Which dots to connect? Employment centers and commuting inequalities in Bogotá
Javier Peña
Universidad de los Andes
Luis A, Guzman
Universidad de los Andes
https://orcid.org/0000-0002-6487-7579
Julian Arellana
Universidad del Norte
https://orcid.org/0000-0001-7834-5541
DOI: https://doi.org/10.5198/jtlu.2022.2100
Keywords: Equality, Modal choice, Bogotá, Commuting, Employment
Abstract
Accessibility and equality evaluations have been primarily focused on residential location. However, workplace location might be an equivalent contributor to inequalities in the travel experience and accessibility. Traditionally, transport planning connects high-demand areas with the best-quality and capacity transport infrastructures. Literature supports that employment centers (EC) receive mainly workers in certain middle-to high-income occupations. This condition results in a type of segregation pattern associated with trip destinations and modal choice similar to those reported for the household location. This paper investigates commuting from a different standpoint, emphasizing the need to consider workplace location and employment distribution within cities. We identify five main EC in Bogotá, Colombia, and explore their association with the commuting mode choice of three population groups using mixed logit models. Results indicate that people who work in any EC tend to use more public transport (PT). Nevertheless, the probability of selecting PT differs among groups. Specifically, for low-income commuters, PT represents lower utility than that for middle-income commuters if their job is located in an EC. The fact that the population most likely to be public transport captive does not find this alternative as attractive as the middle-income segment needs further investigation for better policymaking.
References
Acheampong, R. A. (2020). Spatial structure, intra-urban commuting patterns and travel mode choice: Analyses of relationships in the Kumasi Metropolis, Ghana. Cities, 96(July 2019), 102432. https://doi.org/10.1016/j.cities.2019.102432
Arellana, J., Alvarez, V., Oviedo, D., & Guzman, L. A. (2021). Walk this way: Pedestrian accessibility and equity in Barranquilla and Soledad, Colombia. Research in Transportation Economics, 86, 101024. https://doi.org/10.1016/j.retrec.2020.101024
Arellana, J., Oviedo, D., Guzman, L. A., & Alvarez, V. (2020). Urban transport planning and access inequalities: A tale of two Colombian cities. Research in Transportation Business and Management, 40(September), 100554. https://doi.org/10.1016/j.rtbm.2020.100554
Arellana, J., Saltarín, M., Larrañaga, A. M., González, V. I., & Henao, C. A. (2020). Developing an urban bikeability index for different types of cyclists as a tool to prioritize bicycle infrastructure investments. Transportation Research Part A: Policy and Practice, 139, 310–334. https://doi.org/10.1016/j.tra.2020.07.010
Avendaño Arosemena, J. (2013). Three essays on urban spatial structure in Bogota D.C. Barcelona, Spain: Universitat Autònoma de Barcelona. Retrieved from https://ddd.uab.cat/record/113051
Bagley, M. N., & Mokhtarian, P. L. (2002). The impact of residential neighborhood type on travel behavior: A structural equations modeling approach. The Annals of Regional Science, 36(2), 279–297. https://doi.org/10.1007/s001680200083
Cantillo-García, V., Guzman, L. A., & Arellana, J. (2019). Socioeconomic strata as proxy variable for household income in transportation research. Evaluation for Bogotá, Medellín, Cali and Barranquilla. DYNA, 86(211), 258–267. https://doi.org/10.15446/dyna.v86n211.81821
Cervero, R. (2013). Linking urban transport and land use in developing countries. Journal of Transport and Land Use, 6, 7–24. https://doi.org/10.5198/jtlu.v1.425
Cervero, R., Komada, Y., & Krueger, A. (2010). Suburban transformations: from employment centers to mixed-use activity centers. Berekely, CA: University of California Transportation Center.
Combs, T. S. (2017). Examining changes in travel patterns among lower wealth households after BRT investment in Bogotá, Colombia. Journal of Transport Geography, 60, 11–20. https://doi.org/10.1016/j.jtrangeo.2017.02.004
Craig, S. G., & Ng, P. T. (2001). Using quantile smoothing splines to identify employment subcenters in a multicentric urban area. Journal of Urban Economics, 49(1), 100–120. https://doi.org/10.1006/juec.2000.2186
Currie, G., & Delbosc, A. (2011). Mobility vs. affordability as motivations for car-ownership choice in urban fringe, low-income Australia. Auto Motives, 34(1), 193–208. https://doi.org/10.1108/9780857242341-010
Ding, C., Wang, D., Liu, C., Zhang, Y., & Yang, J. (2017). Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance. Transportation Research Part A: Policy and Practice, 100, 65–80. https://doi.org/10.1016/j.tra.2017.04.008
Dowall, D. E., & Treffeisen, A. P. (1991). Spatial transformation in cities of the developing world. Multinucleation and land-capital substitution in Bogotá, Colombia. Regional Science and Urban Economics, 21(2), 201–224. https://doi.org/10.1016/0166-0462(91)90034-K
Fernández-Maldonado, A. M., Romein, A., Verkoren, O., & Parente Paula Pessoa, R. (2014). Polycentric structures in Latin American metropolitan areas: Identifying employment sub-centres. Regional Studies, 48(12), 1954–1971. https://doi.org/10.1080/00343404.2013.786827
Garrett, M., & Taylor, B. (2012). Reconsidering social equity in public transit. Berkeley Planning Journal, 13(1), 6–27. https://doi.org/10.5070/BP313113028
Giuliano, G., & Small, K. A. (1991). Subcenters in the Los Angeles region. Regional Science and Urban Economics, 21(2), 163–182. https://doi.org/10.1016/0166-0462(91)90032-I
Gobillon, L., & Selod, H. (2014). Spatial mismatch, poverty, and vulnerable populations. In Handbook of regional science (pp. 93–107). Berlin: Springer. https://doi.org/10.1007/978-3-642-23430-9_7
Gordon, P., & Richardson, H. W. (1996). Beyond polycentricity: The dispersed metropolis, Los Angeles, 1970–1990. Journal of the American Planning Association, 62(3), 289–295. https://doi.org/10.1080/01944369608975695
Guo, J., Feng, T., & Timmermans, H. J. P. (2020). Modeling co-dependent choice of workplace, residence and commuting mode using an error component mixed logit model. Transportation, 47(2), 911–933. https://doi.org/10.1007/s11116-018-9927-y
Guzman, L. A., Arellana, J., Cantillo-García, V., & Ortúzar, J. de D. (2021). Revisiting the benefits of combining data of a different nature: Strategic forecasting of new mode alternatives. Journal of Advanced Transportation, 2021, 1–15. https://doi.org/10.1155/2021/6672961
Guzman, L. A., Beltran, C., Bonilla, J. A., & Gomez Cardona, S. (2021). BRT fare elasticities from smartcard data: Spatial and time-of-the-day differences. Transportation Research Part A: Policy and Practice, 150, 335–348. https://doi.org/10.1016/j.tra.2021.06.018
Guzman, L. A., & Bocarejo, J. P. (2017). Urban form and spatial urban equity in Bogota, Colombia. Transportation Research Procedia, 25, 4491–4506. https://doi.org/10.1016/j.trpro.2017.05.345
Guzman, L. A., & Oviedo, D. (2018). Accessibility, affordability and equity: Assessing ‘pro-poor’ public transport subsidies in Bogotá. Transport Policy, 68(April), 37–51. https://doi.org/10.1016/j.tranpol.2018.04.012
Guzman, L. A., Oviedo, D., & Bocarejo, J. P. (2017). City profile: The Bogotá metropolitan area that never was. Cities, 60, 202–215. https://doi.org/10.1016/j.cities.2016.09.004
Guzman, L. A., Oviedo, D., & Cardona, R. (2018). Accessibility changes: Analysis of the integrated public transport system of Bogotá. Sustainability (Switzerland), 10(11), 3958. https://doi.org/10.3390/su10113958
Guzman, L. A., Oviedo, D., & Rivera, C. (2017). Assessing equity in transport accessibility to work and study: The Bogotá region. Journal of Transport Geography, 58, 236–246. https://doi.org/10.1016/j.jtrangeo.2016.12.016
Handy, S. (2005). Smart growth and the transportation-land use connection: What does the research tell us? International Regional Science Review, 28(2), 146–167. https://doi.org/10.1177/0160017604273626
Hess, S., & Palma, D. (2019). Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application. Journal of Choice Modelling, 32, 1–43. https://doi.org/10.1016/j.jocm.2019.100170
Hess, S., & Train, K. E. (2011). Recovery of inter- and intra-personal heterogeneity using mixed logit models. Transportation Research Part B: Methodological, 45(7), 973–990. https://doi.org/10.1016/j.trb.2011.05.002
Higuera-Mendieta, D., Uriza, P. A., Cabrales, S. A., Medaglia, A. L., Guzman, L. A., & Sarmiento, O. L. (2021). Is the built-environment at origin, on route, and at destination associated with bicycle commuting? A gender-informed approach. Journal of Transport Geography, 94(June), 103120. https://doi.org/10.1016/j.jtrangeo.2021.103120
Hu, L., & Schneider, R. J. (2017). Different ways to get to the same workplace: How does workplace location relate to commuting by different income groups? Transport Policy, 59, 106–115. https://doi.org/10.1016/j.tranpol.2017.07.009
Hu, L., Sun, T., & Wang, L. (2018). Evolving urban spatial structure and commuting patterns: A case study of Beijing, China. Transportation Research Part D: Transport and Environment, 59, 11–22. https://doi.org/10.1016/j.trd.2017.12.007
Inostroza, L., Baur, R., & Csaplovics, E. (2013). Urban sprawl and fragmentation in Latin America: A dynamic quantification and characterization of spatial patterns. Journal of Environmental Management, 115, 87–97. https://doi.org/10.1016/j.jenvman.2012.11.007
Legrain, A., Buliung, R., & El-Geneidy, A. M. (2016). Travelling fair: Targeting equitable transit by understanding job location, sectorial concentration, and transit use among low-wage workers. Journal of Transport Geography, 53, 1–11. https://doi.org/10.1016/j.jtrangeo.2016.04.001
Lin, D., Allan, A., & Cui, J. (2017). Sub-centers, socio-economic characteristics and commuting: A case study and its implications. International Journal of Urban Sciences, 21(2), 147–171. https://doi.org/10.1080/12265934.2016.1261646
Lucas, K. (2012). Transport and social exclusion: Where are we now? Transport Policy, 20, 105–113. https://doi.org/10.1016/j.tranpol.2012.01.013
Mattioli, G. (2017). ‘Forced car ownership’ in the UK and Germany: Socio-spatial patterns and potential economic stress impacts. Social Inclusion, 5(4), 147–160. https://doi.org/10.17645/si.v5i4.1081
McMillen, D. P. (2006). Testing for monocentricity. In A Companion to urban economics (pp. 128–140). Hoboken, NJ: Blackwell Publishing Ltd. https://doi.org/10.1002/9780470996225.ch8
Muñiz, I., Garcia-López, À. M., & Galindo, A. (2008). The effect of employment sub-centers on population density in Barcelona. Urban Studies, 45(3), 627–649. https://doi.org/10.1177/0042098007087338
Nielsen, T. S. (2019). The role of subcenters for commuting and non-work travel distances and modes in the Copenhagen metropolitan region. Built Environment, 45(4), 462–475. https://doi.org/10.2148/benv.45.4.462
Ortúzar, J. de D., & Willumsen, L. G. (2011). Modelling transport. In Modelling transport. Hoboken, NJ: Wiley. https://doi.org/10.1002/9781119993308
Oviedo, D. R., Guzman, L. A., & Oviedo, N. (2019). What is the contribution of public transport to productive inclusion? Examining job informality in the Bogotá region. Washington, DC: Transportation Research Board. Retrieved from https://trid.trb.org/view/1573205
Oviedo Hernandez, D., & Titheridge, H. (2016). Mobilities of the periphery: Informality, access and social exclusion in the urban fringe in Colombia. Journal of Transport Geography, 55, 152–164. https://doi.org/10.1016/j.jtrangeo.2015.12.004
Prati, G. (2018). Gender equality and women’s participation in transport cycling. Journal of Transport Geography, 66, 369–375. https://doi.org/10.1016/j.jtrangeo.2017.11.003
Rosas-Satizábal, D., Guzman, L. A., & Oviedo, D. (2020). Cycling diversity, accessibility, and equality: An analysis of cycling commuting in Bogotá. Transportation Research Part D: Transport and Environment, 88(September), 102562. https://doi.org/10.1016/j.trd.2020.102562
Ruiz Estupiñan, N. H. (2015). Estudio de la estructura urbana e identificación y análisis del impacto de la localización de la actividad económica sobre las dinámicas territoriales: El caso de Bogotá, Colombia (Doctoral thesis), Universitat Politècnica de Catalunya. Departament de Tecnologia de l'Arquitectura, Barcelona, Spain.
Sabatini, F. (2006). The social spatial segregation in the cities of Latin America. Washington, DC: Inter-American Development Bank. Retrieved from c.org/p/idb/bhttp://ideas.reperikps/3418.html
Sarmiento, O. L., Useche, A. F., Rodriguez, D. A., Dronova, I., Guaje, O., Montes, F., … Diez Roux, A. V. (2021). Built environment profiles for Latin American urban settings: The SALURBAL study. PLOS ONE, 16(10), e0257528. https://doi.org/10.1371/journal.pone.0257528
Schwanen, T., Dieleman, F. M., & Dijst, M. (2001). Travel behavior in Dutch monocentric and policentric urban systems. Journal of Transport Geography, 9(3), 173–186. https://doi.org/10.1016/S0966-6923(01)00009-6
Train, K. E. (2009). Discrete choice methods with simulation. In Discrete choice methods with simulation (Second ed.). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511805271
UN Habitat. (2012). State of Latin American and Caribbean cities 2012. Nairobi: UN Habitat.
Vecchio, G., Tiznado-Aitken, I., & Hurtubia, R. (2020). Transport and equity in Latin America: A critical review of socially oriented accessibility assessments. Transport Reviews, 40(3), 354–381. https://doi.org/10.1080/01441647.2020.1711828
Vermesch, P., Boisjoly, G., & Lachapelle, U. (2021). Commuting mode share and workplace-based public transport services: An equity perspective. Case Studies on Transport Policy, 9(2), 590–599. https://doi.org/10.1016/j.cstp.2021.02.013
Wang, F. (2000). Modeling commuting patterns in Chicago in a GIS environment: A job accessibility perspective. Professional Geographer, 52(1), 120–133. https://doi.org/10.1111/0033-0124.00210
Wolday, F., Tønnesen, A., & Næss, P. (2019). Workplace location, polycentricism, and car commuting. Journal of Transport and Land Use, 12(1), 785–810. https://doi.org/10.5198/jtlu.2019.1488
Yang, W., & Cao, X. (2018). Examining the effects of the neighborhood built environment on CO2 emissions from different residential trip purposes: A case study in Guangzhou, China. Cities, 81, 24–34. https://doi.org/10.1016/j.cities.2018.03.009
Zhang, S., Liu, X., Tang, J., Cheng, S., & Wang, Y. (2019). Urban spatial structure and travel patterns: Analysis of workday and holiday travel using inhomogeneous Poisson point process models. Computers, Environment and Urban Systems, 73, 68–84. https://doi.org/10.1016/j.compenvurbsys.2018.08.005