Traffic noise feedback in agent-based Integrated Land-Use/Transport Models

Nico Kuehnel

Technical University of Munich

https://orcid.org/0000-0003-0527-8653

Dominik Ziemke

Technische Universität Berlin

Rolf Moeckel

Technical University of Munich

https://orcid.org/0000-0002-6874-0393

DOI: https://doi.org/10.5198/jtlu.2021.1852

Keywords: integrated land-use/transport models, ilut, microsimulation, agent-based, noise, environment


Abstract

Road traffic is a common source of negative environmental externalities such as noise and air pollution. While existing transport models are capable of accurately representing environmental stressors of road traffic, this is less true for integrated land-use/transport models. So-called land-use-transport-environment models aim to integrate environmental impacts. However, the environmental implications are often analyzed as an output of the model only, even though research suggests that the environment itself can have an impact on land use. The few existing models that actually introduce a feedback between land-use and environment fall back on aggregated zonal values. This paper presents a proof of concept for an integrated, microscopic and agent-based approach for a feedback loop between transport-related noise emissions and land-use. The results show that the microscopic link between the submodels is operational and fine-grained analysis by different types of agents is possible. It is shown that high-income households react differently to noise exposure when compared low-income households. The presented approach opens new possibilities for analyzing and understanding noise abatement policies as well as issues of environmental equity. The methodology can be transferred to include air pollutant emissions in the future.


Author Biographies

Nico Kuehnel, Technical University of Munich

Research associate at Professorship for Modeling Spatial Mobility

Dominik Ziemke, Technische Universität Berlin

Research associate at the department of Transport Systems Planning and Transport Telematics

Rolf Moeckel, Technical University of Munich

Assistant Professor at Professorship for Modeling Spatial Mobility


References

Acheampong, R. A. and E. A. Silva. 2015. Land use–transport interaction modeling: A review of the literature and future research directions. Journal of Transport and Land Use, 8(3):11–38. ISSN 19387849. doi: 10.5198/jtlu.2015.806.

Bateman, I., B. Scotland. Development Department., I. Scotland. Scottish Executive., A. University of East Anglia., Economic and Social Research Council (Great Britain), and L. University College. 2001. The effect of road traffic on residential property values: A literature review and hedonic pricing study. Scottish Executive. ISBN 0755900553.

Beckmann, K., U. Brüggemann, J. Gräfe, F. Huber, H. Meiners, P. Mieth, R. Moeckel, H. Mühlhans, H. Schaub, R. Schrader, C. Schürmann, B. Schwarze, K. Spikermann, D. Strauch, M. Spahn, P. Wagner, and M. Wegener. 2007. ILUMASS: Integrated Land-Use Modelling and Transport System Simulation. Technical report, Deutsches Zentrum für Lu- und Raumfahrt.

Bendtsen, H. 1999. The Nordic prediction method for road traffic noise. Science of The Total Environment, 235(1-3):331–338. ISSN 0048-9697. doi: 10.1016/S0048-9697(99)00216-8.

Bendtsen, H., B. Elleberg Larsen, and B. Mikkelsen. 2000. PERCEIVED ANNOYANCE FROM ROAD TRAFFIC NOISE. The 29th International Congress and Exhibition on Noise Control Engineering, (August):1–5.

Bradley, J. S. and B. A. Jonah. 1979. The effects of site selected variables on human responses to traffic noise, Part II: Road type by socio-economic status by traffic noise level. Journal of Sound and Vibration, 67(3):395–407. ISSN 10958568. doi: 10.1016/0022-460X(79)90544-3.

Coensel, B. D., T. D. Muer, and D. Botteldooren. 2007. An agent based modeling approach to explain the perception of environmental stressors. In Proceedings of the 2007 International Conference on Artificial Intelligence (ICAI 2007). URL https://biblio.ugent.be/publication/394370/file/587580.

Council of the European Union. 2002. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise. Official Journal L 189, pp. 0012 – 0026.

Eurostat. 2020. Passenger cars in the EU - Statistics Explained. URL https://ec.europa.eu/eurostat/statistics-explained/index.php/Passenger_cars_in_the_EU#Overview.

FGSV. 1990. Richtlinien für den Lärmschutz an Straßen (RLS). Technical report, Forschungsgesellschaft für Strßen- und Verkehrswesen. URL https://www.fgsv.de/start/.

Hamersma, M., T. Tillema, J. Sussman, and J. Arts. 2014. Residential satisfaction close to highways: The impact of accessibility, nuisances and highway adjustment projects. Transportation Research Part A: Policy and Practice, 59:106–121. ISSN 09658564. doi: 10.1016/j.tra.2013.11.004.

Han, Z. X., Z. H. Lei, C. L. Zhang, W. Xiong, Z. L. Gan, P. Hu, and Q. B. Zhang. 2015. Noise monitoring and adverse health effects in residents in different functional areas of Luzhou, China. Asia-Pacific Journal of Public Health, 27(2S):93S–99S. ISSN 10105395. doi: 10.1177/1010539514560056.

Hanák, T., I. Marović, and P. Aigela. 2015. Perception of residential environment in cities: A comparative study. In Procedia Engineering, volume 117, pp. 495–501. Elsevier Ltd. ISSN 18777058. doi: 10.1016/j.proeng.2015.08.202.

Horni, A., K. Nagel, and K. W. Axhausen, eds. 2016. The Multi-Agent Transport Simulation MATSim. London: Ubiquity Press. ISBN 9781909188754. doi: 10.5334/baw.

Hunt, J. D. 2010. Stated Preference Examination of Factors Influencing Residential Attraction, pp. 21– 59. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-12788-5. doi: 10.1007/978- 3-642-12788-5_2.

Kaddoura, I., L. Kröger, and K. Nagel. 2017. An activity-based and dynamic approach to calculate road traffic noise damages. Transportation Research Part D: Transport and Environment, 54:335– 347. ISSN 13619209. doi: 10.1016/j.trd.2017.06.005.

Kickhöfer, B. and J. Kern. 2015. Pricing local emission exposure of road traffic: An agent-based approach. Transportation Research Part D: Transport and Environment, 37:14–28. ISSN 1361-9209. doi: 10.1016/J.TRD.2015.04.019.

Kim, K. S., S. J. Park, and Y. J. Kweon. 2007. Highway traffic noise effects on land price in an urban area. Transportation Research Part D: Transport and Environment, 12(4):275–280. ISSN 13619209. doi: 10.1016/j.trd.2007.03.002.

Kistler, E., M. Holler, C. Wiegel, O. Schiller, V. Jovcic, and J. Faik. 2017. Expertise III zum Münchner Armutsbericht 2017. Technical report, Internationales Institut für Empirische Sozialökonomie, INIFES gGmbH, Stadtbergen. URL https://www.muenchen.de/rathaus/dam/jcr:fa5b9499-f49b-4ce5-9428-9a0bbf71b4fc/Expertise3_von-Inifes-zum-Muenchner-Armutsbericht-2017.pdf.

Kuehnel, N., I. Kaddoura, and R. Moeckel. 2019. Noise Shielding in an Agent-Based Transport Model Using Volunteered Geographic Data. Procedia Computer Science, 151:808–813. ISSN 18770509. doi: 10.1016/j.procs.2019.04.110.

Kuehnel, N. and R. Moeckel. 2020. Impact of simulation-based traffic noise on rent prices. Transportation Research Part D: Transport and Environment, 78:102191. ISSN 13619209. doi: 10.1016/j.trd.2019.11.020.

Kuehnel, N., D. Ziemke, R. Moeckel, and K. Nagel. 2020. The end of travel time matrices: Individual travel times in integrated land use/transport models. Journal of Transport Geography, 88:102862. ISSN 0966-6923. doi: https://doi.org/10.1016/j.jtrangeo.2020.102862.

Landeshauptstadt München. 2015. Münchner Stadtteilstudie. Fortschreibung 2015. Technical report, Referat für Stadtplanung und Bauordnung, Munich. URL https://www.muenchen.de/rathaus/dam/jcr:1b6d455d-798a-4947-ab57-b8d07d17c7f9/LHM_Stadtteilstudie_Webversion_04.pdf.

Lercher, P. and W. W. Kofler. 1996. Behavioral and health responses associated with road traffic noise exposure along alpine through-traffic routes. In Science of the Total Environment, volume 189-190, pp. 85–89. Elsevier B.V. ISSN 00489697. doi: 10.1016/0048-9697(96)05194-7.

Llorca, C. and R. Moeckel. 2019. Effects of scaling down the population for agent-based traffic simulations. Procedia Computer Science, 151:782–787. ISSN 18770509. doi: 10.1016/j.procs.2019.04.106.

Llorca, C., C. Winkler, T. Mocanu, and R. Moeckel. 2019. Long-distance and daily travel demand: integration of various travel markets and modelling approaches. Procedia Computer Science, 151:788– 793. ISSN 1877-0509. doi: 10.1016/J.PROCS.2019.04.107.

Maloir, C., T. Tillema, and J. Arts. 2009. Residential location preferences, accessibility and road proximity: Towards a better or more inclusive infrastructure planning? In Colloquium Veroersplanologisch Speurwerk, p. 15. Antwerp. URL https://www.cvs-congres.nl/cvspdfdocs/cvs09_214.pdf.

Miller, E. J. 2018. Integrated urban modeling: Past, present, and future. Journal of Transport and Land Use, 11(1):387–399. ISSN 19387849. doi: 10.5198/jtlu.2018.1273.

Moeckel, R. 2016. Constraints in household relocation: Modeling land-use/transport interactions that respect time and monetary budgets. Journal of Transport and Land Use, 10(2):1–18. ISSN 19387849. doi: 10.5198/jtlu.2015.810.

Moeckel, R., N. Kuehnel, C. Llorca, A. T. Moreno, and H. Rayaprolu. 2020. Agent-Based Simulation to Improve Policy Sensitivity of Trip-Based Models. Journal of Advanced Transportation, 2020:1902162. ISSN 0197-6729. doi: 10.1155/2020/1902162.

Moeckel, R., C. Llorca Garcia, A. T. Moreno Chou, and M. B. Okrah. 2018. Trends in integrated land use/transport modeling: An evaluation of the state of the art. Journal of Transport and Land Use, 11(1). ISSN 1938-7849. doi: 10.5198/jtlu.2018.1205.

Moeckel, R. and K. Nagel. 2016. Maintaining Mobility in Substantial Urban Growth Futures. In Transportation Research Procedia, volume 19, pp. 70–80. ISBN 4989289226. ISSN 23521465. doi: 10.1016/j.trpro.2016.12.069.

Moeckel, R., K. Spiekermann, C. Schurmann, and M. Wegener. 2003. Microsimulation of land use. International Journal of Urban Sciences, 7(1):14–31. ISSN 21616779. doi: 10.1080/12265934.2003.9693520.

Moreno, A. and R. Moeckel. 2018. Population Synthesis Handling Three Geographical Resolutions. ISPRS International Journal of Geo-Information, 7(5):174. ISSN 2220-9964. doi: 10.3390/ijgi7050174.

NationMaster.com. 2020. Canada vs Germany Cost of living Stats Compared. URL https://www. nationmaster.com/country-info/compare/Canada/Germany/Cost-of-living.

Nijland, H. A., S. Hartemink, I. Van Kamp, and B. Van Wee. 2009. The influence of sensitivity for road traffic noise on residential location: does It trigger a process of spatial selection? Noise and Vibration Worldwide, 40(3):17–26. ISSN 09574565. doi: 10.1260/095745609788066325.

OpenStreetMap contributors. 2019. Planet dump retrieved from https://planet.osm.org. https://www.openstreetmap.org.

Osada, Y., T. Yoshida, K. Yoshida, T. Kawaguchi, Y. Hoshiyama, and K. Yamamoto. 1997. Path analysis of the community response to road traffic noise. Journal of Sound and Vibration, 205(4):493–498. ISSN 0022460X. doi: 10.1006/jsvi.1997.1016.

Shirzadi Babakan, A. and A. Alimohammadi. 2016. An Agent-Based Simulation of Residential Location Choice of Tenants in Tehran, Iran. Transactions in GIS, 20(1):101–125. ISSN 14679671. doi: 10.1111/tgis.12144.

Simmonds, D. 2010. The DELTA residential location model. In Advances in Spatial Science, volume 65, pp. 77–97. Springer International Publishing. doi: 10.1007/978-3-642-12788-5_4.

Spiekermann, K. and M. Wegener. 2008. Environmental feedback in Urban models. International Journal of Sustainable Transportation, 2(1):41–57. ISSN 15568334. doi: 10.1080/15568310701517034.

Spiekermann, K. and M. Wegener. 2018. Multi-level urban models: Integration across space, time and policies. Journal of Transport and Land Use, 11(1):67–81. ISSN 19387849. doi: 10.5198/jtlu.2018.1185.

Statistics Canada. 2020. Vehicle registrations, by type of vehicle. URL https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2310006701.

Szczepańska, A., A. Senetra, and M. Wasilewicz. 2014. Traffic Noise as a Factor Influencing Apartment Prices in Large Cities. Real Estate Management and Valuation, 22(3):37–44. ISSN 2300-5289. doi: 10.2478/remav-2014-0025.

Theebe, M. A. J. 2004. Planes, Trains, and Automobiles: The Impact of Traffic Noise on House Prices. The Journal of Real Estate Finance and Economics, 28(2/3):209–234. ISSN 0895-5638. doi: 10.1023/B:REAL.0000011154.92682.4b. arXiv:1112.2903v1.

Wagner, D. P. and D.-I. M. Wegener. 2007. Urban land use, transport and environment models. disP - The Planning Review, 43(170):45–56. doi: 10.1080/02513625.2007.10556988.

Wardman, M. and A. L. Bristow. 2004. Traffic related noise and air quality valuations: Evidence from stated preference residential choice models. Transportation Research Part D: Transport and Environment, 9(1):1–27. ISSN 13619209. doi: 10.1016/S1361-9209(03)00042-7.

Weinhold, D. 2008. How big a problem is noise pollution? A brief happiness analysis by a perturbable economist. MPRA Paper 9885, University Library of Munich, Germany. URL https://ideas.repec.org/p/pra/mprapa/9885.html.

WHO. 2019. European health information gateway. URL https://gateway.euro.who.int/en/indicators/enhis_52-percentage-of-urban-population-exposed-to-noise-level-lden-55-db/.

Ziemke, D., I. Kaddoura, and K. Nagel. 2019. The MATSim Open Berlin Scenario: A multimodal agent-based transport simulation scenario based on synthetic demand modeling and open data. Procedia Computer Science, 151:870–877. ISSN 1877-0509. doi: 10.1016/J.PROCS.2019.04.120.

Ziemke, D., N. Kuehnel, K. Nagel, and R. Moeckel. 2020. FABILUT: The Flexible Agent-based Integrated Land Use Transport Model. Technical report, Technische Universität Berlin, Berlin. URL https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2020/20-01.

Ziemke, D., K. Nagel, and R. Moeckel. 2016. Towards an Agent-based, Integrated Land-use Transport Modeling System. In Procedia Computer Science, volume 83, pp. 958–963. ISSN 18770509. doi: 10.1016/j.procs.2016.04.192.

Źróbek, S., M. Trojanek, A. Źróbek-Sokolnik, and R. Trojanek. 2015. The influence of environmental factors on property buyers’ choice of residential location in Poland. Journal of International Studies, 8(3):164–174. doi: 10.14254/2071.