On the path to develop a micromobility journey planner for Madrid: A tool to estimate, visualize, and analyze cycling and other shared mobility services’ flow
Daniela Arias Molinares
tGIS Research Group, Department of Geography, Complutense University Madrid
Rubén Talavera-García
tGIS Research Group, Department of Geography, Complutense University Madrid
Gustavo Romanillos-Arroyo
tGIS Research Group, Department of Geography, Complutense University Madrid
Juan Carlos García-Palomares
tGIS Research Group, Department of Geography, Complutense University Madrid
DOI: https://doi.org/10.5198/jtlu.2024.2451
Keywords: route map, journey planner, bike, moped, scooter, micromobility
Abstract
Journey planners could be one of the most relevant aspects to consider when choosing and deciding our daily trips. However, many of these trip apps still do not consider the new forms of mobility that are emerging in cities, also known as micromobility services (shared bikes, mopeds and scooters). In this study, we pursue two main objectives. On one hand, we create a journey planner for micromobility in Madrid. On the other hand, we use the journey planner to estimate and analyze micromobility flow considering the origin and destination points of trips registered in 2019 from the three different shared modes. Our results involve a series of maps that illustrate how micromobility flow is distributed in the city and the different dynamics considering two scenarios (weekdays and weekends). The journey planner helps to visualize those streets where micromobility flow concentrates, making micromobility users more visible and thus promoting that their paths become safer, attracting new users to start using micromobility (positive loop). Also, the maps could help policy planners to allocate new infrastructure in the city where it is needed most.
References
Aguilera-García, Á., Gomez, J., & Sobrino, N. (2020). Exploring the adoption of moped scooter-sharing systems in Spanish urban areas. Cities, 96, 102424. https://doi.org/10.1016/j.cities.2019.102424
Amrani, A., Pasini, K., & Khouadjia, M. (2020). Enhance journey planner with predictive travel information for smart city routing services. 2020 Forum on Integrated and Sustainable Transportation Systems, 2020, 304–308. https://doi.org/10.1109/FISTS46898.2020.9264859
Arbeláez Vélez, A. M. (2023). Environmental impacts of shared mobility: A systematic literature review of life-cycle assessments focusing on car sharing, carpooling, bikesharing, scooters and moped sharing. Transport Reviews, 44(3), 644–658. https://doi.org/10.1080/01441647.2023.2259104
Arias Molinares, D., Gutiérrez, A., & Ocaña Ortiz, R. V. (2022). Exploración del impacto de la pandemia COVID 19 en los sistemas públicos de bicicletas compartidas: Los casos de Madrid (BiciMAD) y Buenos Aires (EcoBici). Revista Transporte y Territorio, 27, 103–131. https://doi.org/10.34096/rtt.i27.12218
Arias-Molinares, D., & García-Palomares, J. C. (2020). Shared mobility development as key for prompting mobility as a service (MaaS) in urban areas: The case of Madrid. Case Studies on Transport Policy, 8(3), 846–859. https://doi.org/10.1016/j.cstp.2020.05.017
Arias-Molinares, D., García-Palomares, J. C., & Gutiérrez, J. (2023). Micromobility services before and after a global pandemic: Impact on spatio-temporal travel patterns. International Journal of Sustainable Transportation, 17(9), 1058–1073. https://doi.org/10.1080/15568318.2022.2147282
Arias-Molinares, D., García-Palomares, J. C., Romanillos, G., & Gutiérrez, J. (2023). Uncovering spatiotemporal micromobility patterns through the lens of space–time cubes and GIS tools. Journal of Geographical Systems, 25(3), 403–427. https://doi.org/10.1007/s10109-023-00418-9
Arias-Molinares, D., Julio, R., García-palomares, J. C., & Gutiérrez, J. (2021). Exploring micromobility services: Characteristics of station-based bike-sharing users and their relationship with dockless services. Journal of Urban Mobility, 1(November), 100010. https://doi.org/10.1016/j.urbmob.2021.100010
Ayuntamiento de Madrid. (2019). Avance de la Estrategia de Sosteniblidad Ambiental. Retrieved from https://www.madrid360.es/
Bai, S., & Jiao, J. (2020). Dockless e-scooter usage patterns and urban built environments: A comparison study of Austin, TX, and Minneapolis, MN. Travel Behavior and Society, 20(October 2019), 264–272. https://doi.org/10.1016/j.tbs.2020.04.005
Broach, J., Dill, J., & Gliebe, J. (2012). Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transportation Research Part A: Policy and Practice, 46(10), 1730–1740. https://doi.org/10.1016/j.tra.2012.07.005
Chen, C. F., Fu, C., & Siao, P. Y. (2023). Exploring electric moped sharing preferences with integrated choice and latent variable approach. Transportation Research Part D: Transport and Environment, 121, 103837. https://doi.org/10.1016/j.trd.2023.103837
Fiorini, S., Ciavotta, M., Joglekar, S., Šćepanović, S., & Quercia, D. (2022). On the adoption of e-moped sharing systems. EPJ Data Science, 11(1), 1–19. https://doi.org/10.1140/epjds/s13688-022-00358-2
Georgakis, P., Almohammad, A., Bothos, E., Magoutas, B., Arnaoutaki, K., & Mentzas, G. (2020). Heuristic-based journey planner for mobility as a service (Maas). Sustainability, 12(23), 1–25. https://doi.org/10.3390/su122310140
Hochmair, H. (2005). Towards a classification of route selection criteria for route planning tools. In Developments in Spatial Data Handling. New York: Springer. https://doi.org/10.1007/3-540-26772-7_37
Hoobroeckx, T., Cats, O., Shelat, S., & Molin, E. (2023). Travel choices in (e-)moped sharing systems: Estimating explanatory variables and the value of ride fee savings. Research in Transportation Business and Management, 50, 101021. https://doi.org/10.1016/j.rtbm.2023.101021
Hrncir, J., Song, Q., Zilecky, P., Nemet, M., & Jakob, M. (2014). Bicycle route planning with route choice preferences. Frontiers in Artificial Intelligence and Applications, 263, 1149–1154. https://doi.org/10.3233/978-1-61499-419-0-1149
Instituto Nacional de Estadística. (2018). Padrón Municipal de la Comunidad de Madrid. Retrieved from https://www.ine.es/jaxiT3/Datos.htm?t=2852
Jiao, J., & Bai, S. (2020). Understanding the shared e-scooter travels in Austin, TX. ISPRS International Journal of Geo-Information, 9(135), 1–12. https://doi.org/10.3390/ijgi9020135
Liu, Y., Feng, T., Shi, Z., & He, M. (2022). Understanding the route choice behavior of metro-bikeshare users. Transportation Research Part A: Policy and Practice, 166, 460–475. https://doi.org/10.1016/j.tra.2022.11.006
McCarthy, C., Lai, T. D., Favilla, S., & Sly, D. (2019). Towards an immersive auditory-based journey planner for the visually impaired. ACM International Conference Proceeding Series, 387–391. https://doi.org/10.1145/3369457.3369499
Nurminen, A., Malhi, A., Johansson, L., & Framling, K. . (2020) A clean air journey planner for pedestrians using high resolution near real time air quality data. Paper presented at the 16th International Conference on Intelligent Environments, July 20-23, Madrid.
Romanillos, G. (2012). Cyclist network design model for urban areas based on the analysis of the cyclability of the network and Potential Cyclist Flow [Master Thesis]. Universidad Complutense de Madrid.
Romanillos, G. (2018). The digital footprint of the cycling city: GPS cycle routes visualization and analysis [Doctoral thesis], Universidad Complutense de Madrid (UCM), Madrid, Spain.
Scott, D. M., Lu, W., & Brown, M. J. (2021). Route choice of bike share users: Leveraging GPS data to derive choice sets. Journal of Transport Geography, 90, 102903. https://doi.org/10.1016/j.jtrangeo.2020.102903
Su, J. G., Winters, M., Nunes, M., & Brauer, M. (2010). Designing a route planner to facilitate and promote cycling in Metro Vancouver, Canada. Transportation Research Part A: Policy and Practice, 44(7), 495–505. https://doi.org/10.1016/j.tra.2010.03.015
Tal, I., Olaru, A., & Muntean, G. M. (2013). wWARPE-Energy-efficient weather-aware route planner for electric bicycles. 21st IEEE International Conference on Network Protocols (ICNP). https://doi.org/10.1109/ICNP.2013.6733680
Talavera-García, R., & Pérez-Campaña, R. (2021). Applying a pedestrian level of service in the context of social distancing: The case of the city of Madrid. International Journal of Environmental Research and Public Health, 18(21), 11037.
Tscharaktschiew, S., & Müller, S. (2021). Ride to the hills, ride to your school: Physical effort and mode choice. Transportation Research Part D: Transport and Environment, 98, 102983. https://doi.org/10.1016/j.trd.2021.102983
Turverey, R., Cheng, D., Blair, O., Roth, J., Lamp, G., & Cogill, R. (2010). Charlottesville bike route planner. Paper presented at the Systems and Information Engineering Design Symposium, April 22–23, Charlottesville, VA.
Wortmann, C., Syré, A. M., Grahle, A., & Göhlich, D. (2021). Analysis of electric moped scooter sharing in Berlin: A technical, economic and environmental perspective. World Electric Vehicle Journal, 12(3), 96. https://doi.org/10.3390/wevj12030096
Yu, L., Shao, D., & Wu, H. (2015). Next generation of journey planner in a smart city. 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015, 422–429. https://doi.org/10.1109/ICDMW.2015.12
Zhang, W., Buehler, R., Broaddus, A., & Sweeney, T. (2021). What type of infrastructures do e-scooter riders prefer? A route choice model. Transportation Research Part D: Transport and Environment, 94, 102761. https://doi.org/10.1016/j.trd.2021.102761
Zhang, X., & Zhao, X. (2022). Machine learning approach for spatial modeling of ridesourcing demand. Journal of Transport Geography, 100, 103310. https://doi.org/10.1016/j.jtrangeo.2022.103310
Zhao, P., Yuan, D., & Zhang, Y. (2022). The public bicycle as a feeder mode for metro commuters in the megacity Beijing: Travel behavior, route environment, and socioeconomic factors. Journal of Urban Planning and Development, 148(1). https://doi.org/10.1061/(asce)up.1943-5444.0000785