Accounting for uncertainty and variation in accessibility metrics for public transport sketch planning

Matthew Wigginton Conway

Conveyal (current affiliation: School of Geographical Sciences and Urban Planning, Arizona State University)

http://orcid.org/0000-0002-1210-2982

Andrew Byrd

Conveyal

Michael van Eggermond

Future Cities Laboratory, Singapore-ETH Centre

DOI: https://doi.org/10.5198/jtlu.2018.1074

Keywords: accessibility, public transport, scenario planning, probabilistic scenario comparison


Abstract

Accessibility is increasingly used as a metric when evaluating changes to public transport systems. Transit travel times contain variation depending on when one departs relative to when a transit vehicle arrives, and how well transfers are coordinated given a particular timetable. In addition, there is necessarily uncertainty in the value of the accessibility metric during sketch planning processes, due to scenarios which are underspecified because detailed schedule information is not yet available. This article presents a method to extend the concept of "reliable" accessibility to transit to address the first issue, and create confidence intervals and hypothesis tests to address the second.

Author Biography

Matthew Wigginton Conway, Conveyal (current affiliation: School of Geographical Sciences and Urban Planning, Arizona State University)

I'm a Project Manager for Analysis at Conveyal, where I develop software and work with cities on accessibility planning for their public transit systems.

References

Abdi, H. 2007. The Bonferonni and Šidák Corrections for Multiple Comparisons. In N. Salkind, ed., Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage. URL: https://www.utdallas.edu/~herve/Abdi-Bonferroni2007-pretty.pdf

Anselin, L. 1995. Local indicators of spatial association—LISA. Geographical Analysis, 27(2):93–115.doi: 10.1111/j.1538-4632.1995.tb00338.x. URL: http://doi.wiley.com/10.1111/j.1538-4632.

tb00338.x

APPM Management Consultants and Goudappel Coffeng. 2016. Toekomstbeeld OV: Pilot Zuidelijke Randstad. Technical report. URL: https://mrdh.nl/system/files/vergaderstukken/I.02.3_Bestuurlijke%20Rapportage%20Toekomstbeeld%20OV%20Zuidelijke%20Randstad_1.pdf

Chakirov, A. and A. Erath. 2012. Activity identification and primary location modeling based on smart card payment data for public transport. In 13th International Conference on Travel Behaviour Research. Toronto.

Chen, B. Y., Q. Li, D. Wang, S.-L. Shaw, W. H. K. Lam, H. Yuan, and Z. Fang. 2013. Reliable space–time prisms under travel time uncertainty. Annals of the Association of American Geographers, 103(6):1502–1521. doi: 10.1080/00045608.2013.834236. URL: http://www.tandfonline.com/doi/abs/10.1080/00045608.2013.834236

Chen, B. Y., H. Yuan, Q. Li, D. Wang, and S. L. Shaw. 2017. Measuring place-based accessibility under

travel time uncertainty. International Journal of Geographical Information Science, 31(4):783–804. doi: 10.1080/13658816.2016.1238919. URL: http://www.tandfonline.com/doi/abs/10.1080/

2016.1238919

Conway, M. W., A. Byrd, and M. van der Linden. 2017. Evidence-based transit and land use sketch planning using interactive accessibility methods on combined schedule and headway-based networks. Transportation Research Record, 2653:45–53. doi: 10.3141/2653-06. URL: http:

//trrjournalonline.trb.org/doi/10.3141/2653-06

da Silva, A. R. and A. S. Fotheringham. 2015. The multiple testing issue in geographically weighted regression. Geographical Analysis, 48(3):233–247. doi: 10.1111/gean.12084. URL http://doi.wiley.com/10.1111/gean.12084

Davison, A. C. and D. V. Hinkley. 1997. Bootstrap methods and their application. Cambridge, England: Cambridge University Press.

Efron, B. 1979. Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1):1–26.

URL: http://www.jstor.org/stable/2958830

Efron, B. and R. J. Tibshirani. 1993. An Introduction to the Bootstrap. Boca Raton, FL: Chapman and Hall/CRC.

El-Geneidy, A. M. and D. M. Levinson. 2006. Access to Destinations: Development of Accessibility Measures. Technical Report MN/RC-2006-16, University of Minnesota. URL: http://conservancy.umn.edu/handle/11299/638

Farber, S. and L. Fu. 2017. Dynamic public transit accessibility using travel time cubes: Comparing the effects of infrastructure (dis) investments over time. Computers, Environment and Urban Systems. doi: 10.1016/j.compenvurbsys.2016.10.005. URL: http://www.sciencedirect.com/science/article/pii/S0198971516302861

Farber, S. and M. Grandez. 2017. Transit accessibility, land development and socioeconomic priority: A typology of planned station catchment areas in the Greater Toronto and Hamilton Area. Journal of Transport and Land Use, 10(1):1–24. doi: 10.5198/jtlu.2017.980. URL: https://www.jtlu.org/index.php/jtlu/article/view/980

Farber, S., M. Z. Morang, and M. J. Widener. 2014. Temporal variability in transit-based accessibility to supermarkets. Applied Geography, 53(C):149–159. doi: 10.1016/j.apgeog.2014.06.012. URL:

http://dx.doi.org/10.1016/j.apgeog.2014.06.012

Fourie, P. J., A. Erath, S. A. Ordóñez Medina, A. Chakirov, and K. W. Axhausen. 2016. Using smartcard data for agent-based transport simulation: the case of Singapore. In J.-D. Schmoecker and F. Kurauchi, eds., Public transport planning with smart card data. Boca Raton, FL: CRC Press.

Geurs, K. T. and B. van Wee. 2006. Accessibility measures: a literature review. In Accessibility, land use and transport: Accessibility evaluation of land-use and transport developments and policy strategies, chapter 2. Eburon. Reprinted from Journal of Transport Geography, 12(2), 2004, 127–140., URL: http://igitur-archive.library.uu.nl/dissertations/2006-0613-200112/

Hall, R. W. 1983. Travel outcome and performance: The effect of uncertainty on accessibility. Transportation Research Part B: Methodological, 17(4):275–290. doi: 10.1016/0191-2615(83)90046-2. URL: http://linkinghub.elsevier.com/retrieve/pii/0191261583900462

Horni, A., K. Nigel, and K. W. Axhausen. 2016. The multi-agent transport simulation MATSim. London: Ubiquity Press.

Lahiri, S. N. 2003. Resampling methods for dependent data. New York: Springer.

Ordóñez Medina, S. A. and A. Erath. 2013. Estimating dynamic workplace capacities by means of public transport smart card data and household travel survey in Singapore. Transportation Research Record, 2344:20–30. doi: 10.3141/2344-03. URL: http://trrjournalonline.trb.org/doi/10.3141/2344-03

Owen, A. and H. Jiang. 2015. Temporal Sampling Intervals and Service Frequency Harmonics in Transit Accessibility Evaluation. Unpublished.

Owen, A. and D. Levinson. 2014. Access Across America: Transit 2014 Methodology.Technical report, University of Minnesota. URL: https://pdfs.semanticscholar.org/82ca/

f5eca0706222c258053a7a94f73a15cd.pdf

Palmateer, C., A. Owen, and D. M. Levinson. 2016. Accessibility evaluation of the Metro Transit A-Line. Technical report, University of Minnesota. URL: http://conservancy.umn.edu/handle/11299/180900

Spear, B. 2011. Improving employment data for transportation planning. Technical Report NCHRP

-36, Task 098, American Association of State Highway and Transportation Officials. URL: http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP08-36(98)_FR.pdf

Stewart, A. F. 2017. Advancing accessibility: public transport and urban space. Phd thesis, Massachusetts

Institute of Technology, Cambridge, MA. URL: http://hdl.handle.net/1721.1/111444

Stewart, A. F. and P. C. Zegras. 2016. CoAXs: A Collaborative Accessibility-based Stakeholder Engagement System for communicating transport impacts. Research in Transportation Economics, pp. 1–11. doi: 10.1016/j.retrec.2016.07.016. URL http://dx.doi.org/10.1016/j.retrec.2016.07.016

Walker, J. 2010. Should we redesign our bus network? How? URL: http://humantransit.org/2010/

/basics-should-we-redesign-our-bus-network-and-how.html

Wasserstein, R. L. and N. A. Lazar. 2016. Thee ASA’s statement on p-values: Context, process, and

purpose. The American Statistician, 70(2):129–133. doi: 10.1080/00031305.2016.1154108. URL:

http://dx.doi.org/10.1080/00031305.2016.1154108

Zhao, Y. and K. M. Kockelman. 2002. The propagation of uncertainty through travel demand models: An exploratory analysis. The Annals of Regional Science, 36(1):145–163. doi: 10.1007/s001680200072. URL: http://link.springer.com/10.1007/s001680200072