Spatial parameters for transportation: A multi-modal approach for modelling the urban spatial structure using deep learning and remote sensing
Dorothee Stiller
Earth Observation Center (EOC), German Aerospace Center (DLR), Oberpfaffenhofen 82234, Germany
https://orcid.org/0000-0002-8681-6144
Michael Wurm
Earth Observation Center (EOC), German Aerospace Center (DLR), Oberpfaffenhofen 82234, Germany
https://orcid.org/0000-0001-5967-1894
Thomas Stark
Signal processing in Earth Observation (SiPEO), Technical University of Munich (TUM), Munich 80331, Germany
https://orcid.org/0000-0002-6166-7541
Pablo d'Angelo
Earth Observation Center (EOC), German Aerospace Center (DLR), Oberpfaffenhofen 82234, Germany
Karsten Stebner
Institute of Optical Sensor Systems (OS), German Aerospace Center (DLR), Berlin 12489, Germany
Stefan Dech
Earth Observation Center (EOC), German Aerospace Center (DLR), Oberpfaffenhofen 82234, Germany; Department of Remote Sensing, Institute for Geography and Geology, University of Wuerzburg, Wuerzburg 97074, Germany
Hannes Taubenböck
Earth Observation Center (EOC), German Aerospace Center (DLR), Oberpfaffenhofen 82234, Germany; Department of Remote Sensing, Institute for Geography and Geology, University of Wuerzburg, Wuerzburg 97074, Germany
https://orcid.org/0000-0003-4360-9126
DOI: https://doi.org/10.5198/jtlu.2021.1855
Keywords: urban spatial structure, built environment, 3D city model, land-use model, intra-urban population, data fusion
Abstract
A significant increase in global urban population affects the efficiency of urban transportation systems. Remarkable urban growth rates are observed in developing or newly industrialized countries where researchers, planners, and authorities face scarcity of relevant official data or geo-data. In this study, we explore remote sensing and open geo-data as alternative sources to generate missing data for transportation models in urban planning and research. We propose a multi-modal approach capable of assessing three essential parameters of the urban spatial structure: buildings, land use, and intra-urban population distribution. Therefore, we first create a very high-resolution (VHR) 3D city model for estimating the building floors. Second, we add detailed land-use information retrieved from OpenStreetMap (OSM). Third, we test and evaluate five experiments to estimate population at a single building level. In our experimental set-up for the mega-city of Santiago de Chile, we find that the multi-modal approach allows generating missing data for transportation independently from official data for any area across the globe. Beyond that, we find the high-level 3D city model is the most accurate for determining population on small scales, and thus evaluate that the integration of land use is an inevitable step to obtain fine-scale intra-urban population distribution.
References
Aljoufie, M., Zuidgeest, M., Brussel, M., & van Maarseveen, M. (2013). Spatial–temporal analysis of urban growth and transportation in Jeddah City, Saudi Arabia. Cities, 31, 57–68. https://doi.10.1016/j.cities.2012.04.008
Angel, S., Parent, J., Civco, D. L., Blei, A., & Potere, D. (2011). The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Progress in Planning, 75(2), 53–107. htpps://doi.10.1016/j.progress.2011.04.001
Arsanjani, J. J., Mooney, P., Zipf, A., & Schauss, A. (2015). Quality assessment of the contributed land-use information from OpenStreetMap versus authoritative datasets. Lecture Notes in Geoinformation and Cartography (pp. 37–58). Basel, Switzerland: Springer International Publishing. https://doi.10.1007/978-3-319-14280-7_3
Barrington-Leigh, C., & Millard-Ball, A. (2017). The world’s user-generated road map is more than 80% complete. PLOS One, 12(8), e0180698. https://doi.10.1371/journal.pone.0180698
Biljecki, F., Ohori, K. A., Ledoux, H., Peters, R., & Stoter, J. (2016). Population estimation using a 3D city model: A multi-scale country-wide study in the Netherlands. PLOS One, 11(6). https://doi.10.1371/journal.pone.0156808
Bittner, K., Cui, S., & Reinartz, P. (2017). Building extraction from remote sensing data using fully convolutional networks. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 481–486. https://doi.10.5194/isprs-archives-xlii-1-w1-481-2017
Bowen, B., Vlasek, K., & Webb, C. (2004). An assessment of remote sensing applications in transportation. Paper presented at the 2004 Annual Forum of the Transportation Research Forum. https://www.ugpti.org/smartse/research/citations/downloads/Bowen-Assessment_of_RS_in_Transportation-2004.pdf
Brovelli, M., & Zamboni, G. (2018). A new method for the assessment of spatial accuracy and completeness of OpenStreetMap building footprints. ISPRS International Journal of Geo-Information, 7(8), 289. https://doi.10.3390/ijgi7080289
Cao, X., Næss, P., & Wolday, F. (2019). Examining the effects of the built environment on auto ownership in two Norwegian urban regions. Transportation Research Part D: Transport and Environment, 67, 464–474. https://doi.10.1016/j.trd.2018.12.020
Cervero, R. B. (2013). Linking urban transport and land use in developing countries. Journal of Transport and Land Use, 6(1), 7. https://doi.10.5198/jtlu.v6i1.425
Chen, T., Hui, E. C. M., Wu, J., Lang, W., & Li, X. (2019). Identifying urban spatial structure and urban vibrancy in highly dense cities using georeferenced social media data. Habitat International, 89, 102005. https://doi.10.1016/j.habitatint.2019.102005
Cheng, L., Chen, X., Yang, S., Cao, Z., Vos, J. D., & Witlox, F. (2019). Active travel for active aging in China: The role of built environment. Journal of Transport Geography, 76, 142–152. https://doi.10.1016/j.jtrangeo.2019.03.010
Choi, K., & Zhang, M. (2017). The impact of metropolitan, county, and local land use on driving emissions in US metropolitan areas: Mediator effects of vehicle travel characteristics. Journal of Transport Geography, 64, 195–202. https://doi.10.1016/j.jtrangeo.2017.09.004
Choupani, A.-A., & Mamdoohi, A. R. (2016). Population synthesis using iterative proportional fitting (IPF): A review and future research. Transportation Research Procedia, 17, 223–233. https://doi.10.1016/j.trpro.2016.11.078
Cichosz, P. (2015). Data mining algorithms: Explained. Hoboken, NJ: John Wiley & Sons.
d'Angelo, P., & Reinartz, P. (2011). Semiglobal matching results on the ISPRS stereo matching benchmark. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(4), 79–84. https://doi.10.5194/isprsarchives-xxxviii-4-w19-79-2011
de Sherbinin, A., Balk, D., Yager, K., Jaiteh, M., Pozzi, F., Giri, C., & Wannebo, A. (2002). Social science applications of remote sensing. A CIESIN thematic guide. Palisades, NY: Center for International Earth Science Information Network of Columbia University. http://sedac.ciesin.columbia.edu/tg/guide_main.jsp
Dincer, S. E., Akdemir, F., Ulvi, H., & Duzkaya, H. (2019). Assessing urban sprawl effect of transportation investments using remote sensing data and GIS methods: The case of Ankara protocol road. IOP Conference Series: Materials Science and Engineering, 471, 092079. https://doi.10.1088/1757-899x/471/9/092079
Duncan, M. J., Winkler, E., Sugiyama, T., Cerin, E., duToit, L., Leslie, E., & Owen, N. (2010). Relationships of land-use mix with walking for transport: Do land uses and geographical scale matter? Journal of Urban Health, 87(5), 782–795. https://doi.10.1007/s11524-010-9488-7
Estima, J., & Painho, M. (2015). Investigating the potential of OpenStreetMap for land use/land cover production: A case study for continental Portugal. In Lecture notes in Geoinformation and Cartography (pp. 273–293). Basel, Switzerland: Springer International Publishing. https://doi.10.1007/978-3-319-14280-7_14
Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M., & Haq, U. (2014). How land use and urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal. Journal of Transport Geography, 41, 306–314. https://doi.10.1016/j.jtrangeo.2014.01.013
Fan, H., Zipf, A., Fu, Q., & Neis, P. (2014). Quality assessment for building footprints data on OpenStreetMap. International Journal of Geographical Information Science, 28(4), 700–719. https://doi.10.1080/13658816.2013.867495
Farber, S., & Li, X. (2013). Urban sprawl and social interaction potential: An empirical analysis of large metropolitan regions in the United States. Journal of Transport Geography, 31, 267–277. https://doi.10.1016/j.jtrangeo.2013.03.002
Fonte, C., Minghini, M., Patriarca, J., Antoniou, V., See, L., & Skopeliti, A. (2017). Generating up-to-date and detailed land use and land cover maps using OpenStreetMap and GlobeLand30. ISPRS International Journal of Geo-Information, 6(4), 125. https://doi.10.3390/ijgi6040125
Frasco, M., Hamner, B., & LeDell, E. (2018). Metrics: Evaluation metrics for machine learning. https://CRAN.R-project.org/package=Metrics
Ghanea, M., Moallem, P., & Momeni, M. (2016). Building extraction from high-resolution satellite images in urban areas: Recent methods and strategies against significant challenges. International Journal of Remote Sensing, 37(21), 5234–5248. https://doi.10.1080/01431161.2016.1230287
Glaeser, E. (2011). Triumph of the city: How our greatest invention makes us richer, smarter, greener, healthier, and happier. London: Penguin Press HC.
Grange, L. de, & Troncoso, R. (2011). Impacts of vehicle restrictions on urban transport flows: The case of Santiago, Chile. Transport Policy. https://doi.10.1016/j.tranpol.2011.06.001
Guindon, B., & Zhang, Y. (2007). Using satellite remote sensing to survey transport-related urban sustainability. International Journal of Applied Earth Observation and Geoinformation, 9(3), 276–293. https://doi.10.1016/j.jag.2006.09.006
Harvey, J. T. (2002). Estimating census district populations from satellite imagery: Some approaches and limitations. International Journal of Remote Sensing, 23(10), 2071–2095. doi.10.1080/01431160110075901
Hecht, R., Kunze, C., & Hahmann, S. (2013). Measuring completeness of building footprints in OpenStreetMap over space and time. ISPRS International Journal of Geo-Information, 2(4), 1066–1091. https://doi.10.3390/ijgi2041066
Hu, H., Xu, J., Shen, Q., Shi, F., & Chen, Y. (2018). Travel mode choices in small cities of China: A case study of Changting. Transportation Research Part D: Transport and Environment, 59, 361–374. https://doi.10.1016/j.trd.2018.01.013
Hui, J., Du, M., Ye, X., Qin, Q., & Sui, J. (2019). Effective building extraction from high-resolution remote sensing images with multitask driven deep neural network. IEEE Geoscience and Remote Sensing Letters, 16(5), 786–790. https://doi.10.1109/lgrs.2018.2880986
Humanity & Inclusion. (2019). Mapping challenge. Building missing maps with machine learning. CrowdAI/Mapping Challenge. https://www.crowdai.org/challenges/mapping-challenge
Ihlanfeldt, K. (2020). Vehicle miles traveled and the built environment: New evidence from panel data. Journal of Transport and Land Use, 13(1), 23–48. https://doi.10.5198/jtlu.2020.1647
Infraestructura de Datos Geoespeciales (IDE) Chile. (2019). Fotografía aérea del Gran Santiago año 2014. http://www.ide.cl/index.php/imagenes-y-mapas-base/item/1577-fotografia-aerea-del-gran-santiago-ano-2014
Instituto Nacional de Estadísticas (INE) Chile. (2017). Censo de población y vivienda. https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda
Jin, J. (2019). The effects of labor market spatial structure and the built environment on commuting behavior: Considering spatial effects and self-selection. Cities, 95, 102392. https://doi.10.1016/j.cities.2019.102392
Kaddoura, I., Kröger, L., & Nagel, K. (2016). User-specific and dynamic internalization of road traffic noise exposures. Networks and Spatial Economics, 17(1), 153–172. https://doi.10.1007/s11067-016-9321-2
Kopsiaftis, G., & Karantzalos, K. (2015). Vehicle detection and traffic density monitoring from very high resolution satellite video data. Paper presented at the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.10.1109/igarss.2015.7326160
Krauß, T. (2014). Six years operational processing of satellite data using CATENA at DLR: Experiences and recommendations. Kartographische Nachrichten, 64, 74–80. https://doi.10.1007/BF03544117
Krehl, A., Siedentop, S., Taubenböck, H., & Wurm, M. (2016). A comprehensive view on urban spatial structure: Urban density patterns of German city regions. ISPRS International Journal of Geo-Information, 5(6), 76. https://doi.10.3390/ijgi5060076
Lee, S., & Lee, B. (2020). Comparing the impacts of local land use and urban spatial structure on household VMT and GHG emissions. Journal of Transport Geography, 84, 102694. https://doi.10.1016/j.jtrangeo.2020.102694
Lehmann, F., Berger, R., Brauchle, J., Hein, D., Meissner, H., Pless, S.,… Wieden, A. (2011). MACS – Modular Airborne Camera System for generating photogrammetric high-resolution products. Photogrammetrie - Fernerkundung - Geoinformation, 2011(6), 435–446. https://doi.10.1127/1432-8364/2011/0096
Levashev, A. (2017). Application of geoinformation technologies for the transportation demand estimation. Transportation Research Procedia, 20, 406–411. https://doi.10.1016/j.trpro.2017.01.066
Liddle, B. (2013). Urban density and climate change: A STIRPAT analysis using city-level data. Journal of Transport Geography, 28, 22–29. https://doi.10.1016/j.jtrangeo.2012.10.010
Linton, C., Grant-Muller, S., & Gale, W. F. (2015). Approaches and techniques for modelling CO₂ emissions from road transport. Transport Reviews, 35(4), 533–553. https://doi.10.1080/01441647.2015.1030004
Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177. https://doi.10.1016/j.isprsjprs.2019.04.015
Machado, C. A. S., & Quintanilha, J. A. (2019). Identification of trip generators using remote sensing and geographic information system. Transportation Research Interdisciplinary Perspectives, 3, 100069. https://doi.10.1016/j.trip.2019.100069
María, H. S., Hube, M. A., Rivera, F., Yepes-Estrada, C., & Valcárcel, J. A. (2016). Development of national and local exposure models of residential structures in Chile. Natural Hazards, 86(S1), 55–79. https://doi.10.1007/s11069-016-2518-3
Martínez, L. M., Viegas, J. M., & Silva, E. A. (2009). A traffic analysis zone definition: A new methodology and algorithm. Transportation, 36(5), 581–599. https://doi.10.1007/s11116-009-9214-z
Nordenholz, F., Metzler, S., & Winkler, C. (2019). An automated gradual zoning approach for large-scale transport models. Procedia Computer Science, 151, 147–154. https://doi.10.1016/j.procs.2019.04.023
Nuhn, H., & Hesse, M. (2006). Verkehrsgeographie. Paderborn: Ferdinand Schöningh GmbH.
Okokon, E., Turunen, A., Ung-Lanki, S., Vartiainen, A.-K., Tiittanen, P., & Lanki, T. (2015). Road-traffic noise: Annoyance, risk perception, and noise sensitivity in the Finnish adult population. International Journal of Environmental Research and Public Health, 12(6), 5712–5734. https://doi.10.3390/ijerph120605712
OpenStreetMap contributors. (2017). Planet dump. https://planet.osm.org
Palubinskas, G., Kurz, F., & Reinartz, P. (2010). Model based traffic congestion detection in optical remote sensing imagery. European Transport Research Review, 2(2), 85–92. https://doi.10.1007/s12544-010-0028-z
Parr, J. B. (2013). The regional economy, spatial structure and regional urban systems. Regional Studies, 48(12), 1926–1938. https://doi.10.1080/00343404.2013.799759
Perko, R., Raggam, H., Gutjahr, K. H., & Schardt, M. (2015). Advanced DTM generation from very high resolution satellite stereo images. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(3), 165–172. https://doi.10.5194/isprsannals-ii-3-w4-165-2015
Pijl, A., Bailly, J.-S., Feurer, D., Maaoui, M. A. E., Boussema, M. R., & Tarolli, P. (2020). TERRA: Terrain extraction from elevation rasters through repetitive anisotropic filtering. International Journal of Applied Earth Observation and Geoinformation, 84, 101977. https://doi.10.1016/j.jag.2019.101977
Piltz, B., Bayer, S., & Poznanska, A. M. (2016). Volume based DTM generation from very high resolution photogrammetric DSMS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 83–90. https://doi.10.5194/isprs-archives-XLI-B3-83-2016
Puertas, O. L., Henríquez, C., & Meza, F. J. (2014). Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago metropolitan area, 2010–2045. Land Use Policy, 38, 415–425. https://doi.10.1016/j.landusepol.2013.11.024
Resch, E., Bohne, R. A., Kvamsdal, T., & Lohne, J. (2016). Impact of urban density and building height on energy use in cities. Energy Procedia, 96, 800–814. https://doi.10.1016/j.egypro.2016.09.142
Rodrigue, J.-P., Comtois, C., & Slack, B. (2016). The geography of transport systems. Oxfordshire, England: Routledge, Taylor & Francis Ltd.
Salvo, G., Caruso, L., Scordo, A., Guido, G., & Vitale, A. (2017). Traffic data acquirement by unmanned aerial vehicle. European Journal of Remote Sensing, 50(1), 343–351. https://doi.10.1080/22797254.2017.1328978
Sarlas, G., Páez, A., & Axhausen, K. W. (2020). Betweenness-accessibility: Estimating impacts of accessibility on networks. Journal of Transport Geography, 84, 102680. https://doi.10.1016/j.jtrangeo.2020.102680
Schultz, M., Voss, J., Auer, M., Carter, S., & Zipf, A. (2017). Open land cover from OpenStreetMap and remote sensing. International Journal of Applied Earth Observation and Geoinformation, 63, 206–213. https://doi.10.1016/j.jag.2017.07.014
Senaratne, H., Mobasheri, A., Ali, A. L., Capineri, C., & Haklay, M. (Muki). (2016). A review of volunteered geographic information quality assessment methods. International Journal of Geographical Information Science, 31(1), 139–167. https://doi.10.1080/13658816.2016.1189556
Sevtsuk, A., & Mekonnen, M. (2012). Urban network analysis. A new toolbox for ArcGIS. Revue internationale de géomatique, 22(2), 287–305. https://doi.10.3166/rig.22.287-305
Sohn, J. (2005). Are commuting patterns a good indicator of urban spatial structure? Journal of Transport Geography, 13(4), 306–317. https://doi.10.1016/j.jtrangeo.2004.07.005
Soltani, A., & Somenahalli, S. (2005). Household vehicle ownership: Does urban structure matter? Paper presented at the 28th Australasian Transport Research Forum, ATRF 05, Curtin University, Australia.
Srinivasan, S., Provost, R., & Steiner, R. (2013). Modeling the land-use correlates of vehicle-trip lengths for assessing the transportation impacts of land developments. Journal of Transport and Land Use, 6(2), 59. https://doi.10.5198/jtlu.v6i2.254
Steinnocher, K., Bono, A. D., Chatenoux, B., Tiede, D., & Wendt, L. (2019). Estimating urban population patterns from stereo-satellite imagery. European Journal of Remote Sensing, 52(sup2), 12–25. https://doi.10.1080/22797254.2019.1604081
Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PLOS One, 10(2), e0107042. https://doi.10.1371/journal.pone.0107042
Stevenson, M., Thompson, J., de Sá, T. H., Ewing, R., Mohan, D., McClure, R.,… Woodcock, J. (2016). Land use, transport, and population health: Estimating the health benefits of compact cities. The Lancet, 388(10062), 2925–2935. https://doi.10.1016/s0140-6736(16)30067-8
Stiller, D., Ottinger, M., & Leinenkugel, P. (2019a). Spatio-temporal patterns of coastal aquaculture derived from Sentinel-1 time series data and the full Landsat archive. Remote Sensing, 11(14), 1707. https://doi10.3390/rs11141707
Stiller, D., Stark, T., Wurm, M., Dech, S., & Taubenböck, H. (2019b). Large-scale building extraction in very high-resolution aerial imagery using Mask R-CNN. Paper presented at the 2019 Joint Urban Remote Sensing Event (JURSE), Vannes, France. https://doi.10.1109/jurse.2019.8808977
Sun, B., Ermagun, A., & Dan, B. (2017). Built environmental impacts on commuting mode choice and distance: Evidence from Shanghai. Transportation Research Part D: Transport and Environment, 52, 441–453. https://doi.10.1016/j.trd.2016.06.001
Taubenböck, H., Kraff, N. J., & Wurm, M. (2018). The morphology of the arrival city—A global categorization based on literature surveys and remotely sensed data. Applied Geography, 92, 150–167. https://doi.10.1016/j.apgeog.2018.02.002
Taubenböck, H., Roth, A., & Dech, S. (2008). Linking structural urban characteristics derived from high resolution satellite data to population distribution. In V. Coors, M. Rumor, E. Fendel, & S. Zlatanova (Eds.), Urban and regional data management, proceedings and monographs in engineering, water and earth sciences (pp. 35–45). Stuttgart, Germany: Urban Data Management Society.
Taubenböck, H., Weigand, M., Esch, T., Staab, J., Wurm, M., Mast, J., & Dech, S. (2019). A new ranking of the world’s largest cities—Do administrative units obscure morphological realities? Remote Sensing of Environment, 232, 111353. https://doi/10.1016/j.rse.2019.111353
Tian, Y., Zhou, Q., & Fu, X. (2019). An analysis of the evolution, completeness and spatial patterns of OpenStreetMap building data in China. ISPRS International Journal of Geo-Information, 8(1), 35. https://doi.10.3390/ijgi8010035
Tracy, A. J., Su, P., Sadek, A. W., & Wang, Q. (2011). Assessing the impact of the built environment on travel behavior: A case study of Buffalo, New York. Transportation, 38(4), 663–678. https://doi.10.1007/s11116-011-9337-x
United Nations. (2019). World urbanization prospects: The 2018 revision. New York: United Nations.
Van Acker, V., & Witlox, F. (2010). Commuting trips within tours: How is commuting related to land use? Transportation, 38(3), 465–486. https://doi.10.1007/s11116-010-9309-6
Walker, J., Li, J., Srinivasan, S., & Bolduc, D. (2010). Travel demand models in the developing world: Correcting for measurement errors. Transportation Letters, 2(4), 231–243. https://doi.10.3328/tl.2010.02.04.231-243
Wang, Y., Mishra, S., Ye, X., Li, L., & Wu, B. (2017). The application of integrated multimodal metropolitan transportation model in urban redevelopment for developing countries. Transportation Research Procedia, 25, 2990–3002. https://doi.10.1016/j.trpro.2017.05.378
Wu, S., Qiu, X., & Wang, L. (2005). Population estimation methods in GIS and remote sensing: A review. GIScience & Remote Sensing, 42(1), 80–96. https://doi.10.2747/1548-1603.42.1.80
Wu, S., Wang, L., & Qiu, X. (2008). Incorporating GIS building data and census housing statistics for sub-block-level population estimation. The Professional Geographer, 60(1), 121–135. https://doi.10.1080/00330120701724251
Wurm, M., d'Angelo, P., Reinartz, P., & Taubenböck, H. (2014). Investigating the applicability of cartosat-1 DEMs and topographic maps to localize large-area urban mass concentrations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10), 4138–4152. https://doi.10.1109/jstars.2014.2346655
Wurm, M., Droin, A., Stark, T., Geiß, C., Sulzer, W., & Taubenböck, H. (2021). Deep learning-based generation of building stock data from remote sensing for urban heat demand modeling. ISPRS International Journal of Geo-Information, 10(1), 23. https://doi.10.3390/ijgi10010023
Wurm, M., Goebel, J., Wagner, G. G., Weigand, M., Dech, S., & Taubenböck, H. (2019a). Inferring floor area ratio thresholds for the delineation of city centers based on cognitive perception. Environment and Planning B: Urban Analytics and City Science, 239980831986934. https://doi.10.1177/2399808319869341
Wurm, M., Stark, T., Zhu, X. X., Weigand, M., & Taubenböck, H. (2019b). Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 59–69. https://doi.10.1016/j.isprsjprs.2019.02.006
Wurm, M., Taubenböck, H., Krings, S., Birkmann, J., Roth, A., & Dech, S. (2009). Derivation of population distribution for vulnerability assessment in flood-prone German cities using multisensoral remote sensing data. In U. Michel & D. L. Civco (Eds.), Remote sensing for environmental monitoring, GIS applications, and geology IX. Bellingham, WA: SPIE. https://doi.10.1117/12.830318
Wurm, M., Taubenböck, H., Schardt, M., Esch, T., & Dech, S. (2011). Object-based image information fusion using multisensor earth observation data over urban areas. International Journal of Image and Data Fusion, 2(2), 121–147. https://doi.10.1080/19479832.2010.543934
Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence, R., & Evangelista, P. H. (2017). A survival guide to Landsat preprocessing. Ecology, 98(4), 920–932. https://doi.10.1002/ecy.1730
Yuan, J., Chowdhury, P. K. R., McKee, J., Yang, H. L., Weaver, J., & Bhaduri, B. (2018). Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria. Scientific Data, 5(1) 180217. https://doi.10.1038/sdata.2018.217
Zegras, C. (2010). The built environment and motor vehicle ownership and use: Evidence from Santiago de Chile. Urban Studies, 47(8), 1793–1817. https://doi.10.1177/0042098009356125
Zhang, H., Zhao, F., & Sutherland, J. W. (2013). Manufacturing scheduling for reduced energy cost in a smart grid scenario. In A. Y. C. Nee, B. Song, & S.-K. Ong (Eds.), Re-engineering manufacturing for sustainability (pp. 183–190). Berlin: Springer Science & Business Media.
Zhang, S., Liu, X., Tang, J., Cheng, S., & Wang, Y. (2019). Urban spatial structure and travel patterns: Analysis of workday and holiday travel using inhomogeneous Poisson point process models. Computers, Environment and Urban Systems, 73, 68–84. https://doi.10.1016/j.compenvurbsys.2018.08.005
Zhang, Y., & Guindon, B. (2006). Using satellite remote sensing to survey transport-related urban sustainability. International Journal of Applied Earth Observation and Geoinformation, 8(3), 149–164. https://doi.10.1016/j.jag.2005.08.005
Zhang, Y., Guindon, B., & Sun, K. (2010). Measuring Canadian urban expansion and impacts on work-related travel distance: 1966–2001. Journal of Land Use Science, 5(3), 217–235. https://doi.10.1080/1747423x.2010.500684
Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36. https://doi.10.1109/mgrs.2017.2762307