Mobility tools and use: Accessibility’s role in Switzerland
Allister Loder
Institute for Transport Planning and Systems (IVT), ETH Zürich
http://orcid.org/0000-0003-3102-6564
Kay Werner Axhausen
Institute for Transport Planning and Systems (IVT), ETH Zürich
http://orcid.org/0000-0003-3331-1318
DOI: https://doi.org/10.5198/jtlu.2018.1054
Keywords: Multivariate dependency, Travel Behavior, Land-use and built environment
Abstract
In much of Switzerland, public transport offers high levels of accessibility to workplaces and other places that make season tickets legitimate substitutes for a car. These similar patterns of accessibility provided by both modes result in high levels of correlation between the accessibility measures of both modes. This correlation almost always precludes a travel behavior analysis with several accessibility measures and cannot provide any insights into the effects of the differences in accessibility levels by both modes. We propose a principal component analysis of the accessibility measures to extract as much information as possible. We interpret the principal components obtained as: general accessibility, comparatively better accessibility by public transport and comparatively better job accessibility. The new accessibility variables are used in a model of car and season ticket ownership and the number of car, public transport and non-motorized trips using data from the 2010 Swiss transportation microcensus. These outcomes are jointly estimated with a probit-based model for mixed types of outcomes because we anticipated simultaneous choices and that choices are dependent on each other. We found that greater levels of general accessibility, comparatively better accessibility by public transport and comparatively better job accessibility increased the probability of season ticket ownership, while the probability of car ownership decreased. We realize that ownership and use must be jointly modeled to consistently estimate the structural effects of mobility tool ownership on use.References
Anable, J. 2005. ‘Complacent Car Addicts’ or ‘Aspiring Environmentalists’? Identifying travel
behaviour segments using attitude theory. Transport Policy, 12(1):65–78. ISSN 0967070X.
doi:10.1016/j.tranpol.2004.11.004.
Andrés, J. and G. Gélvez. 2014. Joint Disaggregate Modeling of Car and Motorcycle Ownership:
A Case Study of Bogotá, Colombia. Transportation Research Record: Journal of the
Transportation Research Board, 2451:149–156. ISSN 0361-1981. doi:10.3141/2451-17.
Anowar, S., N. Eluru, and L. F. Miranda-Moreno. 2014. Alternative Modeling Approaches
Used for Examining Automobile Ownership: A Comprehensive Review. Transport Reviews,
(4):441–473. ISSN 14645327. doi:10.1080/01441647.2014.915440.
Ben-Akiva, M., D. McFadden, K. Train, J.Walker, C. Bhat, M. Bierlaire, D. Bolduc, A. Boersch-
Supran, D. Brownstone, D. S. Bunch, A. Daly, A. de Palma, D. Gopinath, A. Karlstrom, and
M. A. Munizaga. 2002. Hybrid Choice Models: Progress and Challenges. Marketing Letters,
(3):163–175. ISSN 1573-059X. doi:10.1023/A:1020254301302.
Ben Akiva, M. E. and S. R. Lerman. 1985. Discrete Choice Analysis: Theory and Application
to Travel Demand. MIT Press series in transportation studies. Cambridge: MIT Press.
Bento, A. A., M. L. Cropper, A. M. Mobarak, K. Vinha, and L. Cropper. 2005. The eects
of urban spatial structure on travel demand in the United States. Review of Economics and
Statistics, 87(3):466–478. doi:10.1162/0034653054638292.
Bettencourt, L. M. a. 2013. The origins of scaling in cities. Science, 340(6139):1438–1441.
doi:10.1126/science.1235823.
Bhat, C. R. 2005. A multiple discrete–continuous extreme value model: formulation and application to discretionary time-use decisions. Transportation Research Part B: Methodological,
(8):679–707. ISSN 01912615. doi:10.1016/j.trb.2004.08.003.
Bhat, C. R. 2015. A new generalized heterogeneous data model (GHDM) to jointly model mixed
types of dependent variables. Transportation Research Part B: Methodological, 79:50–77.
ISSN 01912615. doi:10.1016/j.trb.2015.05.017.
Bhat, C. R., S. Astroza, R. Sidharthan, M. J. B. Alam, and W. H. Khushefati. 2014. A joint
count-continuous model of travel behavior with selection based on a multinomial probit
residential density choice model. Transportation Research Part B: Methodological, 68:31–51.
doi:10.1016/j.trb.2014.05.004.
Bhat, C. R. and J. Y. Guo. 2007. A comprehensive analysis of built environment characteristics
on household residential choice and auto ownership levels. Transportation Research Part B:
Methodological, 41(5):506–526. ISSN 01912615. doi:10.1016/j.trb.2005.12.005.
Bhat, C. R. and S. Sen. 2006. Household vehicle type holdings and usage: an application of the
multiple discrete-continuous extreme value (MDCEV) model. Transportation Research Part
B: Methodological, 40(1):35–53. ISSN 01912615. doi:10.1016/j.trb.2005.01.003.
Bhat, C. R., C. Varin, and N. Ferdous. 2010. A comparison of the maximum simulated likelihood
and composite marginal likelihood estimation approaches in the context of the multivariate
ordered response model. In Maximum Simulated Likelihood Methods and Applications, pp.
–106. Elsevier. doi:10.1108/S0731-9053(2010)0000026007.
Bolduc, D. and R. Alvarez-Daziano. 2010. On Estimation of Hybrid Choice Models. In Choice
Modelling: The State-of-the-art and The State-of-practice, pp. 11–259. Emerald Group
Publishing Limited. doi:doi:10.1108/9781849507738-011.
Bonnel, P. and A. Chausse. 2000. Urban travel: Competition and pricing. Transport Reviews,
(4):385–401. ISSN 0144-1647. doi:10.1080/01441640050150658.
Brueckner, J. K. and D. Fansler. 1983. The economics of urban sprawl: Theory and evidence on
the spatial size of cities. Review of Economics and Statistics, 55(3):479–482.
Buehler, R., J. Pucher, R. Gerike, and T. Götschi. 2016. Reducing car dependence in the heart
of Europe: lessons from Germany, Austria, and Switzerland. Transport Reviews. ISSN
-1647. doi:10.1080/01441647.2016.1177799.
Cao, X., P. L. Mokhtarian, and S. L. Handy. 2007. Do changes in neighborhood characteristics
lead to changes in travel behavior? A structural equations modeling approach. Transportation,
(5):535–556. ISSN 00494488. doi:10.1007/s11116-007-9132-x.
Cao, X. J., P. L. Mokhtarian, and S. L. Handy. 2009. Examining the Impacts of Residential
Self-Selection on Travel Behaviour: A Focus on Empirical Findingss. Transport Reviews,
(3):359–395. ISSN 0144-1647. doi:10.1080/01441640802539195.
Cappellari, L. and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by
simulation, with applications to maximum simulated likelihood estimation. Stata Journal,
(2):156–189.
Cervero, R. and K. Kockelman. 1997. Travel demand and the 3Ds: Density, diversity, and
design. Transportation Research Part D: Transport and Environment, 2(3):199–219. doi:
1016/S1361-9209(97)00009-6.
Crozet, Y., A. Mercier, and N. Ovtracht. 2012. Accessibility: a key indicator to assess the past
and future of urban mobility. In Accessibility analysis and Transport Planning Challenges
for Europe and North America, pp. 263–279. doi:10.4337/9781781000106.00025.
Dargay, J., D. Gately, and M. Sommer. 2007. Vehicle Ownership and Income Growth,Worldwide:
-2030. The Energy Journal, 28(4):143–170.
Dargay, J. M. 2002. Determinants of car ownership in rural and urban areas: a pseudo-panel
analysis. Transportation Research Part E: Logistics and Transportation Review, 38(5):351–
ISSN 13665545. doi:10.1016/S1366-5545(01)00019-9.
de Jong, G., J. Fox, A. Daly, M. Pieters, and R. Smit. 2004. A comparison of car ownership
models. Transport Reviews, 24(4):379–408. doi:10.1080/0144164032000138733.
de Jong, G. C. and R. Kitamura. 2009. A review of household dynamic vehicle ownership
models: Holdings models versus transactions models. Transportation, 36(6):733–743. ISSN
doi:10.1007/s11116-009-9243-7.
Eliason, S. R. 1993. Maximum likelihood estimation : logic and practice, volume no. 07-096
of Quantitative applications in the social sciences. Newbury Park, Calif.: Sage. ISBN
-8039-4107-2.
Eluru, N., A. R. Pinjari, R. M. Pendyala, and C. R. Bhat. 2010. An econometric multidimensional
choice model of activity-travel behavior. Transportation Letters: The International
Journal of Transportation Research, 2(4):217–230. ISSN 19427867 19427875.
doi:10.3328/TL.2010.02.04.217-230.
Ewing, R. and R. Cervero. 2001. Travel and the Built Environment: A Synthesis. Transportation
Research Record: Journal of the Transportation Research Board, 1780:87–114.
Ewing, R. and R. Cervero. 2010. Travel and the Built Environment. Journal of the American
Planning Association, 76(3):265–294.
Ewing, R., M. Greenwald, M. Zhang, J. Walters, M. Feldman, R. Cervero, L. Frank, and
J. Thomas. 2011. Trac Generated by Mixed-Use Developments—Six-Region Study Using
Consistent Built Environmental Measures. Journal of Urban Planning and Development,
(3):248–261. ISSN 0733-9488. doi:10.1061/(ASCE)UP.1943-5444.0000068.
Farag, S., T. Schwanen, M. Dijst, and J. Faber. 2007. Shopping online and/or in-store? A
structural equation model of the relationships between e-shopping and in-store shopping.
Transportation Research Part A: Policy and Practice, 41(2):125–141. ISSN 09658564.
doi:10.1016/j.tra.2006.02.003.
Giuliano, G. and J. Dargay. 2006. Car ownership, travel and land use: a comparison of the
US and Great Britain. Transportation Research Part A: Policy and Practice, 40(2):106–124.
ISSN 09658564. doi:10.1016/j.tra.2005.03.002.
Glaeser, E. L. and M. E. Kahn. 2004. Sprawl and Urban Growth. In Handbook of Regional
and Urban Economics, volume 4, pp. 2481–2527. Elsevier Inc. doi:10.1016/S1574-0080(04)
-0.
Golob, T. F. 2003. Structural equation modeling for travel behavior research. Transportation
Research Part B: Methodological, 37(1):1–25. ISSN 01912615. doi:10.1016/S0191-2615(01)
-7.
Goodwin, P. and K. Van Dender. 2013. ‘Peak Car’—Themes and Issues. Transport Reviews,
(3):243–254. ISSN 0144-1647. doi:10.1080/01441647.2013.804133.
Guo, J., C. Bhat, and R. Copperman. 2007. Eect of the Built Environment on Motorized and
Nonmotorized Trip Making: Substitutive, Complementary, or Synergistic? Transportation
Research Record, 2010:1–11. ISSN 0361-1981. doi:10.3141/2010-01.
Halton, J. H. 1960. On the eciency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numerische Mathematik, 2(1):84–90. doi:10.1007/BF01386213.
Hansen, W. G. 1959. How Accessibility Shapes Land Use. Journal of the American Institute of
Planners, 25(2):73–76. doi:10.1080/01944365908978307.
Houston, D., M. G. Boarnet, G. Ferguson, and S. Spears. 2014. Can compact rail transit corridors
transform the automobile city? Planning for more sustainable travel in Los Angeles. Urban
Studies, 52(5):938–959. ISSN 0042-0980. doi:10.1177/0042098014529344.
Jäggi, B., A. Erath, C. Dobler, and K. W. Axhausen. 2012. Modeling household fleet choice as
a function of fuel price using a multiple discrete-continuous choice model. Transportation
Research Record: Journal of the Transportation Research Board, 2302:174–183. ISSN
-1981. doi:10.3141/2302-19.
Jollie, I. T. 2002. Principal component analysis. New York: Springer.
Karlaftis, M. and J. Golias. 2002. Automobile Ownership, Households Without Automobiles,
and Urban Trac Parameters: Are They Related? Transportation Research Record, 1792:29–
doi:10.3141/1792-04.
Killer, V., R. Fuhrer, D. Guth, C. Holz-Rau, and K. W. Axhausen. 2013. Road accessibility of
Germany and Switzerland 1970-2007. Arbeitsberichte Verkehrs- und Raumplanung, 936.
Konduri, K., X. Ye, B. Sana, and R. Pendyala. 2011. A Joint Tour-Based Model of Vehicle Type
Choice and Tour Length. Transportation Research Record: Journal of the Transportation
Research Board, 2255:28–37. ISSN 0361-1981. doi:10.3141/2255-04.
Kowald, M., B. Kieser, N. Mathys, and A. Justen. 2016. Determinants of mobility resource
ownership in Switzerland : changes between 2000 and 2010. Transportation. doi:10.1007/
s11116-016-9693-7.
Krugman, P. R. 1993. Geography and trade. Cambridge: MIT Press.
Le Vine, S., M. Lee-Gosselin, A. Sivakumar, and J. Polak. 2013. A new concept of accessibility
to personal activities: development of theory and application to an empirical study of mobility
resource holdings. Journal of Transport Geography, 31:1–10. ISSN 09666923. doi:10.1016/j.
jtrangeo.2013.04.013.
Metz, D. 2008. The Myth of Travel Time Saving. Transport Reviews, 28(3):321–336. doi:
1080/01441640701642348.
Metz, D. 2013. Peak Car and Beyond: The Fourth Era of Travel. Transport Reviews, 33(3):255–
ISSN 0144-1647. doi:10.1080/01441647.2013.800615.
Millard-Ball, A. and L. Schipper. 2011. Are We Reaching Peak Travel? Trends in Passenger
Transport in Eight Industrialized Countries. Transport Reviews, 31(3):357–378. ISSN
-1647. doi:10.1080/01441647.2010.518291.
Mokhtarian, P. L. and X. Cao. 2008. Examining the impacts of residential self-selection on
travel behavior: A focus on methodologies. Transportation Research Part B: Methodological,
(3):204–228. ISSN 01912615. doi:10.1016/j.trb.2007.07.006.
Næss, P. 2009. Residential Self-Selection and Appropriate Control Variables in Land Use:
Travel Studies. Transport Reviews, 29(3):293–324. ISSN 0144-1647. doi:10.1080/
Nolan, A. 2010. A dynamic analysis of household car ownership. Transportation Research Part
A: Policy and Practice, 44(6):446–455. ISSN 09658564. doi:10.1016/j.tra.2010.03.018.
Paleti, R., C. Bhat, and R. Pendyala. 2013. Integrated Model of Residential Location, Work
Location, Vehicle Ownership, and Commute Tour Characteristics. Transportation Research
Record: Journal of the Transportation Research Board, 2382:162–172. ISSN 0361-1981.
doi:10.3141/2382-18.
Pinjari, A. R., R. M. Pendyala, C. R. Bhat, and P. A. Waddell. 2011. Modeling the choice
continuum: An integrated model of residential location, auto ownership, bicycle ownership,
and commute tour mode choice decisions. Transportation, 38(6):933–958. ISSN 00494488.
doi:10.1007/s11116-011-9360-y.
Potoglou, D. and P. S. Kanaroglou. 2008. Modelling car ownership in urban areas: a case study
of Hamilton, Canada. Journal of Transport Geography, 16:42–54. doi:10.1016/j.jtrangeo.
01.006.
Raveau, S., R. Alvarez-Daziano, M. Francisca Yáñez, D. Bolduc, and J. d. D. Ortúzar. 2010.
Sequential and Simultaneous Estimation of Hybrid Discrete Choice Models Some New
Findings. Transportation Research Record: Journal of the Transportation Research Board,
:131–139. ISSN 03611981, 21694052. doi:10.3141/2156-15.
Sarlas, G., R. Fuhrer, and K. W. Axhausen. 2015. Quantifying the agglomeration eects of
Swiss public transport between 2000 and 2010. paper presented at the 15h Swiss Transport
Research Conference, Ascona, April 2015.
Schmid, B., S. Schmutz, and K. W. Axhausen. 2016. Exploring the choice between in-store
and online shopping. In 23rd International Conference on Recent Advances in Retailing and
Service Strategies EIRASS.
Scott, D. M. and K. W. Axhausen. 2006. Household mobility tool ownership: modeling
interactions between cars and season tickets. Transportation, 33(4):311–328. doi:10.1007/
s11116-005-0328-7.
Simma, A. and K. W. Axhausen. 2001. Structures of commitment in mode use: a comparison of
Switzerland, Germany and Great Britain. Transport Policy, 8(4):279–288.
Spissu, E., A. R. Pinjari, R. M. Pendyala, and C. R. Bhat. 2009. A copula-based joint multinomial
discrete-continuous model of vehicle type choice and miles of travel. Transportation,
(4):403–422. ISSN 00494488. doi:10.1007/s11116-009-9208-x. 0210091v1.
StataCorp. 2015. Stata Statistical Software: Release 14.
Swiss Federal Office of Spatial Development (ARE). 2011. ÖV-Güteklassen - Berechnungsmethodik
ARE.
Swiss Federal Office of Spatial Development (ARE), Swiss Federal Office of Environment
(BAFU), and Swiss Federal Statistical Office (BFS). 2011. Landschaftstypologie Schweiz.
Swiss Federal Office of Statistics (BFS) and Swiss Federal Office of Spatial Development (ARE).
Mobilität in der Schweiz - Ergebnisse des Mikrozensus Mobilität und Verkehr 2010.
Neuchâtel.
Tanner, R. and D. Bolduc. 2014. The Multiple Discrete-continuous Extreme Value Model
(MDCEV) with Fixed Costs. Procedia - Social and Behavioral Sciences, 111:390–399.
doi:10.1016/j.sbspro.2014.01.072.
Train, K. E. 2003. Discrete Choice Methods with Simulation. Cambridge: Cambridge University
Press. doi:10.1017/CBO9780511753930. URL http://ebooks.cambridge.org/
ref/id/CBO9780511753930.
van Eggermond, M. A., A. Erath, and K. Axhausen. 2016. Vehicle Onwerhsip and Usage in
Switzerland: The Role of Micro and Macro Accessibility. In 95th Annual Meeting of the
Transportation Research Board. Washington, DC: Transportation Research Board.
van Wee, B. 2009. Self-Selection: A Key to a Better Understanding of Location Choices, Travel
Behaviour and Transport Externalities? Transport Reviews, 29(3):279–292. ISSN 0144-1647.
doi:10.1080/01441640902752961.
Submitted for the WSTLUR 2017 Conference, Brisbane
Venables, A. J. 2007. Evaluating Urban Transport Improvements. Journal of Transport Economics
and Policy, 41(2):173–188.
Vij, A. and J. L. Walker. 2015. Statistical properties of Integrated Choice and Latent Variable
models. URL http://www.joanwalker.com/uploads/3/6/9/5/3695513/
vij{&}walker{_}2015{_}iclv{_}stat{_}props.pdf.
Greene, W. H. 2002. Econometric Analysis. Upper Saddle River: Prentice Hall, Pearson
Education International, 5th edition.
Vovsha, P. and E. Petersen. 2009. Model for Person and Household Mobility Attributes.
Transportation Research Record, 2132:95–105. ISSN 0361-1981. doi:Doi 10.3141/2132-11.
Walker, J. and M. Ben-Akiva. 2002. Generalized random utility model. Mathematical Social
Sciences, 43:303–343.
Weis, C. and K. W. Axhausen. 2009. Induced travel demand: Evidence from a pseudo panel
data based structural equations model. Research in Transportation Economics, 25(1):8–18.
doi:10.1016/j.retrec.2009.08.007.
Yamamoto, T. 2009. Comparative analysis of household car, motorcycle and bicycle ownership
between Osaka metropolitan area, Japan and Kuala Lumpur, Malaysia. Transportation,
(3):351–366. ISSN 00494488. doi:10.1007/s11116-009-9196-x.
Zegras, C. 2010. The Built Environment and Motor Vehicle Ownership and Use: Evidence from
Santiago de Chile. Urban Studies, 47(July):1793–1817. doi:10.1177/0042098009356125