06 0.04 - 

     From JPY8,000,001 to JPY9,000,000 0.03 0.03 - 

     From JPY9,000,001 to JPY10,000,000 0.02 0.02 - 

     From JPY10,000,001 to JPY12,000,000 0.03 
0.04 

- 

     Over JPY12,000,000 0.02 - 

Lifetime events motivating relocation    

Work (start, change) 0.19 - - 

School(enrollment, change) 0.12 - - 

Wedding 0.10 - - 

Empty nest 0.01 - - 

Job promotion 0.02 - - 

Individual characteristics  2010 census data  

Male 0.48 0.47 - 

Age 43.43 48.64 13.39 

Driver (Valid driver's license) 0.89 0.62 - 

Worker (as primary occupation) 0.66 - - 

University degree holder 0.49 - - 

Attitudes and habits    

Attitude: Car lover -0.02 - 0.99 

Attitude: Urbanite 0.06 - 0.98 

Car use Habit 4.18 - 3.37 

Life ratio using transit as main travel mode 0.35 - 0.36 

Log of weighted population density at previous 
locations 

9.03 - 0.90 

1JPY 1 = USD 0.091 368 

Habit was then measured as the simple summation of all the times car mode was 369 

selected. In terms of attitudes, a three factor Principal Component Analysis (PCA) was used 370 
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to estimate the factors that explain unobserved attitudes towards residential location and 371 

transport. Respondents were asked to rate on a five point Likert Scale the level of agreement 372 

with 30 statements regarding private vehicles, public transport, non-motorized modes and 373 

residential location. The questionnaire design was largely based on previous studies by 374 

Kitamura et al. (1997) and Cao et al. (2009b), adapted to the Japanese case, and pre-tested 375 

accordingly.  376 

4.2.  Outcome variable of interest 377 

The outcome variables considered for this analysis were home-based maintenance trip 378 

frequencies by mode. Maintenance activities refer to those activities other than subsistence 379 

activities (work and school related activities) that need to be conducted in the course of daily 380 

life such as grocery shopping, visits to the doctor, going to the bank, and other personal 381 

business. Discretionary activities were excluded as discretionary activity generation might be 382 

more dependent on factors such as social network characteristics, which are not controlled 383 

for in the current dataset. Respondents were asked to state the number of trips (excluding 384 

the return trip) taken during the week before up to the survey day by purpose and mode (see 385 

Table 3).  386 

Table 3. Summary of reported travel behavior characteristics of the sample 387 

Variable name Mean Std. Dev. Minimum Maximum 

Total home-based maintenance trips 4.358 3.616 0 50 

      Of which: Car trip 1.321 1.955 0 11 

      Of which: Transit trips 0.295 0.894 0 10 

     Of which: Non-motorized trips 2.741 3.301 0 40 

 388 

 389 

 390 
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5. Model specification and results 391 

5.1. Urbanization index model  392 

Following the explanation provided in Section 3.4., The CFA model was estimated 393 

using MPLUS 6, developed by Muthen & Muthen (2010). Units were excluded from the 394 

analysis if (i) the population density at any given unit is equal to zero, or (ii) data for any of 395 

the indicator variables is not available for a given unit. This yielded an effective sample size of 396 

18,485 cells out of the total 19,686 cells in which the study area was tessellated. 397 

As a result of the multivariate non-normality condition of the indicator variables (i) all 398 

variables were introduced in their log form, and (ii) the robust maximum likelihood estimator 399 

was used. Although the issue of goodness of fit statistics remains still a hotly debated subject 400 

(Marsh, et al., 2004; Saris, et al., 2009; Heene, et al., 2011) Goodness of fit acceptable 401 

thresholds are guided by the values recommended by Hu & Bentler (1999) as follows: 402 

Standardized root mean square residual SRMR (≤0.08), comparative fit index CFI (≥0.95), 403 

Tucker-Lewis index TLI (≥0.95), and a  root mean square error of approximation (RMSEA) cut-404 

off value of ≤ 0.05. 405 

With 2 degrees of freedom, the Chi-square statistic is significant at the 0.01 level. This 406 

might suggest that the model does not reproduce the observed variances and covariances of 407 

the indicators well enough; nevertheless, Chi-square is inflated by sample size, thus tending 408 

to routinely reject large sample size solutions (Brown, 2006). Other indices not sensitive to 409 

sample size, however, suggest an acceptable model fit. RMSEA is 0.037, with a confidence 410 

interval of 0.028 and 0.046 at its lower and upper boundaries respectively. CFI and TLI are 411 

0.999 and 0.996 respectively, while the standardized root mean square residual (SRMR) is 412 

0.005. The path diagram of the estimated latent variable is shown in Figure 1. 413 
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 414 

Figure 1. Path diagram of "Urbanization Level" latent variable 415 

 416 

Another criteria for evaluating the model was the modification indices, presented in 417 

Table 4. Modification indices reflect Chi-square changes given freely estimating the error 418 

covariances. In practice, modification indices above the 3.84 level suggest areas of strain in 419 

the model or potential improvements. However; since the indices reflect changes in Chi-420 

square, they are also sensitive to large sample sizes. Fit-improving specification search guided 421 

by a sound theoretical reasoning is a widely accepted practice in the CFA field, and given the 422 

complexity of spatial dynamics, arguments can be put forth to support this approach. That is, 423 

the theory that other sources of covariation other than the urbanization latent factor exist 424 

among indicators is not at all unrealistic. However, in the absence of a well-established error 425 

theory to guide these specifications the current more parsimonious model was selected with 426 

error measures (unique variances) assumed random. 427 

Chi-Square test of model fit (d.f.) 51.38 (2); p-value: 0.000; RMSEA (C.I. 90%) : 0.037 (0.028, 0.046)
Probability RMSEA  ≤.05 : 0.994; CFI: 0.999; TLI: 0.996; SRMR: 0.005

Value in parenthesis is total explained variance by the factor.
All parameter estimates are significant at the p < 0.01 level. 

Due to multivariate non-normality, estimator is Robust Maximum Likelihood.

URBANIZATION
LEVEL

Log of land 
prices

0.439

0.749
(0.561)

Log of 
weekday 

transit 
frequency

0.362

0.799
(0.638)

0.799
(0.638)

Log of 
population 

density

0.362

Log of 
commercial 

Kernel density

0.141

0.927
(0.859)
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Table 4. CFA model modification indices 428 

With statements Modification 
index 

E.P.C. STD E.P.C. 

Log of population density with log of Kernel 
density 

9.714 -0.069 -0.068 

Log of transit frequency with log of Kernel density 19.278 -0.105 -0.095 
Log of transit frequency with log of population 
density 

51.760 0.144 0.081 

Log of land price with log of Kernel density 51.744 0.048 0.127 
Log of land price with log of population density 19.230 -0.026 -0.044 
Log of land price with log of transit frequency 9.714 -0.020 -0.031 

E.P.C.: Expected parameter change; STD E.P.C.: Fully standardized expected parameter change 429 
Only indices above 3.84 are reported 430 

 431 

All estimated parameters were statistically significant at the 1% level. Factor loadings 432 

suggest that all indicators are strongly related with the latent factor urbanization level, 433 

especially the log of commercial density, whose total explained variance stands at 85.9%. 434 

Figure 2 illustrates the spatial distribution of the estimated urbanization level latent variable. 435 

Clearly, there is a marked mono-centricity in the spatial distribution of the city, with the 436 

highest levels of urbanization concentrated mainly around Chuo ward and spreading 437 

outwards. 438 

A fixed-weight partial cross-validation test was conducted to validate the model 439 

beforehand. As proposed by MacCallum et al. (1994) the dataset was split into two mutually 440 

exclusive random samples; the first sample is used as to calibrate the model, while the second 441 

one is used to validate it. Results presented in this article use the full dataset.  442 

 443 
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 444 

Figure 2. Urbanization level map of Fukuoka city 445 

5.2. Estimating the propensity score function 446 

As explained in Section 3.2., an estimate of the propensity score function 𝜃 for the continuous 447 

treatment variable urbanization level is estimated through an OLS regression. Covariate 448 

selection was based both on findings from the literature as well as the theoretical 449 

considerations. Three types of variables are included in the regression function: household 450 

characteristics, lifetime events motivating the relocation and individual characteristics such 451 

as education level, habits and attitudes, which are assumed representative of those members 452 

involved in the residential location choice decision. Estimation results are presented in Table 453 

5. R-squared of the final model was 0.25 suggesting an acceptable model fit. Note that the 454 

propensity score function is the same for both the simulations and the empirical analysis. 455 

 456 

 457 
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Table 5. Propensity Score OLS Estimation Results 458 

N 491 S.E. of Regression 0.5331 

Parameters 19 R-square 0.25 

d.f. 472 Adj. R-square 0.22 

RSS 134.14 F test (p-value) 8.66 (.0000) 

Variable β S.E. t-Stat 

Constant 1.505 0.337 4.467 

Household characteristics    

Household size -0.087 0.039 -2.219 

Number of children 0.110 0.053 2.079 

Number of cars -0.164 0.060 -2.726 

Driver to car ratio 0.249 0.100 2.477 

Number of workers 0.049 0.037 1.339 

High Income 0.141 0.066 2.144 

House is company/school lodge -0.193 0.132 -1.465 

Job located in city center 0.072 0.048 1.487 

Lifetime events motivating relocation    

School(Start, change) 0.132 0.080 1.648 

Wedding -0.156 0.079 -1.981 

Empty nest 0.707 0.327 2.161 

Job promotion -0.201 0.149 -1.354 

Individual characteristics    

University degree holder 0.060 0.047 1.258 

Attitudes and habits    

Attitude: Car lover -0.035 0.025 -1.392 

Attitude: Urbanite 0.059 0.025 2.368 

Car use Habit -0.034 0.012 -2.796 

Life ratio using transit 0.103 0.068 1.503 

Log of weighted population density at previous 
locations 

0.049 0.033 1.517 

 459 

It is important to note that as a prediction model, the object of interest of this 460 

regression is not the individual coefficients of each explanatory variable, but the scalar 461 

estimate θ
̂

. Following the balancing score assumption described in equation (1), θ
̂

 balances 462 

all the covariates thought to affect treatment allocation. This warrants the inclusion in the 463 

final model of variables that although theoretically significant might be rendered insignificant 464 

or exhibit the wrong sign due to multicollinearity. 465 

To verify the balancedness of covariates given θ
̂

, as suggested by Imai and Van Dyk 466 

(2004) each covariate was regressed against the original treatment variable. The same 467 
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regressions were then run a second time but this time conditioning on θ
̂

. OLS was used for 468 

continuous covariates while binary logit was used for dummy covariates. As Figure 3 469 

illustrates, without controlling for θ
̂

, most covariates are strongly correlated with the 470 

treatment, but once conditioned on  the propensity score estimate, this correlation is 471 

considerably reduced, evident in the drop of the t-statistics for each covariate. 472 

 473 
Figure 3. Standard Normal Quantile Plots of t-Statistics of covariates with and without 474 

controlling for the propensity score estimate 475 

 476 

5.3. Measuring the performance of the propensity score stratification against OLS 477 

As discussed in Section 3.3., for each of the 12 model specifications (3 additive models 478 

+ 3 multiplicative models x 2 outcome variables), treatment effect is estimated using a full-479 

covariate OLS, and propensity score stratification stratified on θ
̂

 into roughly equal sub-480 

classes j, where  j= 3, 5 and 7 strata respectively. In addition all propensity score models are 481 

estimated with no covariates, and with the full set of covariates, totaling 72 models.  482 

The performance of each model is compared against the full-covariate OLS estimates 483 

(statistical control approach), measured in terms of absolute bias where 484 

(13)    𝐴𝐵𝑖𝑎𝑠̂ =
1

𝑅
∑ 𝛿𝑅

𝑟=1 − 𝛿       485 
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and mean squared error where 486 

14)  𝑀𝑆𝐸̂ =
1

𝑅
∑ (𝑅

𝑟=1 𝛿 − 𝛿)2     487 

where 𝛿 is the estimated treatment effect and R is the number of replications. 488 

In terms of treatment effects, performance comparison is conducted first under the 489 

assumption of a fixed treatment effect that is constant to all individuals, and second, under 490 

the assumption of a variable treatment effect defined as a function of another variable. For 491 

the constant treatment effect, the estimated OLS values from full covariate models on the 492 

real dataset was used. In the variable treatment case the treatment parameter was defined 493 

as a function of car use habit, where for individual i 494 

15)  𝛿i = 10−1(10 − H) δ
𝑚

 495 

where H is the car use habit index as measured by the Response Frequency Index method, 496 

and δm is equivalent to the constant treatment parameter for mode m. Under this function, 497 

the treatment effect tends to zero as the car use habit increases. This is, however, an arbitrary 498 

function in order to illustrate the variable treatment case, but another function might have 499 

been used as well. 500 

For the constant treatment case, simulated results are shown in Tables 6 and 7, for 501 

car trips and NMM trips respectively, while Tables 8 and 9 illustrate results for the variable 502 

treatment case. Results are given in percentage bias change (or MSE change) relative to the 503 

OLS estimates. Positive values indicate that the model underperforms the benchmark OLS 504 

model (bias increases relative to OLS), while negative values suggest that the model 505 

outperforms the benchmark model (bias decreases relative to OLS). 506 
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Compared to the OLS estimates, models stratified on the propensity score function 507 

reduced absolute bias up to 76% and mean squared error up to 94%, with full-covariates 5-508 

strata and 7-strata models performing the best. Although in a very few cases the no-509 

covariates stratified models outperformed all other models, more than 50% of these models 510 

underperformed the benchmark models, which supports the inclusion of all covariates in the 511 

estimation, a point that has also been noted by Imai and van Dyk (2004). In general, the 512 

simulation results suggest that propensity score stratification is indeed successful in reducing 513 

estimation bias against the OLS. 514 

Table 6. Simulated changes in absolute bias and mean squared error compared against the 515 

OLS estimates for home-based maintenance trips by car (Constant treatment) 516 

 3 strata 5 strata 7 strata 

% Change in absolute bias N.C. A.C. N.C. A.C. N.C. A.C. 

Additive models       

Highly linear 7.43% -1.90% -1.89% -52.34% -15.24% -26.89% 
Moderately  linear 9.94% -2.82% 0.42% -51.25% -13.63% -27.67% 
Moderately non-linear 6.08% -2.12% -3.12% -52.90% -16.03% -27.09% 

Multiplicative models       

Highly linear 90.73% -20.54% 22.33% -41.93% 2.09% -34.58% 

Moderately  linear 54.19% -11.06% 5.59% -40.21% -4.28% -12.54% 

Moderately non-linear 17.14% -17.68% 6.65% -28.08% 2.28% -10.91% 

%Change in mean squared error N.C. A.C. N.C. A.C. N.C. A.C. 

Additive models       

Highly linear 36.36% -5.17% 13.61% -73.88% -20.05% -47.31% 

Moderately  linear 44.43% -7.51% 20.41% -72.30% -15.76% -48.76% 

Moderately non-linear 33.26% -5.13% 11.06% -74.36% -21.19% -47.31% 

Multiplicative models       

Highly linear 384.55% -41.61% 131.18% -70.69% 41.03% -49.44% 

Moderately  linear 137.92% -45.90% 9.11% -82.97% -4.41% -45.50% 

Moderately non-linear 19.32% -49.49% 2.47% -62.45% -4.59% -51.94% 

N.C.: No covariates; A.C.: All Covariates 517 

 518 

 519 

 520 

 521 

 522 

 523 
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Table 7. Simulated changes in absolute bias and mean squared error compared against the 524 

OLS estimates for home-based maintenance trips by NMM (Constant treatment) 525 

  3 strata 5 strata 7 strata 

% Change in absolute bias N.C. A.C. N.C. A.C. N.C. A.C. 

Additive models       

Highly linear 91.45% -20.17% 13.69% -45.48% -10.20% -44.82% 

Moderately  linear 42.77% -16.80% 3.80% -31.81% -7.11% -32.77% 

Moderately non-linear 41.74% -3.95% 13.14% -26.27% 4.21% 1.93% 

Multiplicative models       

Highly linear 5.54% -1.76% -3.63% -53.11% -16.29% -26.78% 

Moderately  linear 2.65% -1.46% -6.26% -54.25% -17.87% -26.56% 

Moderately non-linear 9.66% -2.54% 0.13% -51.49% -13.93% -27.41% 

% Change in mean squared error N.C. A.C. N.C. A.C. N.C. A.C. 

Additive models       

Highly linear 173.19% -34.20% 23.96% -73.37% -23.26% -70.55% 

Moderately  linear 69.67% -42.41% 4.01% -72.85% -13.35% -68.13% 

Moderately non-linear 61.30% -22.94% 12.58% -60.43% 1.35% -33.21% 

Multiplicative models       

Highly linear 36.44% -5.62% 13.71% -73.80% -19.76% -47.59% 

Moderately  linear 28.86% -4.73% 7.41% -75.11% -23.02% -47.08% 

Moderately non-linear 40.15% -6.19% 16.79% -73.16% -18.09% -47.94% 

N.C.: No covariates; A.C.: All Covariates 526 

Table 8. Simulated changes in absolute bias and mean squared error compared against the 527 

OLS estimates for home-based maintenance trips by car (Variable treatment) 528 

  3 strata 5 strata 7 strata 

Change in absolute bias N.C. A.C. N.C. A.C. N.C. A.C. 

Additive models       

Highly linear 71.56% 17.37% -22.48% -11.00% -76.12% -47.57% 

Moderately  linear 43.31% 5.39% -5.28% -30.05% -34.15% -35.12% 

Moderately non-linear 13.46% -0.57% -3.98% -48.47% -19.91% -28.47% 

Multiplicative models       

Highly linear 83.80% 4.16% -10.38% -27.72% -49.54% -50.47% 

Moderately  linear 52.12% -15.31% -0.26% -42.93% -10.83% -30.01% 

Moderately non-linear 24.86% -15.01% 7.74% -28.15% 1.67% -16.06% 

Change in mean squared error N.C. A.C. N.C. A.C. N.C. A.C. 

Additive models       

Highly linear 193.78% 37.61% -39.72% -20.98% -94.03% -72.42% 

Moderately  linear 87.20% 6.09% 1.98% -57.34% -38.92% -55.69% 

Moderately non-linear 36.40% -4.15% 9.90% -73.25% -22.50% -47.78% 

Multiplicative models       

Highly linear 385.66% -1.44% 6.43% -51.12% -61.59% -74.62% 

Moderately  linear 128.22% -40.64% 1.95% -83.00% -17.77% -65.17% 

Moderately non-linear 27.17% -45.21% 1.31% -62.79% -9.19% -57.75% 

N.C.: No covariates; A.C.: All Covariates 529 
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Table 9. Simulated changes in absolute bias and mean squared error compared against the 530 

OLS estimates for home-based maintenance trips by NMM (Variable treatment) 531 

  3 strata 5 strata 7 strata 

Change in absolute bias N.C. A.C. N.C. A.C. N.C. A.C. 

Additive models       

Highly linear 71.74% 17.39% -22.46% -10.90% -76.19% -47.61% 

Moderately  linear 40.45% 4.83% -6.05% -31.68% -32.52% -33.98% 

Moderately non-linear 12.27% -1.04% -3.37% -49.34% -18.75% -28.26% 

Multiplicative models       

Highly linear 121.29% -15.90% 16.92% -33.12% -2.26% -45.30% 

Moderately  linear 49.74% -24.81% 12.46% -43.38% -0.72% -39.99% 

Moderately non-linear 55.90% -22.06% 28.87% -32.75% 17.65% -17.53% 

Change in mean squared error N.C. A.C. N.C. A.C. N.C. A.C. 

Additive models       

Highly linear 194.43% 37.67% -39.70% -20.80% -94.08% -72.48% 

Moderately  linear 80.91% 6.03% -0.14% -59.00% -39.30% -54.36% 

Moderately non-linear 39.71% -4.94% 13.05% -72.74% -20.79% -48.04% 

Multiplicative models       

Highly linear 210.75% -40.19% 16.72% -71.60% -24.21% -74.01% 

Moderately  linear 152.05% -41.89% 45.23% -72.62% 18.82% -61.61% 

Moderately non-linear 209.94% -40.94% 100.00% -64.68% 80.73% -14.71% 

N.C.: No covariates; A.C.: All Covariates 532 

5.4. Empirical application to home-based maintenance trips 533 

Having demonstrated the bias reduction potential of the propensity score approach, 534 

the method is applied to the Fukuoka dataset. In addition, a multi-scale analysis is conducted, 535 

largely motivated by the modifiable areal unit problem discussed before. Although given the 536 

way the treatment variable was estimated, both the zoning and scale problems are to some 537 

extent controlled for. However, the optimal scale of analysis, that is, the actual spatial scale 538 

that households consider when evaluating residential location alternatives is in practice not 539 

known. Guo & Bhat (2007) addressed this issue in terms of residential location choice models 540 

by operationalizing several definitions of “neighborhoods”. In addition to the census tracts, 541 

Guo & Bhat analyzed radial neighborhoods and network band models given different radii, 542 

namely, 0.4 km, 1.6 km and 3.2 km from each residential location alternative. Since the 543 
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improvement of the more complex network band neighborhood was rather marginal, for this 544 

study the simpler radial network operationalization is used.  545 

As illustrated in Figure 4, the first scale of analysis (Scale 1) is the same scale at which 546 

the urbanization level index was estimated, that is, a 300m diameter hexagon. The second 547 

and third scales take the unweighted average of the urbanization level of all units within a 548 

1500 meter and 3000 meter radii respectively. In addition to the radial neighborhood 549 

operationalization, a more conceptually appealing analysis scale is proposed. The fourth scale 550 

of analysis assigns a weight to surroundings areas as a function of distance from each unit 551 

centroid via a kernel density function as described in Section 4.2 so that closer locations are 552 

given more importance than more distant ones. Recall that the kernel density function is 553 

rather insensitive to bandwidth (radius) specification, making the radius specification 554 

irrelevant.  555 

 556 
Figure 4. Diagram of scale definitions for multi-scale analysis  557 

 558 

Tables 10 and 11 summarize the treatment effect estimates for full-covariate OLS 559 

against full-covariate 5-strata and 7-strata models at each spatial scale respectively. For all 560 

models, at any scale the direction of the effects is as hypothesized, negative for car trips and 561 

R=0.15km

Scale 1

R=1.5km

Scale 2
(unweighted average)

R=3.0km

Scale 3
(unweighted average)

Scale 4
(Kernel density function)
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positive for non-motorized modes, thus supporting the idea of a mode substitution 562 

mechanism between car and non-motorized trips given changes in urbanization level. 563 

Table 10. Multi-scale analysis of urbanization effect on home-based maintenance trips 564 

against 5 Strata estimates (Full-covariate models) 565 

 Scale 1 Scale 2 Scale 3 Scale 4 

Model  
OLS  

5 
Strata OLS  5 Strata OLS  5 Strata OLS  

5 
Strata 

Car trip 
frequency 
model 

β -0.201 -0.200 -0.145 -0.217 -0.127 -0.178 -0.131 -0.217 

t-Stat -4.794 -3.381 -3.191 -5.020 -2.477 -4.106 -3.273 -5.110 

%Δ -0.1% 50.0% 39.5% 65.7% 

NMM trip 
frequency 
model  

β 0.151 0.152 0.125 0.156 0.089 0.179 0.103 0.177 

t-Stat 2.595 2.604 1.924 2.710 1.215 3.230 1.746 3.025 

%Δ 0.4% 24.8% 101.0% 71.9% 

 566 

Table 11. Multi-scale analysis of urbanization effect on home-based maintenance trips 567 

against 7 Strata estimates (Full-covariate models) 568 

 Scale 1 Scale 2 Scale 3 Scale 4 

Model  
OLS  

7 
Strata OLS  7 Strata OLS  7 Strata OLS  

7 
Strata 

Car trip 
frequency 
model 

β -0.201 -0.196 -0.145 -0.223 -0.127 -0.205 -0.131 -0.217 

t-Stat -4.794 -4.326 -3.191 -4.592 -2.477 -4.220 -3.273 -4.381 

%Δ -2.4% 54.1%  61.0% 65.8% 

NMM trip 
frequency 
model  

β 0.151 0.160 0.125 0.181 0.089 0.172 0.103 0.187 

t-Stat 2.595 2.545 1.924 2.989 1.215 3.023 1.746 3.245 

%Δ 5.9% 45.3%  92.4% 81.7%  

 569 

At Scale 1, OLS and propensity score treatment effect estimates are rather similar, 570 

with differences ranging from 0.4% to 6% However, at different spatial scales, while the 571 

propensity score estimates are rather robust, the OLS estimates deteriorate quickly with 572 

difference in estimates up to 101%. Furthermore, in the NMM case, the t-statistics for the 573 

OLS estimates fall below the 5% threshold for all but the Scale 1 estimates, becoming 574 

insignificant at any significance level for the Scale 3 estimates. The multi-scale issue is 575 

certainly a non-trivial issue when considering the neighborhood operationalization problem 576 

discussed above.  577 

 578 
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6. Discussion and conclusion  579 

This study validated through Monte Carlo simulation the propensity score approach 580 

as a tool to examine the connection between the built environment and travel behavior from 581 

a cross-sectional approach. It is shown that under the ignorability of treatment assumption, 582 

the causal effect of urbanization level on travel behavior can be estimated.  By testing 583 

performance given different data generating processes, simulation results suggest that the 584 

propensity score approach can reduce absolute bias up to 76% and mean squared error up to 585 

94% compared to OLS estimates. Empirically, the 5-strata and 7-strata full-covariate models 586 

performed the best. 587 

As discussed in earlier, a continuous urbanization level treatment, as the one used 588 

here allows for a more precise understanding of the built environment effect on travel 589 

behavior at all levels of the urbanization spectrum without the need to arbitrarily draw a 590 

defining line between “urban” and “suburban” which binary treatment models might be 591 

highly sensitive to. Empirical analysis of data also suggested that the propensity score 592 

approach is more robust to changes in the scale of analysis, whereas the OLS performed 593 

rather poorly.  594 

In terms of the propensity score function, the importance of the strong ignorability of 595 

treatment assumption cannot be over-emphasized. That is, the assumption that the 596 

distribution of treatment outcomes are independent from the distribution of treatment 597 

assignment given the propensity score is crucial to the unbiasedness of estimates. 598 

Nevertheless, in practice it is impossible to know how well the estimated function 599 

approximates the true population function. In order to estimate the propensity score function, 600 

relevant variables largely cited in the literature introduced in the model, hence, it is assumed 601 



33 
 

at the estimated function is a good estimate of the true unknown function. However, the risk 602 

of misspecification is certainly non-trivial. In that sense, much care should be placed in 603 

estimating the propensity score function, as much of the validity of the analysis depends on 604 

it. 605 

The main travel behavior dimension analyzed in this study relate to trip frequencies 606 

by mode. However, other relevant dimensions should be analyzed to strengthen the 607 

conclusions presented in this article. Certainly the propensity score approach presented here 608 

can be used to analyze continuous variables such as travel distance, or fuel consumption, 609 

provided reliable data is available. 610 

In general, findings support the notion that the built environment has a significant 611 

effect on travel behavior, specifically, on trip frequency by mode, providing some empirical 612 

evidence to the claims of compact city advocates. Nevertheless, it is important to note that 613 

the issue at hand is more complex that just retrofitting or promoting a certain re-development 614 

model. In spite of the existence of a causal relation, residential location not only is a self-615 

selecting process guided by household life-stage, lifestyle and preferences, but it’s at the 616 

same time constrained by the supply and demand dynamics of the real estate market. In that 617 

sense, a mismatch between supply and demand might hamper efforts to promote compact 618 

city paradigms. Even for households that wish to move to the city center, rent costs might be 619 

prohibitively expensive, pushing households to more suburban areas where they can afford 620 

more space. In the case of Japanese cities, this problem is extenuated by lax urban control 621 

laws that allow development to expand even beyond the so called Urban Control Areas, thus 622 

promoting suburbanization, perhaps unintentionally.  623 

 624 
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