Traffic-land use compatibility and street design impacts of automated driving in Vienna, Austria


  • Emilia Bruck future.lab Research Centre and Research Unit for Local Planning, TU Wien
  • Aggelos Soteropoulos future.lab Research Centre and Research Unit for Transportation System Planning, TU Wien



automated driving, traffic-land use compatibility, street design studies


The potential rise of automated vehicles (AVs) may significantly impact future traffic volumes, in turn affecting urban street designs and adjacent land use. While integrated studies on potential traffic and land-use changes due to AVs largely concern issues of location choice and changing settlement patterns, assessments of how AVs may influence the quality of streets depending on the requirements of adjacent land use remain scarce. This paper presents an integrated assessment of the urban effect of AVs on traffic and neighborhoods in Vienna. It provides a methodology to assess whether changing traffic volumes are compatible with the land use of a given neighborhood to approximate street space requirements for shared automated shuttles and to visualize possible trajectories of spatial transformation by considering local development goals. The results show that the opportunities to convert street space and the risks of environmental harm due to AVs will vary across neighborhoods and street typologies. It is crucial for policymakers and planners to consider such contextual differences to gain better insight into the functional requirements and urban consequences of AVs. This assessment aims to shed light on the possible trade-offs of a system change in favor of AVs to help evaluate adequate operational conditions and inform proactive traffic and urban design policies to harness possible implications.


Anair, D., Martin, J., Pinto de Moura, M., & Goldman, J. (2020). Ride-hailing’s climate risks: Steering growing industry toward a clean transportation future. Cambridge, MA: Union of Concerned Scientists.

Appleyard, B., & Riggs, W. (2018). A vision for livability. In W. Riggs (Ed.), Disruptive transport. Driverless cars, transport innovation and the sustainable city of tomorrow (pp. 189–203). Oxfordshire, UK: Routledge.

Auld, J., Verbas, O., Javanmardi, M., & Rousseau, A. (2018). Impact of privately-owned level 4 CAV technologies on travel demand and energy. Procedia Computer Science, 130, 914–919.

Baier, R., Hebel, C., Jachtmann, Y., Reinartz, A., Schäfer, K. H., & Warnecke, A. (2011). Stadt Mönchengladbach. Untersuchungen zur Verkehrsentwicklungsplan. Aachen, Germany: BSV—Büro für Stadt- und Verkehrsplanung.

Boesch, P. M., Ciari, F., & Axhausen, K. W. (2016). Automated vehicle fleet sizes required to serve different levels of demand. Transportation Research Record, 2542(1), 111–119.

Boesch, P. M., Ciari, F., & Axhausen, K.W. (2018). Transport policy optimization with autonomous vehicles. Transportation Research Record, 2672, 698–707.

Bruck, E. M., Scheuvens, R., & Berger, M. (2021). Steuerung und Gestaltung von räumlichen Schnittstellen der Mobilität. In M. Mitteregger, E. M. Bruck, A. Soteropoulos, A. Stickler, M. Berger, J.S. Dangschat, R. Scheuvens, & I. Banerjee (Eds.), AVENUE21: Politische und planerische Aspekte der automatisierten Mobilität (pp. 133-158). Berlin: Springer.

Bühlmann, F. & Laube, M. (2013). Verträglichkeit Straßenraum. Methodik und Ergebnisse. Zurich: Kanton Zurich.

Childress, S., Nichols, B., Charlton, B., & Coe, S. (2015). Using an activity-based model to explore the potential impacts of automated vehicles. Transportation Research Record, 2493, 99–106.

Curtis, C., McLeod, S., Hultén, J., Pettersson-Lofstedt, F., Paulsson, A., & Hedegaard Sørensen, C. (2020). Knowledge for policy-making in times of uncertainty: The case of autonomous vehicle model results. Transport Reviews, 41(4), 478–498.

Fehr & Peers. (2018). San Francisco curb study. San Francisco: Uber Technologies.

Fehr & Peers. (2019). Cincinnati curb study. Cincinatti: City of Cincinnati and Uber Technologies.

Frehn, M., Steinberg, G., & Schröder, S. (2013). Methodik und Ergebnisse der Straßenraumverträglichkeit. Verkehrsentwicklungsplan Bremen 2025. Retrieved from

Friedrich, B. (2016). The effect of automated vehicles on traffic. In M. Maurer, C. J. Gerdes, B. Lenz, & H. Winner (Eds.), Automated driving (pp. 317–334). Berlin: Springer.

Fulton, L. M., Mason, J., & Meroux, D. (2017). Three revolutions in urban transportation: How to achieve the full potential of vehicle electrification, automation, and shared mobility in urban transportation systems around the world by 2050. Davis, CA: University of California Davis Institute of Transportation Studies report to the Institute for Transportation and Development Policy.

Gehl Architects. (2009). Downtown Seattle: Public spaces & public life. Seattle: City of Seattle.

Gelauff, G., Ossokina, I., & Teulings, C. (2017). Spatial effects of automated driving: dispersion, concentration, or both. The Hague: KIM–Netherlands Institute for Transport Policy Analysis.

González-González, E., Nogués, S., & Stead, D. (2020). Parking futures: Preparing European cities for the advent of automated vehicles. Land Use Policy, 91, 104010.

Harb, M., Stathopoulos, A., Shiftan, Y., & Walker, J. L. (2021). What do we (not) know about our future with automated vehicles? Transport Research Part C, 123, 102948.

Horni, A., Nagel, K., & Axhausen, K. W. (2016). The multi-agent transport simulation MATSim. London: Ubiquity.

ITF. (2018). The shared-use city: Managing the curb. Corporate partnership board report. Paris: International Transport Forum, OECD.

Karndacharuk, A., Wilson, D. J., & Dunn, R. (2014). A review of the evolution of shared (street) space concepts in urban environments. Transport Reviews, 34(2), 190–220.

Kondor, D., Santi, P., Le, D.-T., Zhang, X., Millard-Ball, A., & Ratti, C. (2020). Addressing the ‘minimum parking’ problem for on-demand mobility. ArXiv:1808.05935. Retrieved from

Liu, J., Kockelman, K. M., Boesch, P. M., & Ciari, F. (2017). Tracking a system of shared automated vehicles across the Austin, Texas, network using agent-based simulation. Transportation, 44(6), 1261–1278.

MA 18 – Stadtentwicklung und Stadtplanung. (2015). STEP 2025. Fachkonzept Mobilität, Wien. Retrieved from

MA 22 – Wiener umweltschutzabteilung. (2015). Urban heat islands: Strategieplan Wien. Retrived from

Marsden, G., Docherty, I., & Dowling, R. (2020). Parking futures: Curbside management in the era of ‘new mobility’ services in British and Australian cities. Land Use Policy, 91, 104012.

Meyer, J., Becker, H., Bösch, P. M., & Axhausen, K. W. (2017). Autonomous vehicles: The next jump in accessibilities? Research in Transportation Economics, 62, 80–91.

Milakis, D., van Arem, B. & van Wee, B. (2017). Policy and society related implications of automated driving: A review of literature and directions for future research. Journal of Intelligent Transportation Systems, 21(4), 324–348.

NACTO. (2013). Urban street design guide. Washington, DC: Island Press

Oblozinska, Z., & Axhausen, K. W. (2004). Dokumentation der Messung von Verkehrserzeugungsraten (Arbeitsbericht Verkehrs- und Raumplanung 265). (IVT). Zürich: Institut für Verkehrsplanung und Transportsysteme.

Schönauer, R., Stubenschrott, M., Schrom-Feiertag, H., & Menšik, K. (2012). Social and spatial behavior in shared spaces. In M. Schrenk, V. V. Popovich, P. Zeile, & P. Elisei (Eds.), REAL CORP 2012 Proceedings (pp. 759-767). Retrieved from

Schwartz, S. (2017). New mobility playbook 1, Appendix B. (Technical report). Seattle: Seattle Department of Transportation, King County Metro.

Soteropoulos, A., Berger, M., & Ciari, F. (2019). Impacts of automated vehicles on travel behaviour and land use: An international review of modelling studies. Transport Reviews, 39(1), 29–49.

Soteropoulos, A., Berger, M., & Mitteregger, M. (2021). Compatibility of automated vehicles in street spaces: Considerations for a sustainable implementation. Sustainability, 13(5), 2732.

Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., & Pavone, M. (2014). Toward a systemic approach to the design and evaluation of automated mobility-on-demand systems: A case study in Singapore. In G. Meyer, & S. Beiker (Eds.), Road vehicle automation. Lecture notes in mobility (pp. 229–245). Berlin: Springer.

Stayton, E., & Stilgoe, J. (2020). It’s time to rethink levels of automation for self-driving vehicles. SSRN Electronic Journal. Retrieved from

Stead, D., & Vaddadi, B. (2019). Automated vehicles and how they may affect urban form: A review of recent scenario studies. Cities, 92, 125–133.

Stiglic, M., Agatz, N., Savelsbergh, M., & Gradisar, M. (2015). The benefits of meeting points in ride-sharing systems. Transportation Research Part B: Methodological, 82, 36–53.

Thakur, P., Kinghorn, R., & Grace, R. (2016). Urban form and function in the autonomous era. Australasian Transport Research Forum Proceedings, November 2016. Retrieved from

von Mörner, J., Müller, B., & Topp, H. (1984). Design and design of inner-city streets. Research on road construction and road traffic technology (Report 425). Bonn, Germany: Federal Ministry for Transport.

Wellik, T., & Kockelman, K. (2020). Anticipating land-use impacts of self-driving vehicles in the Austin, Texas, region. Journal of Transport and Land Use, 13(1), 185–205.

Zhang, W., Guhathakurta, S., Fang, J., & Zhang, G. (2015). Exploring the impact of shared automated vehicles on urban parking demand: An agent-based simulation approach. Sustainable Cities and Society, 19, 34–45.

Zhang, W., Guhathakurta, S., & Khalil, E. B. (2018). The impact of private automated vehicles on vehicle ownership and unoccupied VMT generation. Transportation Research Part C: Emerging Technologies, 90, 156–165.

Zhang, W., & Wang, K. (2020). Parking futures: Shared automated vehicles and parking demand reduction trajectories in Atlanta. Land Use Policy, 91, 103963.




How to Cite

Bruck, E., & Soteropoulos , A. . (2022). Traffic-land use compatibility and street design impacts of automated driving in Vienna, Austria. Journal of Transport and Land Use, 15(1), 137–163.