Complementarity and substitution between public transport and bicycles

Moez Kilani

University of the Littoral Opal Coast

Souhir Bennaya

University of the Littoral Opal Coast

Seghir Zerguini

University of Bordeaux

DOI: https://doi.org/10.5198/jtlu.2024.2465

Keywords: Public transport, Active transport, Intermodal transport, Bus stations, Dedicated bus lanes, Dedicated bicycle lanes, Microsimulation


Abstract

We analyze the impacts of several improvements to urban transport and find that the bus can be made much more attractive by the simultaneous provision of dedicated lanes and higher service frequencies. At the same time, fare reforms, including free public transport, have limited impacts and do not seem to play an important role in reducing the use of the private car. In addition, our analysis considers active modes, bicycles in particular, and shows how they substitute for, or complement, public transport. We find that substitution prevails when public transport is rather accessible by walking (small spacing between the stations), but complementarity arises when the number of stations is small (large spacing between the stations). Our analysis is based on a micro-simulation approach, allowing us to develop a realistic and flexible framework where features like traffic lights, location of the stations, and road crossings for pedestrians are explicitly described.


References

An, J.-H. (2011). Le choix d’un système de transport durable: Analyse comparative des systèmes de transport guidé de surface (PhD thesis), Université Paris-Est, Paris.

Arampatzis, G., Kiranoudis, C. T., Scaloubacas, P., & Assimacopoulos, D. (2004). A GIS-based decision support system for planning urban transportation policies. European Journal of Operational Research, 152(2), 465–75.

Aschauer, D. A. (1989). Is public expenditure productive? Journal of Monetary Economics, 23(2), 177–200.

Baum, M., Buchhold, V., Sauer, J., Wagner, D., & Zündorf, T. (2019). Unlimited transfers for multi-modal route planning: An efficient solution. Retrieved from arXiv Preprint arXiv:1906.04832

Bennaya, S., & Kilani, M. (2024). Dedicated bus lanes and the attractiveness of public transport. 2024 IEEE 15th International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), 1–8.

Bennaya, S., & Kilani, M. (2023). Evaluating the benefits of promoting intermodality and active modes in urban transportation: A microsimulation approach. In Smart cities: Social and environmental challenges and opportunities for local authorities (pp. 279–94). Berlin: Springer International Publishing.

Berglas, E., Fresko, D., & Pines, D. (1984). Right of way and congestion toll. Economic Policy in Theory and Practice, 18(2), 343–74.

Buehler, R., & Dill, J. (2016). Bikeway networks: A review of effects on cycling. Transport Reviews, 36(1), 9–27.

Chen, W., & Klaiber, A. (2020). Does road expansion induce traffic? An evaluation of vehicle-kilometers traveled in China. Journal of Environmental Economics and Management, 104, 102387.

David, Q., & Foucart, R. (2014). Modal choice and optimal congestion. Regional Science and Urban Economics, 48, 12–20.

David, Q., & Kilani, M. (2022). Transport policies in polycentric cities. Transportation Research Part A: Policy and Practice, 166, 101–17.

Denèle, A., Klein, O., & Beekmann, M. (2023). Les zones à faibles émissions (ZFE) ont-elles un impact?” Science & Vie, 1273, 46–47.

Diallo, A. O., Gloriot, T., & Manout, O. (2023). Agent-based simulation of shared bikes and e-scooters: The case of Lyon. Procedia Computer Science, 220, 364–71.

Dong, X., Zheng, S., & Kahn, M. E. (2020). The role of transportation speed in facilitating high skilled teamwork across cities. Journal of Urban Economics, 115, 103212.

Duranton, G., & Puga, D. (2004). Micro-foundations of urban agglomeration economies. Handbook of Regional and Urban Economics, 4, 2063–2117.

Duthie, J., & Unnikrishnan, A. (2014). Optimization framework for bicycle network design. Journal of Transportation Engineering, 140(7), 04014028.

Fernández-Heredia, Á., Jara-Dı́az, S., & Monzón, A. (2016). Modelling bicycle use intention: The role of perceptions. Transportation, 43(1), 1–23.

Fishman, E. (2016). Bikeshare: A review of recent literature. Transport Reviews, 36(1), 92–113.

Fujita, M. (1989). Urban economic theory. Cambridge, England: Cambridge University Press.

Hamdouch, Y., Ho, H. W., Sumalee, A., & Wang, G. (2011). Schedule-based transit assignment model with vehicle capacity and seat availability. Transportation Research Part B: Methodological, 45(10), 1805–30.

Havet, N., & Bouzouina, L. (2024). Bicycle use in the university community: Empirical analysis using MobiCampus-UdL data (Lyon, France). Journal of Transport and Land Use, 17(1), 299–320.

Kilani, M., & Bennaya, S. (2023). Environmental impacts of bicycling in urban areas: A micro-simulation approach. Transportation Research Part D: Transport and Environment, 125, 103967.

Kilani, M., Diop, N., & De Wolf, D. (2022). A multimodal transport model to evaluate transport policies in the north of France. Sustainability, 14(3), 1535.

Kilani, M., & Houassa, F. (2018). La réforme de la mobilité urbaine en présence de modes de transport semi-collectifs: Le cas de la ville de Sousse. Revue d’Économie Régionale & Urbaine, 4, 805–28.

Kraus, M. (2003). A new look at the two-mode problem. Journal of Urban Economics, 54(3), 511–30.

Kraus, M. (2012). Road pricing with optimal mass transit. Journal of Urban Economics, 72(2-3), 81–86.

Krause, K., Assmann, T., Schmidt, S. & Matthies, E. (2020). Autonomous driving cargo bikes–introducing an acceptability-focused approach towards a new mobility offer. Transportation Research Interdisciplinary Perspectives, 6, 100135.

Li, D., Zhao, Y., & Li, Y. (2019). Time-series representation and clustering approaches for sharing bike usage mining. IEEE Access, 7, 177856–177863.

Lopez, P. A. , Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., …& Wießner, E. (2018). Microscopic traffic simulation using SUMO. Paper presented at The 21st IEEE International Conference on Intelligent Transportation Systems, Nov. 4-7, Bilbao, Spain.

Lorente, E. JBarceló, J., Codina, E., & Noekel, K. (2022). An intermodal dispatcher for the assignment of public transport and ride pooling services. Transportation Research Procedia, 62, 450–58.

Manout, O., Bonnel, P., & Bouzouina, L. (2018). Transit accessibility: A new definition of transit connectors. Transportation Research Part A: Policy and Practice, 113, 88–100.

Megahed, N. A, & Ghoneim, E. M. (2020). Antivirus-built environment: Lessons learned from Covid-19 pandemic. Sustainable Cities and Society, 61, 102350.

Mohring, H. (1979). The benefits of reserved bus lanes, mass transit subsidies, and marginal cost pricing in alleviating traffic congestion. In P. Mieszkowski & M. Straszheim (Eds.) Current Issues in Urban Economics (pp. 165–95). Baltimore, MD: Johns Hopkins University Press.

Pandey, A., & Lehe, L. J. (2024). Congestive mode-switching and economies of scale on a bus route. Transportation Research Part B: Methodological, 183, 102930.

Parry, I. W. H., & Small, K. A. (2009). Should urban transit subsidies be reduced? American Economic Review, 99(3), 700–724.

Philips, I., Watling, D., & Timms, P. (2018). Estimating individual physical capability (IPC) to make journeys by bicycle. International Journal of Sustainable Transportation, 12(5), 324–40.

Pietri, A. (2023). Interdire les voitures pour promouvoir les vélos? Une étude sur la ville de tours. Revue d’Économie Régionale & Urbaine, 4, 551–578.

Pomonti, V. (2004). Politiques urbaines et mobilité durable: Analyse comparée d’athènes et Amsterdam. Ecologie Politique, 29(2), 53–68.

Pucher, J., Buehler, R., Bassett, D. R., & Dannenberg, A. L. (2010). Walking and cycling to health: A comparative analysis of city, state, and international data. American Journal of Public Health, 100(10), 1986–1992.

Small, K. A. (2013). Urban transportation economics. Regional and Urban Economics Parts 1 & 2, 251–439.

Taiebat, M., Brown, A. L., Safford, H. R., Qu, S., & Xu, M. (2018). A review on energy, environmental, and sustainability implications of connected and automated vehicles. Environmental Science & Technology, 52(20), 11449–11465.

Tammaru, T., Sevtsuk, A., & Witlox, F. (2023). Towards an equity-centered model of sustainable mobility: Integrating inequality and segregation challenges in the green mobility transition. Journal of Transport Geography, 112, 103686.

Tennøy, A., Tønnesen, A., & Gundersen, F. (2019). Effects of urban road capacity expansion–Experiences from two Norwegian cases. Transportation Research Part D: Transport and Environment, 69, 90–106.

Tielert, T., Killat, M., Hartenstein, H., Luz, R., Hausberger, S., & Benz, T. (2010). The impact of traffic-light-to-vehicle communication on fuel consumption and emissions. In 2010 Internet of Things (IOT), 1–8.

Tortosa, G. (2023). La réussite des mesures de restriction automobile dans les villes Norvégiennes, résultat d’une convergence nationale imposée et cohérente. Revue d’Économie Régionale & Urbaine, 1, 59–81.

Vuchic, V. R. (2005). Urban transit operations, planning and economics. Hoboken, NJ: John Wiley & Sons.

Wang, M., & Zhou, X. (2017). Bike-sharing systems and congestion: Evidence from US cities. Journal of Transport Geography, 65, 147–54.

Wardman, M. (2001). Public transport values of time (Working paper 564). Leeds, UK: Institute of Transport Studies.