Multi-dimensional geometric complexity in urban transportation systems
Farideddin Peiravian
University of Illinois at Chicago Complex and Sustainable Urban Networks (CSUN)
http://orcid.org/0000-0003-0142-3956
Sybil Derrible
University of Illinois at Chicago Complex and Sustainable Urban Networks (CSUN)
DOI: https://doi.org/10.5198/jtlu.2017.919
Keywords: complex urban systems, transportation networks, quantitative geography
Abstract
Transportation networks serve as windows into the complex world of urban systems. By properly characterizing a road network, one can better understand its encompassing urban system. This study offers a geometrical approach toward capturing inherent properties of urban road networks. It offers a robust and efficient methodology toward defining and extracting three relevant indicators of road networks—area, line, and point thresholds—through measures of their grid equivalents. By applying the methodology to 50 U.S. urban systems, one can successfully observe differences between eastern versus western, coastal versus inland, and old versus young cities. Moreover, we show that many socioeconomic characteristics, as well as travel patterns, within urban systems are directly correlated with their corresponding area, line, and point thresholds.Author Biographies
Farideddin Peiravian, University of Illinois at Chicago Complex and Sustainable Urban Networks (CSUN)
Research Associate Complex and Sustainable Urban Networks (CSUN) Civil Engineering Department Dr. Peiravian is a Research Associate in the Complex and Sustainable Urban Networks (CSUN) Lab in the Civil and Materials Engineering Department at the University of Illinois at Chicago (UIC). His research interests include the planning, modeling, and design of sustainable and resilient transportation system, which includes the use of science of complexity approaches. On the side, he is also interested in Fractional Calculus, Fractals, and their applications.Sybil Derrible, University of Illinois at Chicago Complex and Sustainable Urban Networks (CSUN)
Assistant Professor Complex and Sustainable Urban Networks (CSUN) Civil Engineering Department Dr. Derrible is an Assistant Professor of Sustainable Infrastructure Systems in the Civil and Materials Engineering Department at the University of Illinois at Chicago (UIC), and the Director of the Complex and Sustainable Urban Networks (CSUN) Lab. He is also a Research Assistant Professor with the Institute of Environmental Science and Policy at UIC. His long-term interests include the planning, design and modeling of urban infrastructure. More particularly, he looks at the geometric and topological network feature of infrastructure, which is a vital component of "smart cities". His main goal is to redefine infrastructure planning and develop new practices to address the challenges of the 21st century.References
Ahmad, N., & Derrible, S. (2015). Evolution of public supply water withdrawal in the USA: A network approach. Journal of Industrial Ecology, 19(2), 321–30. doi:10.1111/jiec.12266
Amini, B., Peiravian, F.,Mojarradi, M., & Derrible, S. (2016). Comparative analysis of traffic performance of urban transportation systems. Transportation Research Record, 2594(19), 159–168. doi:10.3141/2594-19
Antunes, A. L., Bavaud, F., & Mager, C. (2009). Handbook of theoretical and quantitative geography. Chavannes-près-Renens, Switzerland: Université de Lausanne, Faculté de géosciencies et de l’environment.
Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. doi:10.1126/science.286.5439.509
Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1–3), 1–101. doi:10.1016/j.physrep.2010.11.002
Barthélemy, M., & Flammini, A. (2008). Modeling urban street patterns. Physical Review Letters, 100(13), 1–4. doi:10.1103/PhysRevLett.100.138702
Barthélemy, M., & Flammini, A. (2009). Co-evolution of density and topology in a simple model of city formation. Networks and Spatial Economics, 9(3), 401–25. doi: 10.1007/s11067-008-9068-5
Batty, M. (2005). Cities and complexity: Understanding cities with cellular automata, agent-based models, and fractals. Cambridge, MA: MIT Press.
Batty, M. (2008). The size, scale, and shape of cities. Science, 319(5864), 769–771. doi:10.1126/science.1151419
Batty, M., & Longley, P. A., (1994). Fractal cities, A geometry of form and function. Cambridge, MA: Academic Press Inc.
Brown, B. B., Smith, K. R., Hanson, H., Fan, J. X., Kowaleski-Jones, L., & Zick, C. D. (2013). Neighborhood design for walking and biking. American Journal of Preventive Medicine, 44(3), 231–238. doi:10.1016/j.amepre.2012.10.024
Buhl, J., Gautrais, J., Reeves, N., Solé, R. V., Valverde, S., Kuntz, P., & Theraulaz, G. (2006). Topological patterns in street networks of self-organized urban settlements. The European Physical Journal B, 49(4), 513–22. doi:10.1140/epjb/e2006-00085-1
Cardillo, A., Scellato, S., Latora, V., & Porta, S. (2006). Structural properties of planar graphs of urban street patterns. Physical Review E, 73(6), 1–8. doi:10.1103/PhysRevE.73.066107
Chen, Y., & Wang, J. (2014, February). Recursive subdivision of urban space and Zipf’s law. Physica A: Statistical Mechanics and Its Applications, 39, 392–404. doi:10.1016/j.physa.2013.10.022
Chen, Y., & Zhou, Y. (2004). Multi-fractal measures of city-size distributions based on the three-parameter Zipf model. Chaos, Solitons & Fractals, 22(4), 793–805. doi:10.1016/j.chaos.2004.02.059
Cottrill, C. D., & Derrible, S. (2015). Leveraging big data for the development of transport sustainability indicators. Journal of Urban Technology, 22(1), 45–64. doi:10.1080/10630732.2014.942094
Courtat, T., Gloaguen, C., & Douady, S. (2011). Mathematics and morphogenesis of cities: A geometrical approach. Physical Review E, 83(3), 036106(1–12). doi:10.1103/PhysRevE.83.036106
Crucitti, P., Latora, V., & Porta, S. (2006). Centrality in networks of urban streets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(1), 015113. doi:10.1063/1.2150162
Derrible, S., & Ahmad, N. (2015). Network-based and binless frequency analyses. PLOS ONE, 10(11), e0142108. doi:10.1371/journal.pone.0142108
Derrible, S., & Kennedy, C. (2009). Network analysis of world subway systems using updated Graph Theory. Transportation Research Record, 2112(-1), 17–25. doi:10.3141/2112-03
Derrible, S., Saneinejad, S., Sugar, L., & Kennedy, C. (2010). Macroscopic model of greenhouse gas emissions for municipalities. Transportation Research Record 2191(-1), 174–81. doi:10.3141/2191-22
Gabaix, X. (1999). Zipf’s law for cities: An explanation. The Quarterly Journal of Economics, 114(3), 739–67. doi:10.1162/003355399556133
Garrison, W. L., & Marble, D. F. (1962). The structure of transportation networks. Evanston, IL: Ft. Belvoir Defense Technical Information Center.
Gonzalez-Val, R. (2011). Deviations from Zipf’s law for American cities: An empirical examination. Urban Studies, 48(5), 1017–1035. doi:10.1177/0042098010371394
Haggett, P., & Chorley, R. J. (1969). Network analysis in geography. London: Edward Arnold.
Hanson, S., and Giuliano, G. (Eds.). (2004). The geography of urban transportation. 3rd ed. New York: The Guilford Press.
Hillier, B. 1999. Space is the machine. Cambridge, UK: Cambridge University Press.
Hillier, B., & Hanson, J. (1984). The social logic of space. Vol. 1. Cambridge, England: Cambridge University Press.
Jacobs, J. (1961). The death and life of great American cities. New York: Vintage Books.
Jiang, B. (2007). A topological pattern of urban street networks: Universality and peculiarity. Physica A: Statistical Mechanics and Its Applications, 384(2), 647–655. doi:10.1016/j.physa.2007.05.064
Jiang, B., and Claramunt, C. (2004). Topological analysis of urban street networks. Environment and Planning B: Planning and Design, 31(1), 151–62. doi:10.1068/b306
Jiang, B., & Liu, X. (2012). Scaling of geographic space from the perspective of city and field blocks and using volunteered geographic information. International Journal of Geographical Information Science, 26(2), 215–29. doi:10.1080/13658816.2011.575074
Kalapala, V., Sanwalani, V., Clauset, A., & Moore, C. (2006). Scale invariance in road networks. Physical Review E, 73(2), 1–6. doi:10.1103/PhysRevE.73.026130
Kansky, K. J. (1963). Structure of transportation networks: Relationships between network geometry and regional characteristics. Chicago, IL: The University of Chicago.
Karduni, A., Kermanshah, A., & Derrible, S. (2016, June). A protocol to convert spatial polyline data to network formats and applications to world urban road networks. Scientific Data, 3, pp. 160046. doi:10.1038/sdata.2016.46
Kermanshah, A., & Derrible, S. (2016). A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes. Reliability Engineering & System Safety, 153(September), 39–49. doi:10.1016/j.ress.2016.04.007
Kurant, M., & Thiran, P. (2006). Extraction and analysis of traffic and topologies of transportation networks. Physical Review E, 74(3), 1–10. doi:10.1103/PhysRevE.74.036114
Lämmer, S., Gehlsen, B., & Helbing, D. (2006). Scaling laws in the spatial structure of urban road networks. Physica A: Statistical Mechanics and Its Applications, 363(1), 89–95. doi:10.1016/j.physa.2006.01.051
Levinson, D. (2012). Network structure and city size. PLOS ONE, 7(1): e29721. doi:10.1371/journal.pone.0029721
Levinson, D., & Yerra, B. (2006). Self-organization of surface transportation networks. Transportation Science, 40(2), 179–88. doi:10.1287/trsc.1050.0132
Li, J. (2002). Research on fractal characteristics of urban traffic network structure based on GIS. Chinese Geographical Science, 12(4), 346–349.
Louf, R., Jensen, P., & Barthelemy, M. (2013). Emergence of hierarchy in cost-driven growth of spatial networks.
Proceedings of the National Academy of Sciences, 110(22), 8824–8829. doi:10.1073/pnas.1222441110
Masucci, A. P., Smith, D., Crooks, A., & Batty, M. (2009). Random planar graphs and the London street network. The European Physical Journal B, 71(2), 259–271. doi:10.1140/epjb/e2009-00290-4
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256. doi:10.1137/S003614450342480
Nussle, J. (2008). Update of statistical area definitions and guidance on their uses. U.S. Office of Management and Budget. Retrieved from whitehouse.gov/sites/default/files/omb/assets/omb/bulletins/fy2009/09-01.pdf
Peiravian, F., S. Derrible, S., & Ijaz, F. (2014, July). Development and application of the Pedestrian Environment Index (PEI). Journal of Transport Geography, 39, 73–84. doi:10.1016/j.jtrangeo.2014.06.020
Samaniego, H., & Moses, M. E. (2008). Cities as organisms: Allometric scaling of urban road networks. Journal of Transport and Land Use, 1(1), 21–39. doi:10.5198/jtlu.v1i1.29
Scellato, S., Cardillo, A., Latora, V., & Porta, S. (2006). The backbone of a city. The European Physical Journal B, 50(1–2), 221–25. doi:10.1140/epjb/e2006-00066-4
Taaffe, E. J. (1973). Geography of transportation. Englewood Cliffs, NJ: Prentice Hall.
U.S. Census Bureau. 2010. American Community Survey (ACS). Retrieved from census.gov/acs/www/
U.S. Census Bureau. 2013. TIGER/Lines Shapefiles. Retrieved from census.gov/geo/maps-data/data/tiger.html
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–42.
Wikipedia. (2013). North American settlements by year of foundation. Retrieved from en.wikipedia.org/wiki/List_of_North_American_settlements_by_year_of_foundation
Wikipedia. (2014). Metropolitan Statistical Area. Retrieved from en.wikipedia.org/wiki/Metropolitan_statistical_area
Xie, F., & Levinson, D. (2007). Measuring the structure of road networks. Geographical Analysis, 39(3), 336–56. doi:10.1111/j.1538-4632.2007.00707.x
Xie, F., & Levinson, D. (2009a). Topological evolution of surface transportation networks. Computers, Environment and Urban Systems, 33(3), 211–23. doi:10.1016/j.compenvurbsys.2008.09.009
Xie, F., & Levinson, D. (2009b). Modeling the growth of transportation networks: A comprehensive review. Networks and Spatial Economics, 9(3), 291–307. doi:10.1007/s11067-007-9037-4
Yerra, B., & Levinson, D. (2005). The emergence of hierarchy in transportation networks. The Annals of Regional Science, 39(3), 541–53. doi:10.1007/s00168-005-0230-4